Skip to main content

Systematic Investigations on the Bonding Property of the M—Fe—S (M = Mo, V, and W) Cluster Compounds and Novel Assumption on the Active Center Models of Nitrogenase

  • Chapter
The Nitrogen Fixation and its Research in China
  • 225 Accesses

Abstract

At present, three kinds of nitrogenases are known, i.e. the molybdenum-containing nitrogenase (Mo nitrogenase), the vanadium-containing nitrogenase (V nitrogenase), and a third nitrogen fixation system (nitrogenase 3). The last one has more complicated components, and its activities are lower than those of the former, and the nitrogen fixation mechanism of nitrogenase 3 has not yet become clear (Chisnell et al. 1988). Similar to the Mo nitrogenase, V nitrogenase requires MgATP and a source of low-potential electrons to reduce substrates such as H+, N2, and C2H2, (Eady et al. 1987). The kinetic and spectroscopic data suggest the same sequence of electron-transfer reactions and a similar overall mechanism (Eady et al. 1987; Dilworth et al. 1988; Hales et al. 1986, a, b). However, obvious differences in substrate specificity have been observed, i.e., Mo nitrogenase reduces C2H2, to C2H4, whereas V nitrogenase reduces C2H2 to C2H4 and C2H6 (Dilworth 1988). As the assay temperature was lowered from 30 to 5 °C, nitrogen remained an effective substrate for V nitrogenase, but not for Mo nitrogenase (Miller et al. 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arber JM, Dobson BR, Eady RR, Stevens P, Hasnian S, Garner CD, Smith BE (1987) Vanadium K-edge X-ray absorption spectrum of the VFe protein of the vanadium nitrogenase of Azotobacter chroococcum. Nature (London) 325: 372

    Article  CAS  Google Scholar 

  2. Arber JM, Flood AC, Garner CD, Gormal CA, Hasnain SS, Smith BE (1988) Iron K-edge X-ray absorption spectroscopy of the iron-molybdenum cofactor of nitrogenase from Klebsiella pneumoniae. Biochem J 252: 421

    CAS  Google Scholar 

  3. Averill BA, Herskovitz T, Holm RH, (bers JA (1973) Synthetic analogues of the active sites of iron-sulfur proteins. II. Synthesis and structure of the tetra[mercapto-p3-sulfido-iron] clusters. [Fe4S4(SR)4]3-. J Am Chem Soc 95: 3523

    Article  CAS  Google Scholar 

  4. Bandy JA, Davies CE, Green JC, Green MLH, Prout K, Rodgers DPS (1983) Synthesis, crystal structures, and bonding of the molybdenum cubane compounds [Mo(p-C5114Pr’) (p3-S)]4“’, where n=0, 1, and 2. J Chem Soc Chem Commun 1395

    Google Scholar 

  5. Bobrik MA, Hodgson KO, Holm RH (1977) Inorganic derivatives of iron sulfide-thiolato dimers and tetramers. Structures of tetrachloro-p-disulfido-diferrate(III) and tetrakis(chloro-p3sulfido-iron) dianions. Inorg Chem 16: 1851

    Article  CAS  Google Scholar 

  6. Cao HZ, Liu CW, Lu JX (1986) The electronic structure of [Fc2S3(SH)4]2 and [Fe4S4(SH)4]4 • Acta Chim Sinica 44: 1197

    Google Scholar 

  7. Carney MJ, Kovacs JA, Zhang TP, Papaefthymiou GC, Spartalian K, Frankel RB, Holm RH (1987) Comparative electronic properties of V-Fe -S and Mo-Fe-S clusters containing isoelectronic cubane-type [VFe3S4]3+ and [MoFe3S4]3+ core. Inorg Chem 26: 719

    Article  CAS  Google Scholar 

  8. Chisnell JR, Premakumar R, Bishop PE (1988) Purification of a second alternative nitrogenase from a nif HDK deletion strain of Azotobacter vinelandii. J Bacteriol 170: 27

    CAS  Google Scholar 

  9. Christou G, Garnar CD, King TJ, Johnson CE, Rush JD (1979) Isolation and Characterization by X-ray crystallography and Mössbauer Measurements of [NEt4]3[Fe6W2S8(SPh)6(OMe)3], and iron-tungsten-sulphur cubic cluster dimer. J Chem Soc Chem Commun 503

    Google Scholar 

  10. Christou G, Garnar CD (1980) Synthesis and proton magnetic resonance properties of Fe,MS4 ( M = Mo or W) cubane-like cluster dimers. J Chem Soc Dalton Trans 2354

    Google Scholar 

  11. Christou G, Mascharak PK, Armstrong WH, Papaefthymiou GC, Frankel RB, Holm RH (1982) Electron-transfer series of MoFe3S4 double-cubane clusters electronic properties of components and the structure of [(C2H5)4N]5[Mo2Fe6S8(SC5H5)9]. J Am Chem Soc 104: 2820

    Article  CAS  Google Scholar 

  12. Ciurli S, Holm RH (1989a) Insertion of [VFe3S4]3+ and [MoFe3S4]3+ cores into a semirigid tritiolate caritand ligand: regiospecific reactions at a vanadium site similar to that in nitrogenase. Inorg Chem 28: 1685

    Article  CAS  Google Scholar 

  13. Ciurli S, Carney MJ, Holm RH, Papaefthymiou GC (1989b) Stability range of heterometal cubane-type clusters MFe3S4: Assembly of double-cubane clusters with the ReFe3S4 core. Inorg Chem 28: 2696

    Article  CAS  Google Scholar 

  14. Conradson SD, Burgess BK, Newton WE, Hodgson KO, McDonald JW, Rubinson JF, Gheller SF, Mortenson LE, Adams MWW, Mascharak PK, Armstrong WH, Holm RH (1985) Structural insights from the molybdenum K-edge X-ray absorption near edge structure of the iron-molybdenum protein of nitrogenase and its iron-molybdenum cofactor by comparison with synthetic Fe-Mo-S clusters. J Am Chem Soc 107: 7935

    Article  CAS  Google Scholar 

  15. Conradson SD, Burgess BK, Newton WE, Mortenson LE, Hodgson KO (1987) Structural studies of the molybdenum site in the MoFe protein and its FeMo cofactor by EXAMS. J Am Chem Soc 109: 7507

    Article  CAS  Google Scholar 

  16. Cook MR, Karplus M (1985) Electronic structure of the MoFe3S4(SH)6- ion: a broken-symmetry metal-sulfur cluster. J Chem Phys 83: 6344

    Article  CAS  Google Scholar 

  17. Cotton FA, Diebold MP, Diri Z, Llusar R, Schwotzer W (1985) The cuboidal Mo3Sâ+ aqua ion and its derivatives. J Am Chem Soc 107: 6735

    Article  CAS  Google Scholar 

  18. Coucouvanis D (1981) Fe-Mo-S complexes derived from MS - anions (M = Mo, W) and their possible relevance as analogies for structural features in the Mo site of nitrogenase. Acc Chem Res 14: 201

    Article  CAS  Google Scholar 

  19. Coucouvanis D, Simhon ED, Stremple P, Ryan M, Swenson D, Baenziger NC, Simopoulos A, Papaefthymiou V, Kostikas A, Petrouleas V (1984) Trinuclear Fe-M-S complexes containing a linear Fe-M-Fe array and a bridging S2MS2 unit. Electronic structures and crystal and molecular structures of the [(C6H5)4P]3[CI,FeS2MS2FeC12] (M = Mo, W) complexes. Inorg Chem 23: 741

    Google Scholar 

  20. Cramer SP, Hodgson KO, Gillum WO, Mortenson LE (1978a) The molybdenum site of nitrogenase. Preliminary structural evidence from X-ray absorption spectroscopy. J Am Chem Soc 100: 3398

    Google Scholar 

  21. Cramer SP, Gillum WO, Hodgson KO, Mortenson LE, Stiefel EI, Chisnell JR, Brill WJ, Shah VK (1978b) The molybdenum site of nitrogenase. 2. A comparative study of Mo-Fe proteins and the iron-molybdenum cofactor by X-ray absorption spectroscopy. J Am Chem Soc 100: 3814

    Google Scholar 

  22. Curtis MD, Williams PD, Butler WM (1988) Preparation, structures and electrochemistry of tetranuclear sulfido clusters Cp2M2M íS2_4 (M = MO, W; M’ = Fe, Co, Ni ). Inorg Chem 27: 2853

    Google Scholar 

  23. Dahlstrom PL, Kumar S, Zubieta J (1981) Synthesis and X-ray structural characterization of [Me4N]3{[SCH2CH2S)MoS3]2Fe}, the first example of a heteronuclear trimer containing molybdenum in a squarepyramidal geometry. J Chem Soc, Chem Commun 411

    Google Scholar 

  24. Darkwa J, Lockemeyer JR, Boyd PDW, Rauchfuss TB, Rheingold AL (1988) Synthetic, structural, and theoretical studies on the electron-deficient cubanes (RC5H4)4Ti4S4, (RC5H4)4V4S4, and [RC5H4)4V4S4]’. J Am Chem Soc 110: 141

    Article  Google Scholar 

  25. Dilworth MJ, Eady RR, Robson RL, Miller RW (1987) Ethane formation from acetylene as a potential test for vanadium nitrogenase in vivo. Nature 327: 167

    Article  CAS  Google Scholar 

  26. Dilworth MJ, Eady RR, Eldridge ME (1988) The vanadium nitrogenase of Azotobacter chroococcum. Biochem J 249: 745

    CAS  Google Scholar 

  27. Do Y, Simhon ED, Holm RH (1983) Derivatives of tetrathiovanadate(V): synthesis of the linear heterometallic Fe(p2-S)2V(p2-S)2Fe core and the structures of [VS4]3-. J Am Chem Soc 105: 6731

    Article  CAS  Google Scholar 

  28. Eady RR, Sobson RL, Richardson TH, Miller RW, Hawkins M (1987) The vanadium nitrogenase of Azotobacter chroococcum, purification, and properties of the VFe protein. Biochem J 244: 197

    CAS  Google Scholar 

  29. Eremenko IL, Pasynskii AA, Orazsakhatov B, Ellert OG, Novotortsev VM, Kalinnikov VT, Porai-Koshits MA, Antsyshkina AS, Dikareva LM, Ostrikova VN (1983) Interaction of heteronuclear chromium-containing clusters with Carboxylic acids. Molecular structure of the paramagnetic tetrahedral cluster Cp3Cr3(p3-S)4Fe(OOCCMe3). Inorg Chim Acta 73: 225

    Article  CAS  Google Scholar 

  30. Flank AM, Weininger M, Mortenson LE, Cramer SP (1986) Single-crystal EXAFS of nitrogenase. J Am Chem Soc 108: 1049

    Article  CAS  Google Scholar 

  31. Gall RS, Chu CT-W, Dahl LF (1974) Preparation, structure and bonding of two cubane-like iron-nitrosyl complexes, Fe4(NO)4(p3-S)4 and Fe4(NO)4(p3-S)2(µ3-NC(CH3)3)2; Stereo-chemical consequences of bridging ligand substitution on a completely bonding tetrametal cluster unit and of different terminal ligands on the cubane-like Fe4S4 core. J Am Chem Soc 96: 4019

    Article  CAS  Google Scholar 

  32. George GN, Coyle CL, Hales BJ, Cramer SP (1988) X-ray absorption of Azotobacter vinelandii vanadium nitrogenase. J Am Chem Soc 110: 4057

    Article  CAS  Google Scholar 

  33. Gibson CP, Dahl F (1988) Synthesis and characterization of (95–05Me5)2Mo2Fe2(C0)9(p2CO) (2,p-00), a 62-electron butterfly molybdenum-iron cluster containing a n-bound four-electron-donating carbonyl ligand: a possible structural model for the active dinitrogen molybdenum-iron site in nitrogenase. Organometallics 7: 535

    Article  CAS  Google Scholar 

  34. Habert TR, Cohen SA, Stiefel El (1985) Construction of heterometallic “thicubanes” from M2S2(p-S)2 core complexes: Synthesis of Co2M2S4(S2CNEt2)2(CH3CN)2(C0)2 (M = Mo, W) and structure of the Co2Mo2(p3-S)4 cluster. Organometallics 4: 1689

    Article  Google Scholar 

  35. Hales BJ, Langasch DJ, case EE (1986a) Isolation and characterization of a second nitrogenase Fe-protein from Azotobacter-vinelandii. J Biol Chem, 261: 15301

    CAS  Google Scholar 

  36. Hales BJ, Case EE, Morningstar JE, Dzeda MF, Mauterer LA (1986b) Isolation of a New vanadium-containing nitrogenase from Azotobacter vinelandii. Biochemistry 25: 7251

    Article  CAS  Google Scholar 

  37. Harris S (1989) Structure, bonding and electron counts in cubane-type clusters having M4S4, M2M2S4 and MM3S4 core. Polyhedron 8: 2843

    Article  CAS  Google Scholar 

  38. Henkel G, Tremel W, Krebs B (1981) [Fe3S(S2C10H12)3]2-: the first synthetic trinuclear iron-sulfur cluster compound. Angew Chem Int Ed Engl 20: 1033

    Google Scholar 

  39. Henkel G, Strasdeit H, Krebs B (1982) [Fe6S9(SCH2C6H5)2]4-: a hexanuclear iron-sulfur cluster anion containing the square-pyramidal [(p4-S)Fe4] unit. Angew Chem Int Ed Engl 21: 201

    Google Scholar 

  40. Holm RH (1981) Metal clusters in biology: quest for a synthetic representation of the catalytic site of nitrogenase. Chem Soc Rev 10: 455

    Article  CAS  Google Scholar 

  41. Huynh BH, Müenck E, Orme-Johnson WH (1979) Nitrogenase XI. Mössbauer studies on the cofactor centers of the MoFe protein from Azotobacter vinelandii op. Biochim Biophys Acta, Protein Structure 576: 192

    Google Scholar 

  42. Huynh BH, Henzl MT, Christner JA, Zimmermann R, Orme-Johnson WH, Müenck E (1980) Nitrogenase XII. Mössbauer studies of the MoFe protein from Clostridium Pasteurianum W5. Biochim Biophys Acta, Protein Structure 623: 124

    Google Scholar 

  43. Johnson MK, Thomson AJ, Robinson AE, Smith BE (1981) Protein structure characterization of the paramagnetic centres of the molybdenum-iron protein of nitrogenase from klebsiella pneumoniae using low temperature magnetic circular dichroism spectroscopy. Biochim Biophys Acta 671: 61

    Article  CAS  Google Scholar 

  44. Johnson MK, Morningstar JE, Bennett DE (1985) Magnetic circular dichroism studies of succinate dehydrogenase. Evidence for [2Fe-2S], [3Fe-xS], and [4Fe-4S] centers in reconstitutively active enzyme. J Bio] Chem 260: 7368

    CAS  Google Scholar 

  45. Kovacs JA, Holm RH (1986) Assembly of vanadium-iron-sulfur cubane clusters from mononuclear and linear trinuclear reactants. J Am Chem Soc 108: 340

    Article  CAS  Google Scholar 

  46. Kovacs JA, Holm RI-1 (1987) Structural chemistry of vanadium iron -sulfur clusters containing the cubane-type [VFe3S4]2+ core. Inorg Chem 26: 711

    Google Scholar 

  47. Lauher JW (1978) The bonding capabilities of transition metal clusters. J Am Chem Soc 100: 5305

    Article  CAS  Google Scholar 

  48. Lauher JW (1979) Bonding capabilities of transition metal clusters. 2. Relationship to hulk metals. J Am Chem Soc 101: 2604

    Article  CAS  Google Scholar 

  49. Lin Z-Y, Liu C-W (1987) Fe-Fe interaction and electronic structure rules in the Fe S cluster compounds. Acta Chim Sinica 45: 535

    CAS  Google Scholar 

  50. Liu C-W, Hua J-M, Chen Z-D, Lin Z-Y, Lu J-X (1986a) The bonding properties of Mo Fe-S clusters. Int J Quant Chem 29: 701

    Article  CAS  Google Scholar 

  51. Liu C-W, Cao H-Z, Lu J-X (1986b) Quantum chemistry simulation of the proton effect in a spontaneous assembly reaction. Acta Chim Sinica 44: 1191

    CAS  Google Scholar 

  52. Liu C-W, Cao H-Z, Lu J-X, Zheng S-J, Liu R-Z (1987) The electronic structures of red Roussinate and black Roussinate. Acta Chim Sinica 45: 1

    Google Scholar 

  53. Liu C-W, Lin Z-Y, Lu J-X (1988a) The bonding rules of Mo-Fe-S cluster compounds. J Mol Struct (Theochem) 180: 189

    Article  Google Scholar 

  54. Liu C-W, Hua J-M, Lu J-X (1988b) Quantum chemical simulation on the coordination activation of nitrogenase substrates. Acta Chim Sinica 46: 315

    CAS  Google Scholar 

  55. Liu C-W, Cao H-Z, Lu J-X (1989) A quantum-chemical study of the mechanism of the “spontaneous self-assembly” reaction in the formation of the black Roussinate monoanion via dimeric condensation of red Roussinate dianion. J Mol Struct (Theochem) 183: I

    Google Scholar 

  56. Liu C-W, Lin Z-Y, Yang X-F (1990) New assumption on the active centre models of nitrogenase. Chem J Chinese Univ Spec 198

    Google Scholar 

  57. Lu S-F, Zhu N-Y, Wu X-T, Wu Q-J, Lu J-X (1989a) The Synthesis and Crystal structures of three Mo-Cu-S cubane-like clusters: [Mo3CuS4] [S2P(OCH2CH3)3]3–1-(/i,-QOCCH3)•H20, [Mo3CuS4][S2P(OCH2CH 3),]3 1f(µ2-OOCCH3p(CH 3)2S0 and [Mo3CuS4li S, P(OCH2CH3)2]I-(p2-OOCC6H5)-CsH5N. J Mol Struct 197: 15

    Article  CAS  Google Scholar 

  58. Lu S-F, Zhu N-Y, Wu X-T, Wu Q-J, Lu J-X (1989b) The synthesis and crystal structure of a novel cubane-like tungsten copper sulfur [W3CuS4]•[S,P(OC2H5)2]3.1’1(3-C’H3C00’CH3CN. J Mol Struct 197: 33

    Article  Google Scholar 

  59. Lu J-X (Nitrogen Fixation Research Group, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences) (1975) A preliminary model for the active site of catalytic nitrogen fixation in nitrogenase Also notes on structural criteria for the activation of dinitrogen molecules via coordination. Kexue Tongbao, 20: 540

    Google Scholar 

  60. Lu J-X, Zhuang B (1989) A unit construction approach to the rational syntheses of transition metal cubane-like clusters by the use of reactive fragments as building blocks. Jiegou Huaxue (J Struct Chem) 8: 233

    CAS  Google Scholar 

  61. Mascharak PK, Papaefthymiou GC, Frankel RB. Holm RH (1981) Evidence for localized Fe(III)/Fe(II) oxidation state configuration as an intrinsic property of [Fe,S,(SR)4 3-] clusters. J Am Chem Soc 103: 6110

    Google Scholar 

  62. Mascharak PK, Armstrong WH, Mizobe Y, Holm RH (1983) Single cubane-type MoFe3S4 clusters (M = MO, W): synthesis and properties of oxidized and reduced forms and the structure of (Et4N)3[MoFe3S4(S-p-C6H4Cl)4(3,6-(C3H5)2C6H2O2)]. J Am Chem Soc 105: 475

    Article  CAS  Google Scholar 

  63. Miller RW, Eady RR (1988) Molybdenum and vanadium nitrogenases of Azotobacter chroococcum. Biochem J 256: 429

    CAS  Google Scholar 

  64. Mingos DMP (1983) Polyhedral skeletal electron pair approach a generalized principle for condensed polyhedra. J Chem Soc, Chem Commun 706

    Google Scholar 

  65. Mingos DMP (1985) Interrelationships between the topological electron-counting theory and the polyhedral skeletal electron pair theory. Inorg Chem 24: 114

    Article  CAS  Google Scholar 

  66. Morningstar JE, Johnson MK, Case EE, Hales BJ (1987a) Characterization of the metal clusters in the nitrogenase Mo-Fe and V-Fe proteins of Azotobacter vinelandii using MCD spectroscopy. Biochemistry 26: 1795

    Article  CAS  Google Scholar 

  67. Morningstar JE, Hales BJ (1987b) Electron paramagnetic resonance study of the vanadium-iron protein of nitrogenase from Azotobacter vinelandii. J Am. Chem Soc 109: 6854

    Google Scholar 

  68. Müller A, Eltzner W, Bögge H, Jostes R (1982a) [Mo4’S4(CN), 2]8-, a cluster with high negative charge and cubane-like Mo4S4-moiety—on the significance of cyanothiomolybdates for the proebiotic evolution. Angew Chem Int Ed Engl 21: 795

    Google Scholar 

  69. Müller A, Eltzner W, Clegg W, Sheldrick GM (1982b) Formation of metal-metal bonds and conversion of the metal aggregate {Mo4(S2)4(S’2)2} by atom-transfer and redox reactions at nonequivalent ligands; [Mo4S4(NO)4(CN)8]8- and anion with a central cubane-like unit. Angew Chem Int Ed Engl 21: 536

    Article  Google Scholar 

  70. Müller A, Sarkar S, Bögge H, Jostes R, Trautwein A, Lauer U (1983) [Cl2FeS2MoO(S2)]2-, a novel bimetallic complex with unusual electronic structure and a substituted tetrachalcogenometalate as “ligand”. Angew Chem Int Ed Engl 22: 561

    Google Scholar 

  71. Müller A, Hellmann W, Römer C, Römer M, Bögge H, Jostes R, Schimanski U (1984) New homo-and heteronuclear tetrathiometallo complexes, specific to the Fe“/WS;- system: the novel tetranuclear [S2WS2FeS2FeS2WS2]4- complex with linear metal atom array. Inorg Chim Acta 83: L75

    Article  Google Scholar 

  72. Münck E, Rhodes H, Orme-Johnson WH, Davis LC, Brill WJ, Shah VK (1975) Nitrogenase VIII. Mössbauer and EPR spectroscopy. The MoFe protein component from Azotobacter vinelandii op Biochimica et Biophysica Acta, 400: 32

    Google Scholar 

  73. Nelson MJ, Levy MA, Orme-Johnson WH (1983) Metal and sulfur composition of iron-molybdenum cofactor of nitrogenase. Proc Natl Acad Sci USA 80: 147

    Article  CAS  Google Scholar 

  74. Pasynskii AA, Eremenko IL, Orazsakhatov B, Kalinnikov VT, Aleksandrov GG, Struchkov YuT (1981a) Antiferromagnetic complexes with metal-metal bonds. VI. Transformation of the antiferromagnetic metalacycle (Cp2Cr2SCMe3) (p3-S)2Co(CO)2 into the diamagnetic metallo-tetrahedron Cp3Cr3(p3-S)4Co(C0). J Organomet Chem 214: 367

    Article  CAS  Google Scholar 

  75. Pasynskii AA, Eremenko IL, Orazsakhatov B, Kalinnikov VT, Aleksandrov GG, Struchkov YuT (1981b) Antiferromagnetic complexes with metal-metal bonds. VII. Synthesis and molecular structure of (CpCrSCMe3)2SMn(C0)2Cp and formation of the tetranuclear clusters Cp4Cr3MS4 (Cr, V, Nb ). J Organomet Chem 216: 211

    Google Scholar 

  76. Pasynskii AA, Eremenko IL, Rakitin YuV, Novotortsev VM, Ellert OG, Kalinnikov VT, Shklover VE, Struchkev YuT, Lindeman SV, Kurbanov TK, Gasanov GS (1983) Anti-ferromagnetic complexes with metal-metal bonds. IX. Synthesis and molecular structures of methylcyclopentadienylchromium (III) sulfide diamagnetic tetramer and the antiferromagnetic copper (II) bromide adduct of the tetranuclear cluster (MeC5H4)4Cr4(p3–0) (p3-S)3. J Organomet Chem 248: 309

    Article  CAS  Google Scholar 

  77. Rauchfuss TB, Weatherill TD, Wilson SR, Zebrowski JB (1983) Stepwise assembly of heterometallic M4S4 clusters. The structure of (MeCp)2V2Fe2(NO)2S4: A 58e cubane. J Am Chem Soc 105: 6508

    Article  CAS  Google Scholar 

  78. Rauchfuss TB, Gammon SD, Weatherill TD, Wilson SR (1988) Localized structural effects in the heterometallic thiocubanes (MeCp)2V2M2S4(NO)2 where M2 = Fee, Coe, and Nie. New J Chem 12: 373

    CAS  Google Scholar 

  79. Rawlings J, Shah VK, Chisnell JR, Brill WJ, Zimmermann R, Münck E, Orme-Johnson WH (1978) Novel metal cluster in the iron-molybdenum cofactor of nitrogenase. Spectroscopic evidence. J Biol Chem 253: 1001

    Google Scholar 

  80. Schunn RA, Fritchie Jr CJ, Prewitt CT (1966) Syntheses of some cyclopentadienyl transition metal sulfides and the crystal structures of (C5H5FeS)4. Inorg Chem 5: 892

    Article  CAS  Google Scholar 

  81. Shibahara T, Karoya H, Matsumoto K, Ooi S (1984) A novel cubane-type Mo4S4 cluster. J Am Chem Soc 106: 789

    Article  CAS  Google Scholar 

  82. Shibahara T, Kawano E, Okano M, Nishi M, Kyroya H (1986a) Cubane-type cluster [Mo4S4(NH3)12]C14.7H2O. Chem Lett 827

    Google Scholar 

  83. Shibahara T, Akashi H, Kuroya H (1986b) Cubane-type Mo3FeS44’ aqua ion and X-ray structure of [Mo3FeS4(NH3)q(H2O)]C14. J Am Chem Soc 108: 1342

    Article  CAS  Google Scholar 

  84. Shibahara T, Kuroya HJ (1988) Preparation and X-ray structure of cubane-type mixed metal aqua ion, [Mo3NiS4(H2O)10]4+. Coord Chem 18: 233

    Article  Google Scholar 

  85. Smith JP, Emptage MH, Orme-Johnson WH (1982) Magnetic susceptibility studies of native and thioneine-oxidized molybdenum-iron protein from Azotobacter vinelandii nitrogenase. J Biol Chem 257: 2310

    CAS  Google Scholar 

  86. Smith BE, Eady RR, Lowe DJ, Gormal G (1988) The vanadium-iron protein of vanadium nitrogenase from Azotobacter chroococcum contains an iron-vanadium cofactor. Biochem J 250: 299

    CAS  Google Scholar 

  87. Tang A-Q, Li Q-S (1983) A study on the structure rule of metal cluster compounds. Kexue Tongbao 28: 25

    CAS  Google Scholar 

  88. Tang A-Q, Li Q-S, Sun J-Z (1986) The structure rule of Mo Fe-S cluster compounds. Acta Chim Sinica 44: 1217

    CAS  Google Scholar 

  89. Teo BK (1985) Molecular orbital justification of topological electron-counting theory. Inorg Chem 24: 1627

    Article  CAS  Google Scholar 

  90. Wade K (1976) Structural and bonding patterns in cluster chemistry. Adv Inorg Chem Radiochem 18: 1

    Article  CAS  Google Scholar 

  91. Wolff TE, Berg JM, Power PP, Hodgson KO, Holm RH (1980) Structural characterization of the iron-bridged “double-cubane” cluster complexes [Mo2Fe7S8(SC2H5)12]3 and [M2Fe7S8(SCH2C6H6)12]4- (M = Mo, W) containing MFe3S4 cores. Inorg Chem 19: 430

    Article  CAS  Google Scholar 

  92. Wolff TE, Berg JM, Holm RH (1981) Synthesis structure, and properties of the cluster complex [MoFe4S4(SC2H6)3(C6H402)3]3 containing a single cubane-type MoFe3S4 core. Inorg Chem 21: 174

    Article  Google Scholar 

  93. Xu G-X (1982) Structural rules of cluster compounds and related molecules (1). Chem J Chinese Univ (Spec.) 3: 114

    Google Scholar 

  94. Yang SS, Pan WH, Friesen GD, Burgess BK, Corbin JL, Stiefel EI, Newton WE (1982) Iron-molybdenum cofactor from nitrogenase. Modified extraction methods as probes for composition. J Biol Chem 257: 8042

    Google Scholar 

  95. Zimmermann R, Münck E, Brill WJ, Shah VK, Henzl MT, Rawlings J, Orme-Johnson WH (1978) Nitrogenase X: Mössbauer and EPR studies on reversibly oxidized MoFe protein from Azotobacter vinelandii op, nature of the iron centers. Biochim Biophys Acta, Protein Structure 537: 185

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, CW., Lu, JX. (1992). Systematic Investigations on the Bonding Property of the M—Fe—S (M = Mo, V, and W) Cluster Compounds and Novel Assumption on the Active Center Models of Nitrogenase. In: Hong, GF. (eds) The Nitrogen Fixation and its Research in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10385-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10385-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10387-6

  • Online ISBN: 978-3-662-10385-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics