Skip to main content

Molecular Population Genetics and Evolution of Rhizobia

  • Chapter
The Nitrogen Fixation and its Research in China

Abstract

Studies of the natural genetic diversity of rhizobia have given us insights into the genetic structure and evolution of bacterial populations, and have also improved our understanding of the nitrogen-fixing symbiosis between legumes and rhizobia, which is important in many agricultural systems worldwide (I use “rhizobia” in the broad sense to cover all legume nodule symbionts). In legume cultivation, the farmer provides the plant partner, which is usually the product of an extensive breeding and selection process, and therefore genetically rather uniform. Sometimes the bacterial partner is added artificially too, in the form of an inoculant containing one or a few strains, but more often there is already a sufficient population of rhizobia living in the soil. Thus the cultivation of legumes is a partnership between a highly bred plant and a “wild” population of bacteria. The farmer has little control over the genetic composition of the indigenous population of rhizobia, and in fact there is abundant evidence that such populations are diverse, even in fields with a long agricultural history. In our laboratory during the last few years, we have tried to describe this diversity in ways that allow us to draw conclusions about the genetic interrelationships among the strains that make up these populations. Most of these studies have been on the species Rhizobium leguminosarum, but recently we have also been looking at the wider issue of the evolutionary relationships among rhizobia, in the broad sense, and between rhizobia and other groups of bacteria. In this contribution I shall summarize our progress to date in both these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnet YM (1972) Bacteriophages of Rhizobium trifolii. J Gen Virol 15: 1

    Article  CAS  Google Scholar 

  • Beynon JL, Josey DP (1980) Demonstration of heterogeneity in a natural population of Rhizobium phaseoli using variation in intrinsic antibiotic resistance. J Gen Microbiol 118: 437

    Google Scholar 

  • Bottomley PJ, Dughri MH (1989) Population size and distribution of Rhizobium leguminosarum by. trifolii in relation to total soil bacteria and soil depth. Appl Envir Microbiol 55: 959

    CAS  Google Scholar 

  • Buchanan-Wollaston AV (1979) Generalized transduction in Rhizobium leguminosarum. J Gen Microbiol 112: 135

    Article  Google Scholar 

  • Chen WX, Yan GH, Li JL (1988) Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 28: 392

    Article  Google Scholar 

  • Crow VL, Jarvis BDW, Greenwood RM (1981) Deoxyribonucleic acid homologies among acid-producing strains of Rhizobium. Int J Syst Bacteriol 31: 152

    Article  Google Scholar 

  • De Smedt J, De Ley J (1977) Intra-and intergeneric similarities of Agrobacterium ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 27: 222

    Article  Google Scholar 

  • Dreyfus B, Garcia JL, Gillis M (1988) Characterization of Azorhizobium caulinodans gen nov, sp nov, a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38: 89

    Article  CAS  Google Scholar 

  • Dughri MH, Bottomley PJ (1984) Soil acidity and the composition of an indigenous population of Rhizobium trifolii in nodules of different cultivars of Trifolium subterraneum L. Soil Biol Biochem 16: 405

    Article  Google Scholar 

  • Eardly BD, Hannaway DB, Bottomley PJ (1985) Characterization of rhizobia from ineffective alfalfa nodules: ability to nodulate bean plants (Phaseolus vulgaris ( L.) Savi.). Appl Environ Microbiol 50: 1422

    Google Scholar 

  • EI-Sherbeeny MH, Mytton LR, Lawes DA (1977) Symbiotic variability in Vicia faba. 1. Genetic variation in the Rhizobium leguminosarum population. Euphytica 26, 149

    Article  Google Scholar 

  • Evans WR, Fleischman DE, Calvert HE, Pyati PV, Alter GM, Subba Rao NS (1990) Bacteriochlorophyll and photosynthetic reaction centers in Rhizobium strain BTAi 1. Appl Envir Microbiol 56: 3445

    CAS  Google Scholar 

  • Fottrell PF, O’Hora A (1969) Multiple forms of D(—)3-hydroxybutyrate dehydrogenase in Rhizobium. J Gen Microbiol 57: 287

    Article  CAS  Google Scholar 

  • Hadley RG, Eaglesham ARJ, Szalay AA (1983) Conservation of DNA regions adjacent to nif KDH homologous sequences in diverse slow-growing Rhizobium strains. J Mol Appl Genet 2: 225

    CAS  Google Scholar 

  • Harrison SP, Young JPW, Jones DJ (1987) Rhizobium population genetics: effect of clover variety and inoculum dilution on the genetic diversity sampled from natural populations. Plant Soil 103: 147

    Google Scholar 

  • Harrison SP, Jones DG, Schünmann PHD, Forster JW, Young JPW (1988) Variation in Rhizobium leguminosarum biovar trifolii Sym plasmids and the association with the effectiveness of nitrogen fixation. J Gen Microbiol 134: 2721

    CAS  Google Scholar 

  • Harrison SP, Jones DG, Young JPW (1989) Rhizobium population genetics: genetic variation within and between populations from diverse locations. J Gen Microbiol 135: 1061

    Google Scholar 

  • Hennecke H, Kaluza K, Thöny B, Fuhrmann M, Ludwig W, Stackebrandt E (1985) Concurrent evolution of nitrogenase genes and 16S rRNA in Rhizohium species and other nitrogen fixing bacteria. Arch Microbiol 142: 342

    Article  CAS  Google Scholar 

  • Hirsch PR (1979) Plasmid-determined bacteriocin production by Rhizobium leguminosarum. J Gen Microbiol 113: 219

    Article  CAS  Google Scholar 

  • Hollis AB, Kloos WE, Elkan GH (1981) DNA:DNA hybridization studies of Rhizohiwn japonicum and related Rhizobiaceae. J Gen Microbiol 123: 215

    Google Scholar 

  • Innes MA, Myambo KB, Gelfand DH, Brow MAD (1988) DNA sequencing with Thernms aquaticus DNA polymerase and direct sequencing of polymerase chain reaction amplified DNA. Proc Natl Acad Sci USA 85: 9436

    Article  Google Scholar 

  • Jarvis BDW, Gillis M, De Ley J (1986) Intra-and intergeneric similarities between the ribosomal ribonucleic acid cistrons of Rhizohium and Bradprhizobium species and some related bacteria. Int J Syst Bacteriol 36: 129

    Article  CAS  Google Scholar 

  • Jarvis BDW, Ward LJH, Slade EA (1989) Expression by soil bacteria of nodulation genes from Rhizohium leguminosarum biovar trifolü. Appl Envir Microbiol 55: 1426

    CAS  Google Scholar 

  • Johnston AWB, Beringer JE (1977) Chromosomal recombination between Rhizohium species. Nature 267: 61 I

    Article  Google Scholar 

  • Johnston AWB, Beynon JL, Buchanan-Wollaston AV, Setchell SM, Hirsch PR, Beringer JE (1978) High frequency transfer of nodulating ability between strains and species of Rhizohium. Nature 276: 634

    Article  Google Scholar 

  • Jones DG, Morley SJ (1981) The effect of pH on host plant ‘preference’ for strains of Rhizohium trifolü using fluorescent ELISA for strain identification. Annals Appl Biol 97: 183

    Article  Google Scholar 

  • Jordan DC (1984) Rhizobiaceae. In: Kreig NR (ed) Bergey’s Manual of Systematic Bacteriology, vol 1. Williams & Wilkins, Baltimore, p 234

    Google Scholar 

  • Martinez E, Pardo MA, Palacios R, Cevallos MA (1985) Reiteration of nitrogen fixation gene sequences and specificity of Rhizobium in nodulation and nitrogen fixation in Phaseolus rulgaris. J Gen Microbiol 131: 1779

    CAS  Google Scholar 

  • Mytton LR, McAdam NJ, Portlock P (1978) Enzyme polymorphism as an aid to identification of Rhizohium strains. Soil Biol Biochem 10: 79

    Article  CAS  Google Scholar 

  • Noel KD, Brill WJ (1980) Diversity and dynamics of indigenous Rhizobium populations. Appl Envir Microbiol 40: 931

    CAS  Google Scholar 

  • Pinero D, Martinez E, Selander RK (1988) Genetic diversity and relationships among isolates of Rhizohium leguminosarum biovar phaseoli. Appl Envir Microbiol 54: 2825

    CAS  Google Scholar 

  • Robert FM, Molina JAE, Schmidt EL (1982) Properties of Rhizohium leguminosarum isolated from various regions of Morocco. Ann Microbiol (Inst Pasteur) 133A: 461

    Article  CAS  Google Scholar 

  • Roberts GP, Leps WT, Silver LE, Brill WJ (1980) Use of two-dimensional polyacrylamide gel electrophoresis to identify and classify Rhizohium strains. Appl Envir Microbiol 39: 414

    CAS  Google Scholar 

  • Russell PE, Jones DG (1975) Variation in the selection of Rhizohium trifolii by varieties of red and white clover. Soil Biol Biochem 7: 15

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406

    CAS  Google Scholar 

  • Selander RK, Caugant DA, Ochman H, Musser JM, Gilmour MN, Whittam TS (1986) Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Envir Microbiol 51: 873

    CAS  Google Scholar 

  • Soberon-Chavez G, Najera R (1989) Isolation from soil of Rhizohium leguminosarum lacking symbiotic information. Can J Microbiol 35: 464

    Article  CAS  Google Scholar 

  • Stein M, Bromfield ESP, Dye M (1982) An assessment of a method based on intrinsic antibiotic resistance for identifying Rhizobium strains. Ann Appl Biol 101: 261

    Article  Google Scholar 

  • Stevens JW (1925) A study of various strains of Bacillus radicicola from nodules of alfalfa and sweet clover. Soil Sci 20: 45

    Article  CAS  Google Scholar 

  • Vincent JM, Waters LM (1953) The influence of the host on competition amongst clover root nodule bacteria. J Gen Microbiol 9: 357

    Article  CAS  Google Scholar 

  • Winship PR (1989) An improved method for directly sequencing PCR amplified material using dimethyl sulphoxide. Nucl Acids Res 17: 1266

    Article  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221

    CAS  Google Scholar 

  • Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH, Fox GE (1983) The phylogeny of purple bacteria: the alpha subdivision. Syst Appl Microbiol 5: 315

    Article  Google Scholar 

  • Young JPW (1985) Rhizohium population genetics: enzyme polymorphism in isolates from peas, clover, beans and lucerne grown at the same site. J Gen Microbiol 131: 2399

    Google Scholar 

  • Young JPW (1989) The population genetics of bacteria. In: Hopwood DA, Chater KF (eds) Genetics of Bacterial Diversity Academic Press, London, p 417

    Google Scholar 

  • Young JPW (1991) Phylogenetic classification of nitrogen-fixing organisms. In: Stacey G, Burris

    Google Scholar 

  • RH, Evans HJ (eds) Biological Nitrogen Fixation. Chapman & Hall, New York

    Google Scholar 

  • Young JPW, Demetriou L, Apte RG (1987) Rhizobium population genetics: enzyme polymorphism in Rhizobium leguminosarum from plants and soil in a pea crop. Appl Envir Microbiol 53: 397

    Google Scholar 

  • Young JPW, Johnston AWB (1989) The evolution of specificity in the legume-rhizobium symbiosis. Trends Ecol Evol 4: 341

    Article  CAS  Google Scholar 

  • Young JPW, Wexler M (1988) Sym plasmid and chromosomal genotypes are correlated in field populations of Rhizobium leguminosarum. J Gen Microbiol 134: 2731

    CAS  Google Scholar 

  • Young JPW, Downer HL, Eardly BD (1991) Phylogeny of the phototrophic rhizobium strain BTAiI by polymerise chain-reaction based sequencing of a 16S rRNA gene segment. J Bacteriol 173: 2271

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Young, J.P.W. (1992). Molecular Population Genetics and Evolution of Rhizobia. In: Hong, GF. (eds) The Nitrogen Fixation and its Research in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10385-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10385-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10387-6

  • Online ISBN: 978-3-662-10385-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics