Nitrogen Fixation Associated with Rice Plants

  • C. B. You
  • W. Song
  • H. X. Wang

Abstract

In China, chemical fertilizer and newly bred high yielding rice varieties as well as hybrid rice are being exploited to meet the demands of a rapidly growing population for more food grains. But, the energy requirement, the price of nitrogen fertilizer and the risk of environmental pollution are increasing with each passing day. In this situation, it is found that biological nitrogen fixation is a most important alternative for nitrogen fertilizer input into cropping systems without substantial loss in yield (Döbereiner and Pedrosa 1987).

Keywords

Sucrose Lactate Pseudomonas Fructose Oxalate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. App AA, Watanabe I, Alexander M, Venture W, Daez C, Santigo T, De-Datta SK (1980) Non-symbiotic nitrogen fixation associated with the rice plant in flooded soil. Soil Sci 130: 283CrossRefGoogle Scholar
  2. Ausubel M (1984) Regulation of nitrogen fixation genes. Cell 37: 5CrossRefGoogle Scholar
  3. Boddey RM, Döbereiner J (1984) Nitrogen fixation associated with grasses and cereals. In Subba Rao NS (ed) Cur Developm Biol Nitrogen Fixation Oxford ttt IBH Publ, p277Google Scholar
  4. Boddey RM, Döbereiner J (1988) Nitrogen fixation associated with grasses and cereals: recent and perspectives for future research. Plant Soil 108: 53CrossRefGoogle Scholar
  5. Brown CM, McDonald-Brown DS, Meers JI (1974) Physiological aspects of microbial inorganic nitrogen metabolism. Adv Microbiol Physiol 11: 1CrossRefGoogle Scholar
  6. Burns RF, Hardy RWF (1975) Nitrogen Fixation in Bacteria and Higher Plants. Springer-Verlag, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  7. Cheng Q, Hu CZ, Hai WL, You CB, Song W (1990) Transform action and expression of the cloned nifA gene of Klebsiella pneumoniae and Azotobacter chroococcum in Alcaligenes faecalis. In: A Treatise on Associative Nitrogen Fixation in Rice Rhizosphere (in press)Google Scholar
  8. Dart PJ (1986) Nitrogen fixation associated with non-legumes in agriculture. Plant Soil 90: 303 Dawes EA, Senior PJ (1973) The role and regulation of energy reserve polymers in microorganisms. Adv Microbiol Physiol 10: 136Google Scholar
  9. Dixon RA, Eady RR, Espin G, Hill S, Iaccarino M, Khan D, Merrick M (1980) Analysis of regulation of Klebsiella pneumoniae nitrogen fixation (nif) gene cluster with gene fusion. Nature (London) 276: 416Google Scholar
  10. Döbereiner J, Day JM (1976) Associative symbioses in tropical grasses. In Newton WE, Nyman CJ (eds) Proc Ist Int Symp Nitrogen Fixation Washington State Univ Press, Pullman, p 518Google Scholar
  11. Döbereiner J, Pedrosa FO (1987) Nitrogen-fixing bacteria in non-leguminous crop plants. Sei Tech Publ and Springer-Verlag, Berlin Heidelberg New York London Paris TokyoGoogle Scholar
  12. Eady RR (1981) Regulation of nitrogenase activity. In: Gibson AH, Newton WE (eds) Cur perspect nitrogen fixation (eds) Aust Acad Press, Canberra, p 172Google Scholar
  13. Ela SW, Anderson A, Brill WJ (1982) Screening and selection of maize to enhance associative bacterial nitrogen fixation. Plant Physiol 70: 1564CrossRefGoogle Scholar
  14. Elmerich C, Galimandn M, Vielle C, Delorme F, De Zamaroczy M (1988) Nitrogen fixation genes of Azospirillum. In: Bothe H, de Bruijin FJ, Newton WE (eds) Nitrogen fixation: hundred years after Fischer, Stuttgart, New York, p 327Google Scholar
  15. Eskew DL, Focht DD, Ting IP (1977) Nitrogen fixation, denitrification and pleomorphic growth in highly pigmented Spirillum lipoferum. Appl Envirn Microbiol 34: 582Google Scholar
  16. Fuji T, Huang YD, Higashitani A, Nishimura Y, lyama Y, Hirota Y, Yoneyama T, Dixon DA (1987) Effect of inoculation with Klebsiella oxytoca and Enterobacter cloacae nitrogen fixation by rice-bacteria associations. Plant Soil 103: 221CrossRefGoogle Scholar
  17. Gallon JR (1981) The oxygen sensitivity of nitrogenase: a problem for biochemists and micro-organisms. Trends Internatl Biochem Soc 6: 19CrossRefGoogle Scholar
  18. Gauthier D, Elmerich C (1977) Relationship between glutamine synthetase and nitrogenase in Spirillum lipoferurn. FEMS Microbiol Lett 2: 101CrossRefGoogle Scholar
  19. Hai WL, Zheng HG, Wang B, You CB (1990) Construction of a genomic library of Alcaligenes faecalis and screening of positive clone containing nif genes. In A Treatise on Associative Nitrogen Fixation in Rice Rhizosphere (in press).Google Scholar
  20. He FH, Zhang GQ, Kin SF, Jiang QG (1986) Isolation and identification of associative nitrogen-fixing bacteria in rhizosphere of rice, maize and sugarcane. Microbiol 13: 2Google Scholar
  21. Huang SZ, Tang LF, Zhang WG, Liu CZ (1982) Observation of Flavobacterium oryzae sp nov M-sm-1612 in rice roots under electron mictoscope and the characteristics of nitrogen fixation associated with rice. Acta Microbiol Sin 27: 156Google Scholar
  22. Ji XB, Hollocher TC (1988) Reduction of nitrate to nitric oxide by enteric bacteria. Biochem Biophys Res Comm 157: 106CrossRefGoogle Scholar
  23. Jia XM, Mo WY, Qian ZS (1989) Species and enumeration of nitrogen-fixing bacteria in rice root systems. Acta Agricul Univ Zhejiangensis 15: 57Google Scholar
  24. Kapulnik Y, Feldman M, Okon Y, Hanis Y (1985) Contribution of nitrogen fixed by Azospirillum to the N nutrition of spring wheat in Israel. Biol Biochem 17: 509Google Scholar
  25. Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotech 7: 39CrossRefGoogle Scholar
  26. Li X, Zhou FY, You CB (1989) H2 uptake and carbon dioxide assimilation in Alcaligenes faecalis. Acta Phytophysiol Sin 15: 30Google Scholar
  27. Lin M, You CB (1987) Denitrification and nitrogen fixation by Alcaligenes faecalis. Acta Agricul Nucl Sin 1: 3Google Scholar
  28. Lin M, You CB (1989) Root exudates of rice (Oryza satira L) and its interaction with Alcaligenes fàecalis., Sci Agricul Sin 22 (6): 6Google Scholar
  29. Liu CZ, Tang LF, Huang SZ, Li JW, You CB (1980) Study on associative symbiotic nitrogen fixation of rice. Fujian Agricul Sci Tech (6): 1Google Scholar
  30. Ludden PW, Roberts GP, Lowery RG, Fitzmaurice WP Saarill L, Lehman L, Lies D, Wochle D, Wirt H, Murrell SA, Pope MR, Kanemoto RH (1988) Regulation of nitrogenase activity by reversible ADP-ribosylation of dinitrogenase reductase. In: Bothe H, de Bruijin FJ, Newton WE (eds) Nitrogen fixation: Hundred years after. Fischer, Stuttgart, New York, p 157Google Scholar
  31. Marschner M (1985) Nährstoffdynamik in der Rhizosphäre. Ber Deutch Bot Ges 98: 291Google Scholar
  32. Morris DR, Zuberer DA, Weaver RW (1985) Nitrogen fixation by intact grass-soil cores using N-15 and acetylene reduction. Soil Biol Biochem 17: 89CrossRefGoogle Scholar
  33. Nelson LM, Knowles R (1978) Effect of oxygen and nitrate on nitrogen fixation and dcnitrification by Azospirillum brasilense grown in continuous culture. Can J Microbiol 24: 1395CrossRefGoogle Scholar
  34. Neyra CA, van Berkum P (1977) Nitrate reduction and nitrogenase in Azospirillum lipoferum. Can J Microbiol 23: 306CrossRefGoogle Scholar
  35. Okon Y (1985) Azospirillum as a potential inoculant for agriculture. Trends Biotechn 3: 223Google Scholar
  36. Orme-Johnson WIT (1985) Molecular basis of biological nitrogen fixation. Ann Rev Biophys Chem 4: 419CrossRefGoogle Scholar
  37. Paneque A, Cejudo FJ, Revilla E (1987) Nitrogen metabolism in heterotrophic bacteria. A comparative study of the short-term ammonium inhibition of dinitrogen fixation and nitrate assimilation in Azotobacter chroococcum. In: Ullrich WR, Apericio Pi, Syrett Pi, Castille F (eds) Inorg nitrogen metabolism. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo, p 53Google Scholar
  38. Partridge P, Yates MG (1982) Effect of chelating agents on hydrogenase in Azotobacter chroococcum.: Evidence that nickel is required for hydrogenase synthesis. Biochem J 204: 330Google Scholar
  39. Pedrosa FO, Yates MG (1983) Effect of chelating agents and nickel ions hydrogenase activity in Azospirillum brasilense, A. lipoferum and Derxia yummosa. FEMS Microbiol Lett 17: 101CrossRefGoogle Scholar
  40. Pedrosa FO (1988) Physiology, biochemistry and genetics of Azospirillum and other root-associated nitrogen-fixing bacteria. CRC Critical Rev Plant Sci 6: 345CrossRefGoogle Scholar
  41. Postgate JR (1982) The fundamentals of nitrogen fixation. Cambridge Univ Press Cambridge LondonGoogle Scholar
  42. Prigram NK, Williams FD (1976) Survival value of chemtaxis in mixed cultures. Can J Microbiol 22: 1771CrossRefGoogle Scholar
  43. Qian ZS, Mo WY, Chan SM, Jia XM (1981) Nitrogen-fixing activity in the rhizosphere of rice at the different growth stages. J Zhejiang Agricul Univ 7 (2): 15Google Scholar
  44. Qui YS, Zhou SP, Mo XZ, You CB, Wang DS (1980) Investigation of N,-fixation bacteria isolated from rice rhizosphere. J Sci Monthly 25: 383Google Scholar
  45. Qui YS, Zhou SP, Mo XZ, Wang DS, Hong JH (1981a) Study of nitrogen fixing bacteria associated with rice root. I Isolation and identification of organisms. Acta Microbiol Sin 21: 468Google Scholar
  46. Qui YS, Zhou SP, Mo XZ, You CB, Wang DS (1981b) Investigation on nitrogen fixing bacteria in rice rhizosphere. In: Inst Soil Sci Acad Sin (ed) “Proc Sym Paddy Soil” Springer-Verlag Berlin, p 244Google Scholar
  47. Qiu YS, Mo XZ, Zhang YL, Li X, You CB (1984) Some properties of the nitrogen-fixing associative symbiosis of Alcaligenes faecalis A-15 with rice plants. In: Veeger C, Newton WE (eds) Adv nitrogen fixation res PUDOC Wangeningen, p 64Google Scholar
  48. Raju PN, Evans HJ, Seidler RJ (1972) An asymbiotic nitrogen-fixing bacterium from the root environment of corn. Proc Nall Acad Sci US 69: 3473Google Scholar
  49. Rennie RJ, Freitas JR, Ruschel AP, Vose PB (1982) Isolation and identification of N2 fixing bacteria associated with sugar cane (Saccharum sp.). Can J Microbiol 28: 462CrossRefGoogle Scholar
  50. Scott DB, Scott CA, Döbereiner J (1979) Nitrogenase activity and nitrate respiration in Azospirillum spp., Arch Microbiol 121: 141CrossRefGoogle Scholar
  51. Song HY (1987) Nitrogen fixation of photosynthetic bacteria. In: You CB, Jiang YM, Song HY (eds) Biol nitrogen fixation Ch 13, Academic Press New York, p 246Google Scholar
  52. Song W, You CD (1987) Isolation and purification and some characters of nitrogenase complex from Azotobactre rinelandii. Acta Phytophysiol Sin 13: 35Google Scholar
  53. Song W, Zhang FR, You CB (1989) Synthesis and properties of MoFe protein of nitrogenase from NU-grown and NH; -grown Alcaligenes fiiecalis. Acta Phytophysiol Sin 15: 167Google Scholar
  54. Tal S, Okon Y (1985) Production of the reverse material poly /l-hydroxybutyrate and its function in Azospirillum hrasilense Cd. Can J Microbiol 31: 608CrossRefGoogle Scholar
  55. Tibelius KH, Knowles E (1984) Hydrogenase activity in Azospirillum brasilense is inhibited by nitrite, nitric oxide, carbon monoxide and acetylene. J Bacteriol 160: 103Google Scholar
  56. Uozumi T, Wang PL, Tonouchi N, Nam JH, Kim YM, Beppu T (1986) C loning and expression of the nifA of Klebsiella oxytoca in K. pneumoniae and Azospirillum lipoferum. Agricul Biol Chem 50: 1539CrossRefGoogle Scholar
  57. Van Berkum P, Bohlool BB (1980) Evalution of nitrogen bacteria in association with root of tropical grasses. Microbiol Rev 44: 491Google Scholar
  58. Wang HX, You CB, Van den Bos RC (1988) Transfer of plasmid-borne Rhizobium leguminosarum nifD: Tn5 to Azotobacter uinelandii. Acta Agricul Nucl Sin 2: 47Google Scholar
  59. Wang HX, Yuan HL, You CB (1989) Plasmid visualization and nif gene location in several nitrogen-fixing bacteria associated with rice plants. Acta Agricul Nucl Sin 3: 213Google Scholar
  60. Wang ZF, Zeng KR, Yang YC (1987) Study on nitrogen fixing bacteria on rihizoplane of rice. Microbiol 14: 241Google Scholar
  61. Watanabe I (1985) Nitrogen fixation associated with wetland rice. In “Nitrogen and Environment” Malik KA, Mujtaba Naqvi SH, Aleem MIH (eds) NIAB, p 185. Faisalabad PakistanGoogle Scholar
  62. Watanabe I (1986) Nitrogen fixation by non-legumes in tropical agriculture with special reference to wetland rice. Plant Soil 90: 343CrossRefGoogle Scholar
  63. Walterbury JB, Alloway CB, Turner KD (1983) A cellulolytic nitrogen-fixing bacterium cultured from the gland of Deshayes in shipworms (Biraluia Teredinidae). Sci 221: 1401CrossRefGoogle Scholar
  64. Wu WL, Chen HQ (1986) A new variety of Derxia qummosa isolated from the rice seeds. J Fujian Agricul College 14: 323Google Scholar
  65. Xu J, Wangn JW, Xin SY, Li JG (1987) Some properties of nitrogen fixation by Enterobacter sp 25 (E-25) and Klebsiella pneumoniae 12(K-12) isolated from rhizosphere of rice. Acta Agricul Bocerali-Sin 2: 27Google Scholar
  66. Xu LS (1987) Hydrogenase and hydrogen metabolism in nitrogen fixing organisms. In: You CB, Jiang YM, Song HY (eds) Biol nitrogen fixation. Ch 8 Academic Press New York, p 129Google Scholar
  67. Xu Q (1981) Cropping system in relation to fertility of paddy soil in China. In: Inst Soil Sci Acad Sin (ed) Proc Sym Paddy Soil Sin (ed) Springer-Verlag Berlin, p 220Google Scholar
  68. Yoshida T, Yoneyama T (1981) Atmospheric N2-fixation in flooded rice rhizospheres determined by ‘5N isotope technique. In: Gibson AH, Newton WE (eds) Cur Persp Nitrogen Fixation. Aust Acad Press Canberra, p496Google Scholar
  69. Yoshida T, Rinaudo G (1982) Heterotrophic N2 fixation in paddy soils. In “Microbiol Tropical Soils and Plant Productiv” Dommergues YR, Diem HG (eds) Nijhoff The Hague, p75Google Scholar
  70. You CB, Li JW, Song W, Li X (1979) Some properties of iron protein of nitrogenase from Azotobacter uinelandii (III). Acta Phytophysiol Sin 5: 215Google Scholar
  71. You CB, Li JW, Song W, Zhang RJ, Zhou SP, YE SG (1981) Some physiological properties of nitrogen fixing bacteria Enterobacter cloacae. Acta Phytophysioi Sin 7: 43Google Scholar
  72. You CB, Qiu YS (1982) Nitrogen fixation of Alcaliyenes faecalis in association with rice seedlings. Sci Agricul Sin 15 (6): 1Google Scholar
  73. You CB, Li X, Wang YW, Zhu CZ, Hou JQ, Mo XZ, Lao JC, Qiu YS (1983a) Culture and physiological properties of nitrogen fixer Alcaliyenes faecalis. Appt Atomic Energy in Agricul (4): 27Google Scholar
  74. You CB, Li X, Wang YW, Qiu YS, Mo XZ, Zhang YL (1983b) Associative dinitrogen fixation of Alcaliyenes faecalis with rice plants. Biot N2 Fixation Newslett, 11: 92. Sydney UnivGoogle Scholar
  75. You CB, Xiao JZ, Li X, Zhou FY, Wang YW (1984) Association of Alcaliyenes faecalis with rice roots. Appt Atomic Energy in Agricul (I): 14Google Scholar
  76. You CB, Xiao JZ, Zhou FY (1985) Determination of the distribution of nitrogen fixers by 1OB-track method. Plant Physiol Comm (1): 51Google Scholar
  77. You CB (1987) Structure and function of nitrogenase. In: You CB, Jiang YM, Song HY (eds) Biol nitrogen fixation. Ch 2 Academic Press New York, p 20Google Scholar
  78. You CB, Song W, Zhang DD, Zhou FY, Li X, Zhang FR (1988a) Biosynthesis of nitrogenase in NI-14+ -grown cells of Alcaliyenes faecalis. In: Bothe H, de Bruijin FJ, Newton WE (eds) nitrogene fixation: Hundred years after. Fischer Stuttgart New York, p 141Google Scholar
  79. You CB, Zhou FY, Zhang DD, Wang HX, Yuan HL (1988b) Association between Alcaligeness faecalis and rice plant. ibid, p802Google Scholar
  80. You CB, Zhou FY (1989) Non-nodular endorhizosperic nitrogen fixation in wetland rice. Can J Microbiol 35: 403CrossRefGoogle Scholar
  81. You CB, Wang HX (1990) Rhizosphere nitrogen fixation in wetland rice. Acta Phytophysiol Sin 16: 209Google Scholar
  82. Yuan HL, Wang HX, You CB (1990) Identification and analysis of hydrogen uptake (hub) genes of several associative nitrogen fixing bacteria with rice plant. Acta Agr Nucl Sin 4: 19Google Scholar
  83. Zhang CS, Li JP, Ping SZ, Wang YD, Liu YZ, Wang HX, You CB (1990) Response of rice to inoculation with diazotrophic bacteria. In “A Treaties on Associative Nitrogen Fixation in Rice Rhizospher” (in press)Google Scholar
  84. Zhang DD, Zhou FY, Li X, You CB (1989) Biosynthesis of nitrogenase in NH4*-grown cells of Alcaligenes faecalis. Acta Phytophysiol Sin 15: 35Google Scholar
  85. Zhang YL, Mo XZ, Lao SH, Qiu YS, Li X, You CB (1984) Association of Alcaligenes faecalis A15 with rice root. Plant Physiol Comm (6): 32Google Scholar
  86. Zhou FY, You CB (1988) Interaction between diazotrophic bacteria Alcaligenes faecalis and host plants rice. Sci Agricul Sin 21 (4): 7Google Scholar
  87. Zhou SP, Mo XZ, Ye SG, Cai XW, Qiu YS, Song W, You CB (1981) 15N2 fixation of Alcaligenes faecalis and Enterobacter cloacae. Acta Agro Sin 7: 59Google Scholar
  88. Zhu JB, Li ZG, Wang LW, Shen SS, Shen SC (1986) Temperature sensitivity of an nifA-like gene in Enterobacter cloacae. J Bacteriol 166: 357Google Scholar
  89. Zimmer W, Roeben K, Dannerberg G, Bothe H (1987) The bacterial genus Azospirillum and its potential applications. In: Ullrich WR, Aparicio PJ, Syrett PJ, Castille F (eds) lnorg nitrogen metabolism. Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo, p 177CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • C. B. You
  • W. Song
  • H. X. Wang

There are no affiliations available

Personalised recommendations