Skip to main content

Complement and Its Role in Fungal Diseases

  • Chapter

Part of the book series: The Mycota ((MYCOTA,volume 12))

Abstract

The complement system is a group of proteins that form an important component of both innate and antibody-mediated resistance to microbial infection. Activated in a cascade-like fashion, the complement system elicits a variety of effector mechanisms (Fig. 10.1). Initiation of the cascade can occur via two fundamentally different mechanisms termed the classical and alternative pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   399.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Budzko DB, Negroni R (1975) Hemolytic, cytotoxic and complement inactivating properties of extracts of different species of Aspergillus. Mycopathologia 57: 23–26

    Article  PubMed  CAS  Google Scholar 

  • Burger E, Singer-Vermes LM, Calich VLG (1985) The role of C5 in experimental murine paracoccidioidomycosis. J Infect Dis 152:425

    Article  PubMed  CAS  Google Scholar 

  • Byron JK, Clemons KV, McCusker JH, Davis RW, Stevens DA (1995) Pathogenicity of Saccharomyces cerevisiae in complement factor five-deficient mice. Infect Immun 63:478–485

    PubMed  CAS  Google Scholar 

  • Calich VL, Kipnis TL, Mariano M, Neto CF, Dias da Silva WD (1979) The activation of the complement system by Paracoccidioides brasiliensis in vitro: its opsonic effect and possible significance for an in vivo model of infection. Clin Immunol Immunopathol 12:21–30

    Article  PubMed  CAS  Google Scholar 

  • Casadevall A, Mukherjee J, Devi SJN, Schneerson R, Robbins JB, Scharff MD (1992) Antibodies elicited by a Cryptococcus neoformans-tetanus toxoid conjugate vaccine have the same specificity as those elicited in infection. J Infect Dis 165:1086–1093

    Article  PubMed  CAS  Google Scholar 

  • Casadevall A, DeShaw M, Fan M, Dromer F, Kozel TR, Pirofski L (1994) Molecular and idiotypic analysis of antibodies to Cryptococcus neoformans glucuronoxylomannan. Infect Immun 62:3864–3872

    PubMed  CAS  Google Scholar 

  • Casadevall A, Cleare W, Feldmesser M, Glatman-Freedman A, Goldman DL, Kozel TR, Lendvai N, Mukherjee J, Pirofski LA, Rivera J, Rosas AL, Scharff MD, Valadon P, Westin K, Zhong Z (1998) Characterization of a murine monoclonal antibody to Cryptococcus neoformans polysaccharide that is a candidate for human therapeutic studies. Antimicrob Agents Chemother 42:1437–1446

    PubMed  CAS  Google Scholar 

  • Chenoweth (1986) Complement mediators of inflammation. In: Ross GD (ed) Immunobiology of the complement system: an introduction for research and clinical medicine. Academic Press, Orlando, FL, pp. 63–86

    Google Scholar 

  • Cinader B, Dubiski S, Wardlaw AC (1964) Distribution, inheritance, and properties of an antigen, MUB 1, and its relation to hemolytic complement. J Exp Med 120: 897–924

    Article  PubMed  CAS  Google Scholar 

  • Collins HL, Bancroft GJ (1992) Cytokine enhancement of complement-dependent phagocytosis by macrophages: synergy of tumor necrosis factor- and granulocyte-macrophage colony-stimulating factor for phagocytosis of Cryptococcus neoformans. Eur J Immunol 22:1447–1454

    Article  PubMed  CAS  Google Scholar 

  • Dahl MV, Carpenter R (1986) Polymorphonuclear leukocytes, complement, and Trichophyton rubrum. J Invest Dermatol 86:138–141

    Article  PubMed  CAS  Google Scholar 

  • Davies SF, Clifford DP, Hoidal JR, Repine JE (1982) Opsonic requirements for the uptake of Cryptococcus neoformans by human polymorphonuclear leukocytes and monocytes. J Infect Dis 145:870–874

    Article  PubMed  CAS  Google Scholar 

  • Devi SJN, Schneerson R, Egan W, Ulrich TJ, Bryla D, Robbins JB, Bennett JE (1991) Cryptococcus neoformans serotype A glucuronoxylomannan-protein conjugate vaccines: synthesis, characterization, and imunogenicity. Infect Immun 59:3700–3707

    PubMed  CAS  Google Scholar 

  • Diamond RD, Erickson NF, III (1982) Chemotaxis of human neutrophils and monocytes induced by Cryptococcus neoformans. Infect Immun 38:380–382

    PubMed  CAS  Google Scholar 

  • Diamond RD, May JE, Kane M, Frank MM, Bennett JE (1973) The role of late complement components and the alternate complement pathway in experimental cryptococcosis. Proc Soc Exp Biol Med 144:312–315

    PubMed  CAS  Google Scholar 

  • Diamond RD, May JE, Kane MA, Frank MM, Bennett JE (1974) The role of the classical and alternate complement pathways in host defenses against Cryptococcus neoformans infection. J Immunol 112:2260–2270

    PubMed  CAS  Google Scholar 

  • Ferrante A, Thong YH (1979) Requirement of heat-labile opsonins for maximal phagocytosis of Candida albicans. Sabouraudia 17:293–297

    Article  PubMed  CAS  Google Scholar 

  • Galgiani JN, Isenberg RA, Stevens DA (1978) Chemotaxigenic activity of extracts from the mycelial and spherule phases of Coccidioides immitis for human polymorphonuclear leukocytes. Infect Immun 21: 862–865

    PubMed  CAS  Google Scholar 

  • Galgiani JN, Yam P, Petz LD, Willams PL, Stevens DA (1980) Complement activation by Coccidioides immitis: in vitro and clinical studies. Infect Immun 28:944–949

    PubMed  CAS  Google Scholar 

  • Gelfand JA, Hurley DL, Fauci AS, Frank MM (1978) Role of complement in host defense against experimental disseminated candidiasis. J Infect Dis 138:9–16

    Article  PubMed  CAS  Google Scholar 

  • Gordon MA, Casadevall A (1995) Serum therapy for cryptococcal meningitis. Clin Infect Dis 21:1477–1479

    Article  PubMed  CAS  Google Scholar 

  • Goren MB, Warren J (1968) Immunofluorescence studies of reactions at the cryptococcal capsule. J Infect Dis 118:215–229

    Article  PubMed  CAS  Google Scholar 

  • Graybill JR, Ahrens J (1981) Immunization and complement interaction in host defence against murine cryptococcosis. J Reticuloendothel Soc 30:347–357

    PubMed  CAS  Google Scholar 

  • Greenfield RA, Stephens JL, Bussey MJ, Jones JM (1983) Quantitation of antibody to Candida mannan by enzyme-linked immunosorbent assay. J Lab Clin Med 101:758–771

    PubMed  CAS  Google Scholar 

  • Han Y, Kozel TR, Zhang MX, MacGill RS, Carroll RJ, Cutler JE (2001) Complement is essential for protection by an IgM and an IgG3 monoclonal antibody against experimental, hematogenously disseminated candidiasis. J Immunol 167:1550–1557

    PubMed  CAS  Google Scholar 

  • Hazen KC, Hazen BW (1987) A polystyrene microsphere assay for detecting cell surface hydrophobicity heterogeneity within Candida albicans populations. J Microbiol Methods 6:289–299

    Article  CAS  Google Scholar 

  • Hazen KC, Hazen BW (1992) Hydrophobic surface protein masking by the opportunistic fungal pathogen Candida albicans. Infect Immun 60:1499–1508

    PubMed  CAS  Google Scholar 

  • Hector RF, Yee E, Collins MS (1990) Use of DBA/2 N mice in models of systemic candidiasis and pulmonary and systemic aspergillosis. Infect Immun 58:1476–1478

    PubMed  CAS  Google Scholar 

  • Horstmann RD, Pangburn MK, Müller-Eberhard HJ (1985) Species specificity of recognition by the alternative pathway of complement. J Immunol 134:1101–1104

    PubMed  CAS  Google Scholar 

  • Houpt D, Pfrommer GST, Young B, Larson T, Kozel TR (1994) Characteristics of antibodies in normal human serum that are reactive with the Cryptococcus neoformans glucuronoxylomannan. Infect Immun 62: 2857–2864

    PubMed  CAS  Google Scholar 

  • Jones JM (1980) Quantitation of antibody against cell wall mannan and a major cytoplasmic antigen of Candida in rabbits, mice, and humans. Infect Immun 30:78–89

    PubMed  CAS  Google Scholar 

  • Klein BS, Jones JM (1990) Isolation, purification and radiolabeling of a novel 120 kDa surface protein on Blastomyces dermatitidis yeasts to detect antibody in infected patients. J Clin Invest 85:152–161

    Article  PubMed  CAS  Google Scholar 

  • Kozel TR, Pfrommer GST (1986) Activation of the complement system by Cryptococcus neoformans leads to binding of iC3b to the yeast. Infect Immun 52:1–5

    PubMed  CAS  Google Scholar 

  • Kozel TR, Lupan DM (1996) Humoral Immunity. In: Howard DH, Miller JD (eds) The Mycota, vol VI. Springer, Berlin Heidelberg New York, pp 99–116

    Google Scholar 

  • Kozel TR, Highison B, Stratton CH (1984) Localization on encapsulated Cryptococcus neoformans of serum components opsonic for phagocytosis by macrophages and neutrophils. Infect Immun 43:574–579

    PubMed  CAS  Google Scholar 

  • Kozel TR, Brown RR, Pfrommer GST (1987) Activation and binding of C3 by Candida albicans. Infect Immun 55: 1890–1894

    PubMed  CAS  Google Scholar 

  • Kozel TR, Pfrommer GST, Guerlain AS, Highison BA, Highison GJ (1988) Strain variation in phagocytosis of Cryptococcus neoformans: dissociation of susceptibility to phagocytosis from activation and binding of opsonic fragments of C3. Infect Immun 56:2794–2800

    PubMed  CAS  Google Scholar 

  • Kozel TR, Wilson MA, Farrell TP, Levitz SM (1989a) Activation of C3 and binding to Aspergillus fumigatus conidia and hyphae. Infect Immun 57:3412–3417

    PubMed  CAS  Google Scholar 

  • Kozel TR, Wilson MA, Pfrommer GST, Schlageter AM (1989b) Activation and binding of opsonic fragments of C3 on encapsulated Cryptococcus neoformans by using an alternative complement pathway reconstituted from six isolated proteins. Infect Immun 57: 1922–1927

    PubMed  CAS  Google Scholar 

  • Kozel TR, Wilson MA, Murphy JW (1991) Early events in initiation of alternative complement pathway activation by the capsule of Cryptococcus neoformans. Infect Immun 59:3101–3110

    PubMed  CAS  Google Scholar 

  • Kozel TR, Wilson MA, Welch WH (1992) Kinetic analysis of the amplification phase for activation and binding of C3 to encapsulated and nonencapsulated Cryptococcus neoformans. Infect Immun 60:3122–3127

    PubMed  CAS  Google Scholar 

  • Kozel TR, Weinhold LC, Lupan DM (1996) Distinct characteristics of initiation of the classical and alternative complement pathways by Candida albicans. Infect Immun 64:3360–3368

    PubMed  CAS  Google Scholar 

  • Kozel TR, deJong BCH, Grinsell MM, MacGill RS, Wall KK (1998a) Characterization of anti-capsular monoclonal antibodies that regulate activation of the complement system by the Cryptococcus neoformans capsule. Infect Immun 66:1538–1546

    PubMed  CAS  Google Scholar 

  • Kozel TR, MacGill RS, Wall KK (1998b) Bivalency is required for anti-capsular monoclonal antibodies to optimally suppress activation of the alternative complement pathway by the Cryptococcus neoformans capsule. Infect Immun 66:1547–1553

    PubMed  CAS  Google Scholar 

  • Law SK, Levine RP (1977) Interaction between the third complement protein and cell surface macromolecules. Proc Natl Acad Sci USA 74:2701–2705

    Article  PubMed  CAS  Google Scholar 

  • Law SK, Lichtenberg NA, Levine RP (1979) Evidence for an ester linkage between the labile binding site of C3b and receptive surfaces. J Immunol 123:1388–1394

    PubMed  CAS  Google Scholar 

  • Laxalt KA, Kozel TR (1979) Chemotaxigenesis and activation of the alternative complement pathway by encapsulated and non-encapsulated Cryptococcus neoformans. Infect Immun 26:435–440

    PubMed  CAS  Google Scholar 

  • Lehmann PF, Reiss E (1980) Comparison by ELISA of serum anti-Candida albicans mannan IgG levels of a normal population and in diseased patients. Mycopathologia 70:89–93

    Article  PubMed  CAS  Google Scholar 

  • Liebert RE, Hazen KC (1988) Relationship of cell surface hydrophobicity to morphology of monomorphic and dimorphic fungi. Mycologia 80:348–355

    Article  Google Scholar 

  • Lovchik JA, Lipscomb MF (1993) Role of C5 and neutrophils in the pulmonary intravascular clearance of circulating Cryptococcus neoformans. J Respir Cell Mol Biol 9:617–627

    Article  CAS  Google Scholar 

  • Lu J, Thiel S, Wiedemann H, Timpl R, Reid KBM (1990) Binding of the pentamer/hexamer forms of mannanbinding protein to zymosan activates the proenzyme Clr2Cl s2 complex, of the classical pathway of complement, without involvement of Clq. J Immunol 144: 2287–2294

    PubMed  CAS  Google Scholar 

  • Lyon FL, Hector RF, Doumer JE (1986) Innate and acquired immune responses against Candida albicans in congenic B10.D2 mice with deficiency of the C5 complement component. J Med Vet Mycol 24:359–367

    Article  PubMed  CAS  Google Scholar 

  • MacGill TC, MacGill RS, Casadevall A, Kozel TR (2000) Biological correlates of capsular (quellung) reactions of Cryptococcus neoformans. J Immunol 164:4835–4842

    PubMed  CAS  Google Scholar 

  • Matsushita M, Fujita T (1992) Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease. J Exp Med 176:1497–1502

    Article  PubMed  CAS  Google Scholar 

  • Mitchell TG, Friedman L (1972) In vitro phagocytosis and intracellular fate of variously encapsulated strains of Cryptococcus neoformans. Infect Immun 5:491–498

    PubMed  CAS  Google Scholar 

  • Morrison RP, Cutler JE (1981) In vitro studies of the interaction of murine phagocytic cells with Candida albicans. J Reticuloendothel Soc 29:23–34

    PubMed  CAS  Google Scholar 

  • Müller-Eberhard HJ, Fjellstrom K-E (1971) Isolation of the anticomplementary protein from cobra venom and its mode of action on C3. J Immunol 107:1666–1672

    PubMed  Google Scholar 

  • Munk ME, Dias Da Silva W (1992) Activation of human complement system Paracoccidioides brasiliensis and its deposition on the yeast form cell surface. J Med Vet Mycol 30:481–484

    Article  PubMed  CAS  Google Scholar 

  • Neth O, Jack DL, Dodds AW, Holzel H, Klein NJ, Turner MW (2000) Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect Immun 68:688–693

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Okada M, Yamashina I, Kawasaki T (1990) The mechanism of carbohydrate-mediated complement activation by the serum mannan-binding protein. J Biol Chem 265:1980–1984

    PubMed  CAS  Google Scholar 

  • Pangburn MK, Müller-Eberhard HJ (1984) The alternative pathway of complement. Springer Sem Immunopathol 7:163–192

    Article  CAS  Google Scholar 

  • Pfrommer GST, Dickens SM, Wilson MA, Young BJ, Kozel TR (1993) Accelerated decay of C3b to iC3b when C3b is bound to the Cryptococcus neoformans capsule. Infect Immun 61:4360–4366

    PubMed  CAS  Google Scholar 

  • Ray TL, Wuepper KD (1976) Activation of the alternative (properdin) pathway of complement by Candida albicans and related species. J Invest Dermatol 67:700–703

    Article  PubMed  CAS  Google Scholar 

  • Rhodes JC (1985) Contribution of complement component C5 to the pathogenesis of experimental murine cryptococcosis. Sabouraudia 23:225–234

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg LT, Tachibana DK (1962) Activity of mouse complement. J Immunology 89:861–867

    CAS  Google Scholar 

  • Ross GD (1986) Opsonization and membrane complement receptors. In: Ross GD (ed) Immunobiology of the complement system: an introduction for research and clinical medicine. Academic Press, Orlando, pp. 87–114

    Google Scholar 

  • Sturtevant J, Latge JP (1992) Participation of complement in the phagocytosis of the conidia of Aspergillus fumigatus by human polymorphonuclear cells. J Infect Dis 166:580–586

    Article  PubMed  CAS  Google Scholar 

  • Swan JW, Dahl MV, Coppo PA, Hammerschmidt DE (1983) Complement activation by Trichophyton rubrum. J Invest Dermatol 80:156–158

    Article  PubMed  CAS  Google Scholar 

  • Tagami H, Natsume N, Aoshima T, Inuoe F, Suehisa S, Yamada M (1982) Analysis of transepidermal leukocyte chemotaxis in experimental dermatophytosis in guinea pigs. Arch Dermatol Res 273:205–217

    Article  PubMed  CAS  Google Scholar 

  • Thong YH, Ferrante A (1978) Alternative pathway of complement activation by Candida albicans. Aust N Z J Med 8:620–622

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg CW, Aerts PC, van Dijk H (1991) In vivo anticomplementary activities of the cobra venom factors from Naja naja and Naja haje. J Immunol Methods 136:287–294

    Article  PubMed  Google Scholar 

  • Vogel C-W, Smith CA, Müller-Eberhard HJ (1984) Cobra venom factor: structural homology with the third component of human complement. J Immunol 133: 3235–3241

    PubMed  CAS  Google Scholar 

  • von Dungern E (1900) Beitrage zur Immunitätslehre. Munchener Med Wochenschr 47:677–680

    Google Scholar 

  • Wetsel RA, Fleischer DT, Haviland DL (1990) Deficiency of the murine fifth complement component (C5): a 2-base pair gene deletion in a 5’-exon. J Biol Chem 265:2435–2440

    PubMed  CAS  Google Scholar 

  • Wilson BD, Sohnle PG (1988) Neutrophil accumulation and cutaneous responses in experimental cutaneous candidiasis of genetically complement-deficiency mice. Clin Immunol Immunopathol 46:284–293

    Article  PubMed  CAS  Google Scholar 

  • Wilson MA, Kozel TR (1992) Contribution of antibody in normal human serum to early deposition of C3 onto encapsulated and nonencapsulated Cryptococcus neoformans. Infect Immun 60:754–761

    PubMed  CAS  Google Scholar 

  • Wuthrich M, Chang WL, Klein BS (1998) Immunogenicity and protective efficacy of the WI-1 adhesin of Blastomyces dermatitidis. Infect Immun 66:5443–5449

    PubMed  CAS  Google Scholar 

  • Young BJ, Kozel TR (1993) Effects of strain variation, serotype and structural modification on the kinetics for activation and binding of C3 to Cryptococcus neoformans. Infect Immun 61:2966–2972

    PubMed  CAS  Google Scholar 

  • Zhang MX, Klein B (1997) Activation, binding, and processing of complement component 3 (C3) by Blastomyces dermatitidis. Infect Immun 65:1849–1855

    PubMed  Google Scholar 

  • Zhang MX, Kozel TR (1998) Mannan-specific immunoglobulin G antibodies in normal human serum accelerate binding of C3 to Candida albicans via the alternative complement pathway. Infect Immun 66:4845–4850

    PubMed  CAS  Google Scholar 

  • Zhang MX, Brandhorst TT, Kozel TR, Klein BS (2001) Role of glucan and surface protein BAD1 in complement activation by Blastomyces dermatitidis yeast. Infect Immun 69:7559–7564

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kozel, T.R. (2004). Complement and Its Role in Fungal Diseases. In: Domer, J.E., Kobayashi, G.S. (eds) Human Fungal Pathogens. The Mycota, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10380-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10380-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07651-0

  • Online ISBN: 978-3-662-10380-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics