Skip to main content

Heat Shock Response in Pathogenic Fungi

  • Chapter
Human Fungal Pathogens

Part of the book series: The Mycota ((MYCOTA,volume 12))

  • 473 Accesses

Abstract

Fungi are ubiquitous in nature where they reside as free living organisms. Virtually all of the fungi that have been implicated in infections reside as saprobes in nature, except for the normal symbionts of humans, Malasezzia furfur and opportunistic species of Candida. While we are constantly exposed to fungi, healthy immunological competent individuals have a high degree of natural resistance against fungi. This depends on the degree of exposure to the fungal pathogen since most infections in the immunologically competent host are subclinical or asymptomatic when they occur. Characteristics that appear to be common among the emerging fungi that have been implicated in the opportunistic mycoses of humans are as follow:

  1. 1.

    Trauma precedes appearance of the disease or

  2. 2.

    An immunosuppressed state exists in the host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalfs JD, Kingston RE (2000) What does ‘chromatin remodeling’ mean? Trends Biochem Sci 25:548–555

    Article  PubMed  CAS  Google Scholar 

  • Al-Dughaym AM, Mattews RC, Burnie JP (1994) Epitope mapping human hsp90 with sera from infected patients. FEMS Immunol Med Microbiol Lett 8:43–48

    Article  CAS  Google Scholar 

  • Allendoerfer R, Maresca B, Deepe GS Jr (1996) Cellular immune responses to recombinant heat shock protein 70 from Histoplasma capsulatum. Inf Imm 64:123–128

    Google Scholar 

  • Au-Young JK, Troy FA, Goldstein E (1985) Serological analysis of antigen-specific reactivity in patients with systemic candidiasis. Diag Microbiol Inf Dis 3: 419–432

    Article  CAS  Google Scholar 

  • Bienz M, Pelham HRB (1987) Mechanism of heat-shock gene activation in higher eukaryotes. Adv Genet 24: 31–72

    Article  PubMed  CAS  Google Scholar 

  • Bromuro C, La Valle R, Sandini S, Urbani F, Ausiello CM, Morelli L, Fé D’Ostiani C, Romani L, Cassone A (1998) A 70-kilodalton recombinant heat shock protein of Candida albicans is highly immunogenic and enhances systemic murine candidiasis. Inf Imm 66: 2154–2162

    CAS  Google Scholar 

  • Burnie JP (1991) Developments in the serological diagnosis of opportunistic fungal infections. J Antimicro Chemo 28:23–33

    Article  Google Scholar 

  • Burnie JP (1995) Hsps in Aspergillosis. In: Matthews R, Burnie JP (eds) Heat shock proteins in fungal infections. Springer, Berlin Heidelberg New York, pp 93–118

    Google Scholar 

  • Burnie JP, Matthews RC (1991) Heat shock protein 88 and Aspergillus infection. J Clin Microbiol 29:2099–2106

    PubMed  CAS  Google Scholar 

  • Carratù L, Franceschelli S, Pardini CL, Kobayashi GS, Horvath I, Vigh L, Maresca B (1996) Membrane lipid perturbation sets the temperature of heat shock response in yeast. Proc Natl Acad Sci USA 93: 3870–3875

    Article  PubMed  Google Scholar 

  • Carratù L, Gracey AG, Buono S, Maresca B (1998) Do Antarctic fish respond to heat shock? In: di Prisco G (ed) Antarctic fish. Springer, Berlin Heidelberg New York, pp 111–118

    Chapter  Google Scholar 

  • Caruso M, Sacco M, Medoff G, Maresca B (1987) Heat shock 70 gene is differentially expressed in Histoplasma capsulatum strains with different levels of thermotolerance and pathogenicity. Mol Microbiol 1:151–158

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Parker CS (2002) Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor. Proc Natl Acad Sci USA 99:1200–1205

    Article  PubMed  CAS  Google Scholar 

  • Cole GT, Thomas PW, Kirkland TN (1997) Molecular strategies for development of a vaccine against Coccidioides immitis. In: Suzuki S, Suzuki M (eds) Fungal cells in biodefense mechanism. Saikon, Tokyo, Japan, pp 307–317

    Google Scholar 

  • Colonna-Romano S, Porta A, Franco A, Kobayashi GS, Maresca B (1998) Identification and isolation by DDRT-PCR of genes differentially expressed by H. capsulatum during macrophages infection. Microb Pathogen 25:55–66

    Article  CAS  Google Scholar 

  • Crampin AC, Matthews RC (1993) Application of the polymerase chain reaction to the diagnosis of candidiasis by amplification of an HSP90 gene fragment. J Med Microbiol 39:233–238

    Article  PubMed  CAS  Google Scholar 

  • Cunha DA, Zancopé-Oliveira RM, Felipe MSS, Salem Izacc SM, Deepe GS Jr, Soares CMA (2002) Heterologous expression, purification, and immunological reactivity of a recombinant HSP60 from Paracoccidioides brasiliensis. Clin Diagn Lab Imm 9:374–377

    CAS  Google Scholar 

  • Dabrowa N, Howard DH (1984) Heat shock and heat stroke proteins observed during germination of the blastoconidia of Candida albicans. Inf Imm 44: 537–539

    CAS  Google Scholar 

  • da Silva SP, Borges-Walmsley MI, Silva Pereira I, Soares CMA, Walmsley AM, and Soares Felipe MS (1999) Differential expression of an hsp70 gene during transition from the mycelial to the infective yeast form of the human pathogenic fungus Paracoccidioides brasiliensis. Mol Microbiol 31:1039–1050

    Article  PubMed  Google Scholar 

  • Deepe G Jr, Gibbons R, Brunner GD, Gómez FJ (1996) A protective domain of heat-shock protein 60 from Histoplasma capsulatum. J Inf Dis 174:828–834

    Article  CAS  Google Scholar 

  • Dietz TJ, Somero GN (1992) The threshold induction temperature of the 90-kDa heat shock protein is subject to acclimatization in eurythermal goby fishes (genus Gillichthys). Proc Natl Acad Sci USA 89:3389–3393

    Article  PubMed  CAS  Google Scholar 

  • Díez S, Gómez BL, Restrepo A, Hay RJ and Hamilton AJ (2002). Paracoccidioides brasiliensis 87 kDa antigen, a heat shock protein useful in diagnosis: purification and detection in biopsy material via immunohistochemistry. J Clin Microbiol 40:359–365

    Article  PubMed  CAS  Google Scholar 

  • Di Lallo G, Gargano S, Maresca B (1994) The Histoplasma capsulatum cdc2 gene is transcriptionally regulated during the morphologic transition. Gene 140:51–57

    Article  PubMed  Google Scholar 

  • Dubois MF, Hovanessian AG, Bensaude O (1991) Heat shock induced denaturation of proteins. J Biol Chem 266:9701–9711

    Google Scholar 

  • Ellis RJ, Hartl FU (1999) Principles of protein folding in the cellular environment. Curr Opin Struct Biol 9:102–110

    Article  PubMed  CAS  Google Scholar 

  • Eroles P, Sentandreu M, Elorza MV, Sentandreu R (1997) The highly immunogenic enolase and Hsp70 are adventitious Candida albicans cell wall proteins. Microbiol 143:313–320

    Article  CAS  Google Scholar 

  • Feder ME, Hofman GE (1999) Heat shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Ann Rev Physiol 61: 243–282

    Article  CAS  Google Scholar 

  • Gargano S, Di Lallo G, Kobayashi GS, Maresca B (1995) A temperature-sensitive strain of Histoplasma capsulatum has an alter Δ9-fatty acid desaturase gene. Lipids 30:899–906

    Article  PubMed  CAS  Google Scholar 

  • Garrison, RG (1983) Ultrastructural cytology of the pathogenic fungi. In: Howard DH (ed) Fungi pathogenic for man and animals, Part A. Marcel Dekker, New York, pp 229–321

    Google Scholar 

  • Goldani LZ, Picard M, Sugar AM (1994) Synthesis of heatshock proteins in mycelia and yeast forms of Paracoccidioides brasiliensis. J Med Microbiol 40:124–128

    Article  PubMed  CAS  Google Scholar 

  • Gómez FJ, Gómez AM, Deepe GS Jr. (1991a) Protective efficacy of a 62-kilodalton antigen, HIS-62, from the wall and cell membrane of Histoplasma capsulatum yeast cells. Inf Imm 59:4459–446

    Google Scholar 

  • Gómez AM, Rodes JC, Deepe GS Jr (1991b) Antigenicity and immunogenicity of an extract from the cell wall and cell membrane of Histoplasma capsulatum yeast cells. Inf Imm 59:330–336

    Google Scholar 

  • Gómez FJ, Gómez AM, Deepe GS Jr (1992) An 80kilodalton antigen from Histoplasma capsulatum that has homology to heat shock protein 70 induces cell-mediated immune responses and protection in mice. Inf Imm 60:2565–2571

    Google Scholar 

  • Gómez FJ, Allendorf R, Deepe GS Jr (1995) Vaccination with recombinant heat shock protein 60 from Histoplasma capsulatum protects mice against pulmonary histoplasmosis. Inf Imm 63:2587–2695

    Google Scholar 

  • Gómez BL, Figueroa JI, Hamilton AJ, Ortiz BL, Robledo MA, Hay R, Restrepo A (1997) Use of monoclonal antibodies in diagnosis of paracoccidioidomycosis: new strategies for detection of circulating antigens. J. Clin Microbiol 35:3278–3283

    PubMed  Google Scholar 

  • Gómez BL, Figueroa JI, Hamilton AJ, Díez S, Rojas M, Tobón AM, Hay R, Restrepo A (1998) Antigenemia in patients with paracoccidioidomycosis: detection of the 87kilodalton determinant during and after antifungal therapy. J Clin Microbiol 36:3309–3316

    PubMed  Google Scholar 

  • Gupta RS, Golding GB (1996) The origin of the eukaryotic cell. Trends Biochem Sci 21:166–171

    PubMed  CAS  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580

    Article  PubMed  CAS  Google Scholar 

  • Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol 57:19–42

    Article  PubMed  CAS  Google Scholar 

  • Horvath I, Glatz A, Varvasovszki V, Török Z, Pali T, Balogh G, Kovacs E, Nadasdi L, Benko S, Joo F, Vigh L (1998) Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp 17 as a “fluidity gene”. Proc Natl Acad Sci USA 95:3513–3518

    Article  PubMed  CAS  Google Scholar 

  • Hubel A, Krobitsch S, Horauf A, Clos J (1997) Leishmania major Hsp 100 is required chiefly in the mammalian stage of the parasite. Mol Cell Biol 17:5987–5995

    PubMed  CAS  Google Scholar 

  • Jeavons L, Hunt L, Hamilton J (1994) Immunochemical studies of heat shock-protein 80 of Histoplasma capsulatum. J Med Mycol 32:47–57

    Article  CAS  Google Scholar 

  • Kamei K, Brummer E, Klemons KV, Stevens DA (1992) Induction of stress protein synthesis in Histoplasma capsulatum by heat, low pH and hydrogen peroxide. J Med Vet Mycol 30:385–393

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann SH (1992) The cellular immune response to heat shock proteins. Experientia 48:640–643

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Reedy LV, Sochanik A, Kurup VP (1993) Isolation and characterization of a recombinant heat shock protein of Aspergillus fumigatus. J Allergy Clin Immunol 91:1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Kwon-Chung KJ, Bennett JE (1992) Medical mycology. Lea and Febiger, Philadelphia

    Google Scholar 

  • Laksanalamai P, Maeder DL, Robb FT (2001) Regulation and mechanism of action of the small heat shock protein from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 183:5198–5202

    Article  PubMed  CAS  Google Scholar 

  • Lambowitz AM, Kobayashi GS, Painter A, Medoff G (1983) Possible relationship of morphogenesis in pathogenic fungus, Histoplasma capsulatum, to heat shock response. Nature 303: 806–808

    Article  PubMed  CAS  Google Scholar 

  • Latgé JP (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12:310–350

    PubMed  Google Scholar 

  • La Valle R, Bromuro C, Ranucci L, Muller H-M, Crisanti A, Cassone A (1995) Molecular cloning and expression of a 70-kilodalton heat shock protein of Candida albicans. Inf Imm 63:4039–4045

    Google Scholar 

  • Lindquist S (1986) The heat shock response. Ann Rev Biochem 55:1151–1191

    Article  PubMed  CAS  Google Scholar 

  • López-Ribot JL, Alloush BJ, Masten BJ, Chaffin WL (1996) Evidence for presence in the cell wall of Candida albicans of a protein related to the hsp70 family. Inf Imm 64:3333–3340

    Google Scholar 

  • Maresca B, Kobayashi GS (1989) Dimorphism in Histoplasma capsulatum: a model of study of cell differentiation in pathogenic fungi. Microbiol Rev 53:186–209

    PubMed  CAS  Google Scholar 

  • Maresca B, Carratù L (1992) The biology of the heat shock response in parasites. Parasitol Today 8:260–266

    Article  PubMed  CAS  Google Scholar 

  • Maresca B, Kobayashi GS (1993) Changes in membrane fluidity modulate heat shock gene expression and produced attenuated strains in the dimorphic fungus Histoplasma capsulatum. Arch Med Res 24:247–249

    PubMed  CAS  Google Scholar 

  • Maresca B, Kobayashi GS (1994) Hsp70 in parasites: as an inducible protective protein and as an antigen. Experientia 50:1067–74

    Article  PubMed  CAS  Google Scholar 

  • Maresca B, Kobayashi GS (1995) Hsps in dimorphic fungi. In: Matthews R, Burnie JP (eds) Heat shock proteins in fungal infections. Landes, Austin, Texas, U.S.A. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Maresca B, Kobayashi GS (1996). Heat shock proteins in fungal infections. In: van Eden W, Douglas B (eds) Stress proteins in medicine. Marcel Dekker, New York, USA, pp 287–299

    Google Scholar 

  • Maresca B, Kobayashi GS (2000). Dimorphism in Histoplasma capsulatum and Blastomyces dermatitidis. In: Ernst JF, Schmidt A (eds) Dimorphism in human pathogenic and apathogenic yeast. Contrib Microbiol Karger, Basel, pp 201–216

    Chapter  Google Scholar 

  • Maresca B, Medoff G, Schlessinger D, Kobayashi GS, Medoff J (1977) Regulation of dimorphism in the pathogenic fungus Histoplasma capsulatum. Nature 266:447–448

    Article  PubMed  CAS  Google Scholar 

  • Maresca B, Lambowitz AM, Kumar BV, Grant GA, Kobayashi GS, Medoff G (1981) Role of cysteine oxidase in regulating morphogenesis and mitochondrial activity in the dimorphic fungus H. capsulatum. Proc Natl Acad Sci 78:4596–4600

    Article  PubMed  CAS  Google Scholar 

  • Maresca B, Carratù L, Kobayashi GS (1994) Morphological transition in the human fungal pathogen Histoplasma capsulatum. Trends Microbiol 2:110–11

    Article  PubMed  CAS  Google Scholar 

  • Matthews RC (1992) Candida albicans HSP 90: link between protective and auto immunity. J Med Microbiol 36:367–370

    Article  PubMed  CAS  Google Scholar 

  • Matthews R (1995). Hsps in candidiasis. In: Matthews R, Burnie JP (eds) Heat shock proteins in fungal infections. Landes, Austin, Texas, USA. Springer, Berlin Heidelberg New York, pp 1–92

    Google Scholar 

  • Matthews RC, Burnie JP (1989) Cloning of a DNA sequence encoding a major fragment of the 47 kilodalton stress protein homologue of Candida albicans. FEMS Microbiol Lett 60:25–30

    CAS  Google Scholar 

  • Matthews R, Burnie JP (1995) Heat shock proteins in fungal infections. Springer, Berlin Heidelberg New York, pp 1–92

    Google Scholar 

  • Matthews RC, Burnie JP, Tabaqchalli S (1984) Immunoblot analysis of the serological response in systemic candidiasis. Lancet 2(8417–18):1415–1418

    Article  PubMed  CAS  Google Scholar 

  • Matthews RC, Burnie JP, Tabqchalli S (1987) Isolation of immunodominant antigens from sera of patients with systemic candidiasis and characterization of serological response to Candida albicans. J Clin Microbiol 25:230–237

    PubMed  CAS  Google Scholar 

  • Matthews RC, Wells C, Burnie JP (1988) Characterization and cellular localisation of the immunodominant 47-Kda antigen of Candida albicans. J Med Microbiol 27:227–232

    Article  PubMed  CAS  Google Scholar 

  • Matthews RC, Burnie JP, Woei L (1991a) The application of epitope mapping in the development of a new serological test for systemic candidosis. J Immunol Methods 143:73–79

    Article  PubMed  CAS  Google Scholar 

  • Matthews RC, Burnie JP, Toby D, Howat D, Walton F (1991b) Autoantibody to HSP90 can mediate protection against a systemic candidosis. Immunology 74: 20–24

    PubMed  CAS  Google Scholar 

  • Matthews RC, Hodgetts S, Burnie JP (1994) Patient derived phage antibody display library as a source of human recombinant antibodies to candidal hsp90. Serodiag Immunother 6:213–217

    Article  Google Scholar 

  • Matthews RC, Hodgetts S, Burnie JP (1995) Preliminary assessment of a human recombinant antibody to hsp90 in the treatment of invasive candidiasis. J Inf Dis 171:1668–1678

    Article  CAS  Google Scholar 

  • Matthews RC, Maresca B, Burnie JP, Cardona A, Carratù L, Conti S, Deepe GS, Florez AM, Franceschelli S, Garcia E, Gargano LS, Kobayashi GS, McEwen JG, Ortiz BL, Oviedo A, Polonelli L, Ponton J, Restrepo A, Storlazzi A (1998) Stress proteins in fungal diseases. Med Mycol 36:45–51

    PubMed  CAS  Google Scholar 

  • Medoff G, Maresca B, Lambowitz AM, Kobayashi G, Painter A, Sacco M, Carratù L (1986a) Correlation between pathogenicity and temperature sensitivity in different strains of Histoplasma capsulatum. J Clin Invest 78: 1638–1647

    Article  PubMed  CAS  Google Scholar 

  • Medoff G, Sacco M, Maresca B, Schlessinger D, Painter A, Kobayashi GS, Carratù L (1986b) Irreversible block of the mycelial to yeast phase transition of H. capsulatum. Science 231:476–479

    Article  PubMed  CAS  Google Scholar 

  • Medoff G, Painter A, Kobayashi GS (1987) Mycelial to yeast transition of the dimorphic fungi Blastomyces dermatitidis and Paracoccidioides brasiliensis. J Bacteriol 169:4055–4060

    PubMed  CAS  Google Scholar 

  • Minchiotti G, Gargano S, Maresca B (1991) The introncontaining hsp82 gene of the dimorphic fungus Histoplasma capsulatum is properly spliced in severe heat shock conditions. Mol Cell Biol 11:5624–30

    PubMed  CAS  Google Scholar 

  • Minchiotti G, Gargano S, Maresca B (1992) Molecular cloning and expression of hsp82 gene of the dimorphic fungus Histoplasma capsulatum Biochim Biophys Acta 1131:103–107

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI, Tissihres A, Georgopoulus C (1994) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Neupert W, Hartl FU, Craig EA, Pfanner N (1990) How do polypeptides cross the mitochondrial membranes? Cell 63:447–450

    Article  PubMed  CAS  Google Scholar 

  • Park HO, Craig EA (1991) Transcriptional regulation of a yeast HSP70 gene by heat shock factor and an upstream repression site-binding factor. Genes Dev 5:1299–1308

    Article  PubMed  CAS  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27: 437–496

    Article  PubMed  CAS  Google Scholar 

  • Patriarca EJ, Maresca B (1990) Acquired thermotolerancefollowing heat shock protein synthesis prevents impairment of mitochondrial ATPase activity at elevated temperatures in S. cerevisiae. Exp Cell Res 190: 57–64

    Article  PubMed  CAS  Google Scholar 

  • Patriarca EJ, Kobayashi GS, Maresca B (1992) Mitochondrial activity and heat-shock response during morphogenesis in the pathogenic fungus Histoplasma capsulatum. Biochem Cell Biol 70:207–214

    Article  PubMed  CAS  Google Scholar 

  • Pelham HRB (1985) Activation of heat shock proteins genes in eukaryotes. Trends Genet 1:31

    Article  CAS  Google Scholar 

  • Pitzurra L, Polonelli I, Cantelli C, Gerloni M, Ponton J, Bikandi J, Blasi E (1996) Candida albicans stress mannoprotein SMP200, enhances tumor necrosis factor secretion in the murine macrophage cell line ANA-1. J Med Vet Mycol 34:219–222

    Article  PubMed  CAS  Google Scholar 

  • Polla B (1991) Heat shock proteins in host-parasites interactions. Immunol Today 12:A38–41

    Article  PubMed  CAS  Google Scholar 

  • Polonelli L, Gerloni M, Conti S, Fisicaro P, Cantinelli C, Portincasa P, Almondo F, Barea PL, Hernando FL, Ponton J (1994) Heat shock mannoproteins as target of secretory IgA in Candida albicans. J Inf Dis 169: 1401–1405

    Article  CAS  Google Scholar 

  • Ponton J, Hernando FL, Moragues MD, Barea PL, Gerloni M, Conti S, Fisicaro P, Cantinelli C, Polonelli L (1994) Candida albicans stress mannoproteins expression in superficial and systemic candidiasis. Mycopathol 133: 89–94

    Article  Google Scholar 

  • Porta A, Colonna-Romano S, Callebaut I, Franco A, Marzullo L, Kobayashi GS, Maresca B (1999) A novel homologue of the human 100 kD protein (p100) is differentially expressed by Histoplasma capsulatum during infection of murine macrophages. Biochem Biophys Res Commun 254:605–613

    Article  PubMed  CAS  Google Scholar 

  • Roussou I, Nguyen T, Pagoulatos GN, Bensaude O (2000) Enhanced protein denaturation in indomethacintreated cells. Cell Stress Chaper 5:8–13

    Article  CAS  Google Scholar 

  • Russo P, Kalkkinen N, Sareneva H, Paakkola J, Makarow M (1992) A heat gene from Saccharomyces cerivisae encoding a secretory glycoprotein. Proc Natl Acad Sci USA 89:3671–3675

    Article  PubMed  CAS  Google Scholar 

  • Salem Izacc SM, Gómez FJ, Jesuíno RSA, Fonseca CA, Felipe MSS, Deepe GS Jr, Soares CMA (2001) Molecular cloning, characterization and expression of the gene encoding the heat shock protein 60 from the human pathogenic fungus Paracoccidioides brasiliensis. Med Mycol 39:445–455

    Google Scholar 

  • Sanchez Y, Lindquist S (1990) HSP 104 required for induced thermotolerance. Science 248:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Santhanam J, Burnie JP (2000) A PCR-based approach to sequence the Candida tropicalis HSP90 gene. FEMS Immunol Med Microbiol 29:35–38

    Article  PubMed  CAS  Google Scholar 

  • Sarge KD, Bray AE, Goodson ML (1995) Altered stress response in testis. Nature 374:126

    Article  PubMed  CAS  Google Scholar 

  • Shearer G Jr, Birge CH, Yuckenberg PD, Kobayashi GS, Medoff G (1987) Heat-shock proteins induced during the mycelial to yeast transitions of strains of Histoplasma capsulatum. J Gen Microbiol 133:3375–3382

    PubMed  CAS  Google Scholar 

  • Sorger PK, Pelham HRB (1987a) Purification and characterization of a heat-shock element binding protein from yeast. EMBO J 6:3035–3041

    PubMed  CAS  Google Scholar 

  • Sorger PK, Pelham HRB (1987b) The glucose-regulated protein grp94 is related to heat shock protein hsp90. J Mol Biol 194:341–344

    Article  PubMed  CAS  Google Scholar 

  • Srivastava PK, Amato RJ (2001) Heat shock proteins: the ‘Swiss Army Knife’ vaccines against cancers and infectious agents. Vaccine 19:2590–2597

    Article  PubMed  CAS  Google Scholar 

  • Strockbine NA, Largen MT, Zweibel SM, Buckley HR (1984) Identification and molecular weight characterization of antigens from Candida albicans that are recognized by human sera. Inf Imm 1984:715–721

    Google Scholar 

  • Swoboba R, Miyasaki S, Greenspan D, Greenspan JS (1993) Heat-inducible ATP-binding proteins of Candida albicans are recognized by sera of infected patients. J Gen Microbiol 139:2995–3003

    Article  Google Scholar 

  • Swoboda RK, Bertram G, Budge S, Gooday GW, Gow NAR, Brown JP (1995) Structure and regulation of the hsp90 gene from the pathogenic fungus Candida albicans. Inf Imm 63:4506–4514

    CAS  Google Scholar 

  • Tavaria M, Gabriele T, Kola I, Anderson RL (1996) A hitchhiker’s guide to the human Hsp70 family. Cell Stress Chaper 1:23–28

    Article  CAS  Google Scholar 

  • Thomas PW, Wyckoff EE, Pishko EJ, Yu J-J, Kirkland TN, Cole GT (1997) The hsp60 gene of the human pathogenic fungus Coccidioides immitis encodes a T-cell reactive protein. Gene 199:83–91

    Article  PubMed  CAS  Google Scholar 

  • Török Z, Goloubinoff P, Horváth I, Tsvetkova NM, Glatz A, Balogh G, Varvasovszki V, Los DA, Vierling E, Crowe JH, Vigh L (2001) Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc Natl Acad Sci USA 98:3098–3103

    Article  PubMed  Google Scholar 

  • Tsuji N, Ohta M, Fujisaki K (1997) Expression of a 70-kDa heat-shock-related protein during transformation from free-living infective larvae to the parasitic stage in Strongyloides venezuelensis. Parasitol Res 83:99–102

    Article  PubMed  CAS  Google Scholar 

  • Van der Ploeg LH, Giannini SH, Cantor CR (1985) Heat shock genes: regulatory role for differentiation in parasitic protozoa. Science 228:1443–1446

    Article  PubMed  Google Scholar 

  • van Eden W, Young DB (1996) Stress proteins in medicine. Marcel Dekker, New York

    Google Scholar 

  • Vidotto V, Vieta I, Fisicaro P, Conti S, Gerloni M, Cantelli C, Ponton J, Polonelli L (1994) Influence of glucose and ammonium on the reactivity in vitro of Candida albicans heat shock mannoproteins with secretory IgA. J Mycol Med 4:201–204

    Google Scholar 

  • Vigh L, Maresca B (2002). Dual role of membranes in heat stress: as thermosensors modulate the expression of stress genes and, by interacting with stress proteins, re-organize their own lipid order and functionality. In: Storey KB, Storey JM (eds) Cell and molecular responses to stresses. Elsevier Science, Amsterdam, pp 173–186

    Google Scholar 

  • Vigh L, Maresca B, Harwood L (1998) Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem Sci 23: 369–374

    Article  PubMed  CAS  Google Scholar 

  • Weigl E, Kopeèek P, Raöka M, Hradilová S (1999) Heat shock proteins in immune reactions. Folia Microbiol 44:561–566

    Article  CAS  Google Scholar 

  • Wheat J (1995) Endemic mycoses in AIDS: a clinical review. Clin Microbiol Rev 8:146–159

    PubMed  CAS  Google Scholar 

  • Yost HJ, Lindquist S (1986) RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell 45:185–193

    Article  PubMed  CAS  Google Scholar 

  • Yost HJ, Lindquist S (1991) Heat shock proteins affect RNA processing during the heat shock response in Saccharomyces cerevisiae Mol Cell Biol 11:1062–1068

    PubMed  CAS  Google Scholar 

  • Zeuthen ML, Howard DH (1989) Thermotolerance and heat-shock-response in Candida albicans. J Gen Microbiol 135:2509–2518

    PubMed  CAS  Google Scholar 

  • Zeuthen ML, Dabrowa N, Aniebo CM, Howard DH (1988) Ethanol tolerance and the induction of heat shock response in Candida albicans. J Gen Microbiol 134: 1375–1384

    PubMed  CAS  Google Scholar 

  • Zügel U, Kaufmann SHE (1999a) Immune response against heat shock proteins in infectious diseases. Immunobiology 201:22–35

    Article  PubMed  Google Scholar 

  • Zügel U, Kaufmann SHE (1999b) Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clin Microbiol Rev 12:19–39

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gómez, B.L., Porta, A., Maresca, B. (2004). Heat Shock Response in Pathogenic Fungi. In: Domer, J.E., Kobayashi, G.S. (eds) Human Fungal Pathogens. The Mycota, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10380-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10380-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07651-0

  • Online ISBN: 978-3-662-10380-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics