Skip to main content

Non-β-Lactam Antibiotics

  • Chapter
Industrial Applications

Part of the book series: The Mycota ((MYCOTA,volume 10))

Abstract

Fungi have been used by mankind ever since ancient times for a variety of uses, mainly for food (Zadrazil and Karma 1997) or food production (Wolf 1997). The great diversity of substrates and habitats which fungi can successfully colonize reflects the enormous richness of genetic and metabolic resources of these organisms. Until now, fungi have only been surpassed by Actinomycetales as a source for biologically active metabolites. Among the best known are the β-lactams (penicillins and cephalosporins) which are dealt with in Chapter 4 of this Volume. In the following, we wish to review some classes of fungal metabolites which are presently used as medicinal, veterinary or agricultural antibiotics, as well as some newer candidates for development. For pharmacologically active fungal metabolites used as, e.g., immunomodulators or plant growth regulators, the reader is referred to Anke (1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avarsson A, Brazhnikov E, Garber M, Zheltonosova J, Chirgadze Y, al-Karadaghi S, LA Svensson LA, Liljas A (1994) Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus therrnophilus. EMBO J 13: 3669–3677

    Google Scholar 

  • Anke T (ed) (1997) Fungal biotechnology. Chapman and Hall. London

    Google Scholar 

  • Anke T, Oberwinkler F, Steglich W, Schramm G (1977) The strobilurins - new antifungal antibiotics from the basidiomycete Strobilurus tenacellus (Pers. ex Fr.) Sing. J Antibiot 30: 806–810

    Google Scholar 

  • Anke T, Hecht HJ, Schramm G. Steglich W (1979) Antibiotics from basidiomycetes. IX. Oudemansin, an antifungal antibiotic from Oudemansiella mucida (Schrader ex Fr.) Hoehnel ( Agaricales ). J Antibiot 32: 1112–1117

    Google Scholar 

  • Anke T, Besl H, Mocek U, Steglich W (1983) Antibiotics from basidiomycetes. XVIII. Strobilurin C and oudemansin B, two new antifungal metabolites from Xerula species ( Agaricales ). J Antibiot 36: 661–666

    Google Scholar 

  • Anke T, Schramm G, Schwalge B, Steffan B, Steglich W (1984) Antibiotika aus Basidiomyceten, XX. Synthese von Strobilurin A und Revision der Stereochemie der natürlichen Strobilurine. Liebigs Ann Chem 1984: 1616–1625

    Google Scholar 

  • Anke T, Schramm G, Steglich W, von Jagow G (1988) Structure-activity relationships of natural and synhetic Eß-mcthoxyacrylates of the strobilurin and oudemansin series. In: Kleinkauf H, von Döhren H, Jaenicke L (eds) The roots of modern biochemistry. De Gruyter, Berlin, p 657

    Google Scholar 

  • Anke T, Werle A, Bross M, Steglich W (1990) Antibiotics from basidiomycetes. XXXIII. Oudemansin X, a new antifungal E-ß-methoxyacrylate from Oudemansiella radicata ( Relhan ex Fr.) Sing. J Antibiot 43: 1010–1011

    Google Scholar 

  • Aoki M, Andoh T, Ueki T, Masuyoshi S, Sugawara K, Oki T (1993) BU-4794F, a new beta-1,3-glucan synthase inhibitor. J Antibiot 46: 952–960

    CAS  Google Scholar 

  • Arigoni D (1962) La struttura di un terpene di nuovo genere. In Gazz Chim Itl 92: 884–901

    Google Scholar 

  • Arigoni D. von Daehne W, Godfredsen WO, Melera A, Vangedal S (1964) The stereochemistry of fusidic acid. Experentia 20: 344–347

    Google Scholar 

  • Aviles P, Aliouat EM, Martinez A, Dei-Cas E, Herreros E, Dujardin L, Gargallo-Viola D (2000) In vitro pharmacodynamic parameters of sordarin derivatives in comparison with those of marketed compounds against Pneumocystis carinii isolated from rats. Antimicrob Agents Chemother 44: 1284–1290

    CAS  Google Scholar 

  • Baguley BC, Römmele G, Gruner J, Wehrli W (1979) Papulacandin B: an inhibitor of glucan synthesis in yeast spheroplasts. Eur J Biochem 97: 345–351

    CAS  Google Scholar 

  • Bäuerle J, Anke T (1980) Antibiotics from the genus Mycena and Hydropus scabripes. Planta Med 39: 195–196

    Google Scholar 

  • Bechter R, Schmid BP (1987) Teratogenicity in vitro–a comparative study of four antimycotic drugs using the whole embryo culture system. Toxicol In Vitro 1: 11–15

    CAS  Google Scholar 

  • Becker WF von Jagow G, Anke T, Steglich W (1981) Oudemansin, strobilurin A, strobilurin B and myxothiazol: new inhibitors of the bci segment of the respiratory chain with an E-ß-methoxyacrylate system as a common structural element. FEBS Lett 132: 329–333

    Google Scholar 

  • Bendtzen K, Diamant M, Faber V (1990) Fusidic acid, an immunosuppressive drug with similar functions to cyclosporin A. Cytokine 2: 423–429

    CAS  Google Scholar 

  • Benz F, Knüsel F, Nüesch, Trichler, Nyfeler R, KellerSchierlein W (1974) Stoffwechselprodukte von Mikroorganismen. 143. Mitteilung. Echinocandin B, ein neuartiges Polypeptid-Antibiotikum aus Aspergillus nidulans var. echinulatus: Isolierung and Bausteine. Helv Chim Acta 57: 2459–2477

    Google Scholar 

  • Birch AJ, Cameron DW, Holzapfel CW., Rickards RW (1963) The diterpenoid nature of pleuromutilin. Chem Ind (Lond) 374–375

    Google Scholar 

  • Birch AJ, Holzapfel CW, Rickards RW (1966) The structure and some aspects of the biosynthesis of pleuromutilin. Tetrahedron (Suppl) 8 Part II: 359–387

    Google Scholar 

  • Bodley JW, Lin L, Salas M et al (1970) Translocation V. Fusidic acid stabilization of a eukaryotic ribosome-translocation factor-GDP complex. FEBS 11: 153–156

    Google Scholar 

  • Bossi A, Baumann M, Gerecke M, Kyburz E (1960) Syntheseversuche in der Griseofulvinreihe. I. Mitt. Eine Totalsynthese von Griseofulvin. Hely Chim Acta 43: 2071

    Google Scholar 

  • Brady A, Lock EA (1992) Inhibition of ferrochelatase and accumulation of porphyrins in mouse hepatocyte cultures exposed to porphyrinogenic chemicals. Arch Toxicol 66: 175–181

    CAS  Google Scholar 

  • Brandt E, Knauseder F, Schmid E, Thym H (1968) Water-soluble antibiotics. Austrian Patent 261,804; Chem Abstr 69,76,054 r

    Google Scholar 

  • Brian PW, Curtis PJ, Hemming HG (1946) A substance causing abnormal development of fungal hyphae produced by Penicillium janczewskii Zal. I. Biological assay, production and isolation of “curling factor”. Trans Br Mycol Soc 29: 173–187

    Google Scholar 

  • Brian PW, Curtis Pi, Hemming HG (1949) A substance causing abnormal development of fungal hyphae produced by Penicillium janczewskii Zal. III. Identity of curling factor with griseofulvin. Trans Br Mycol Soc 32: 30–33

    Google Scholar 

  • Brian PW (1951) Antibiotics produced by fungi. Bot Rev 17: 357–430

    CAS  Google Scholar 

  • Broadbent D (1966) Antibiotics produced by fungi. Bot Rev 32: 219–242

    Google Scholar 

  • Buchanan MS, Steglich W, Anke T (1999) Strobilurin N and two metabolites of chorismic acid from the fruit-bodies of Mycena crocata ( Agaricales ). Z Naturforsch 54c: 463–468

    Google Scholar 

  • Burton HS, Abraham EP (1951) Isolation of antibiotics from a species of Cephalosporium. Cephalosporin PI, P2, P3, P4 and P5. Biochem J 50: 168–174

    CAS  Google Scholar 

  • Butters JA, Kendall SJ, Wheeler IE, Hollomon DW (1995) Tubulins: lessons from existing products that can be applied to target new antifungals. In: Dixon GK, Non-ß-Lactam Antibiotics 105

    Google Scholar 

  • Copping LG, Hollomon DW (eds) Antifungal agents, discovery and mode of action. Bios Scientific Publishers, Oxford, pp 131–142

    Google Scholar 

  • Capa L. Mendoza A, Lavandera JL, de las Heras GF, Garcia-Bustos JF (1998) Translation elongation factor 2 is part of the target for a new family of antifungals. Antimicrob Agents Chemother 42: 2694–2699

    Google Scholar 

  • Chain E, Florey HW, Jennings MA, Williams TI (1943) Helvolic acid, an antibiotic produced by Aspergillus fumigatus, mut. helvola Yuill. Br J Exp Pathol 24: 108–119

    CAS  Google Scholar 

  • Chiba H, Kaneto R, Agematu H, Shibamoto N. Yoshioka T, Nishida H, Okamoto R (1993) Mer-WF3010, a new member of the papulacandin family. Il. Structure determination. J Antibiot 46: 356–358

    Google Scholar 

  • Clemons KV, Stevens DA (2000) Efficacies of sordarin derivatives GM193663, GM211676, and GM237354 in a murine model of systemic eoccidioidomycosis. Antimicrob Agents Chemother 44: 1874–1877

    CAS  Google Scholar 

  • Conolly JD. Hill RA, Ngadjui BT (1994a) Triterpenoids. Nat Product Rep 11: 91–117

    Google Scholar 

  • Conolly JD, Hill RA, Ngadjui BT (1994b) Triterpenoids. Nat Product Rep 11: 467–492

    Google Scholar 

  • Cooper A, Hodgin DC (1968) The crystal structure and absolute configuration of fusidic acid methyl ester 3p-brombenzoate. Tetrahedron 24: 909–922

    Google Scholar 

  • Coval SJ, Puar MS, Phife DW, Teraciano JS, Patel M (1995) SCH57404 an antifungal agent possessing the rare sordaricin skeleton and a tricyclic sugar moiety. J Antibiot 48: 1171–1172

    CAS  Google Scholar 

  • Current WL, Tang J, Boylan C, Watson P, Zeckner D, Turner W, Rodriguez M, Dixon C, Ma D, Radding JA (1995) Glucan biosynthesis as a target for antifungals: the echinocandin class of antifungals. In: Dixon GK, Copping LG, Hollomon DW (eds) Antifungal agents, discovery and mode of action. Bios Scientific Publishers, Oxford, pp 143–160

    Google Scholar 

  • Curry PT, Reed RN. Martino RM, Kitchin RM (1984) Induction of sister chromatid exchanges in vivo by the mycotoxins sterigmatocystin and griseofulvin. Mutat Res 137: 111–115

    CAS  Google Scholar 

  • Czworkowski J, Wang J. Steitz TA, Moore PB (1994) The crystal structure of elongation factor G complcxed with GDP, at 2.7A resolution. EMBO J 13: 3661–3668

    CAS  Google Scholar 

  • Daferner M, Anke T, Hellwig V, Steglich W. Sterner O (1998) Strobilurin M, tetrachloropyrocatechol and tetrachloropyrocatechol methyl ether: new antibiotics from a Mycena species. J Antibiot 51: 816–822

    CAS  Google Scholar 

  • Daferner M, Mensch S, Anke T, Sterner 0 (1999) Hypoxysordarin, a new sordarin derivative from Hypoxylon croceum. Z Naturforsch 54c: 474–480

    CAS  Google Scholar 

  • Daubcn WG, Kessel CR, Kishi Met al (1982) A formal total synthesis of fusidic acid. J Am Chem Soc 104: 303–305

    Google Scholar 

  • Debono M, Gordee RS (1994) Antibiotics that inhibit fungal cell wall development. Annu Rev Mocrobiol 48: 471–497

    CAS  Google Scholar 

  • Dominguez JM, Gomez-Lorenzo MG, Martin JJ (1999) Sordarin inhibits fungal protein synthesis by blocking translocation differently to fusidic acid. J Biol Chem 274: 22423–22427

    CAS  Google Scholar 

  • Drews J, Georgopoulos A, Laber G, Schlitze E. Unger J (1975) Antimicrobial activities of 81.723 hfu, a new pleuromutilin derivative. Antimicrob. Agents Chemother 7: 507–516

    Google Scholar 

  • Egger H, Reinshagen H (1976a) New pleuromutilin derivatives with enhanced antimicrobial activity. I. Synthesis. J Antibiot 29: 915–922

    Google Scholar 

  • Egger H, Reinshagen H (1976b) New pleuromutilin derivatives with enhanced antimicrobial activity. II. Structure-activity correlations. J Antibiot 29: 923–927

    Google Scholar 

  • Engler M, Anke T, Klostermeyer D, Steglich W (1995) Hydroxystrobilurin A, a new antifungal E-ß-methoxyacrylate from a Pterula species. J Antibiot 48: 884–885

    CAS  Google Scholar 

  • Engler M. Anke T, Sterner 0 (1998) Production of antibiotics by Collybia nivalis, Omphalotus oleariu,s, a Favolaschia and a Pterula species on natural substrates. Z Naturforsch 53c: 318–324

    Google Scholar 

  • Florey HW, Chain E, Heattley NG, Jennings MA, Sanders AG, Abraham EP, Florey ME (1949) Antibiotics. Oxford Univ Press, London

    Google Scholar 

  • Fredenhagen A, Hug P, Peter HH (1990b) Strobilurins F, G and H. three new antifungal metabolites from Bolinea lutea: II. Structure determination - fungicide strobilurin-E -G and -H production. J Antibiot 43: 661–667

    Google Scholar 

  • Fredenhagen A, Kuhn A, Peter HH, Cuomo V, Giulano U (1990a) Strobilurins F, G and H, three new antifungal metabolites from Bolinea lutea: 1. Fermentation, isolation and biological activity - strobilurin-F, -G and -H, cytostatic antibiotics with fungicide activity. J Antibiot 43: 655–660

    Google Scholar 

  • Fromtling RA, Abruzzo GK (1989) L-671,329, a new anti-fungal agent. III. In vitro activity, toxicity and efficacy in comparison to aculeacin. J Antibiot 42: 174–178

    Google Scholar 

  • Fujimura M, Kamakura T, Inoue H, Inoue S. Yamaguchi I (1992) Sensitivity of Neurospora crassa to benzimidazoles and N-phenylcarbamates: effect of amino acid substitutions at position 198 in beta-tubulin. Pestic Biochem Physiol 44: 165–173

    CAS  Google Scholar 

  • Gams W (1971) Cephalosporium-artige Schimmelpilze (Hyphomycetes). Fischer-Verlag, Stuttgart

    Google Scholar 

  • Gerth K, Irschik H, Reichenbach H, Trowitzsch W (1980) Myxothiazol, an antibiotic from Myxococcus fulvus (Myxobacterales). I. Cultivation, isolation, physicochemical and biological properties. J Antibiot 33: 1474–1479

    Google Scholar 

  • Godtfredsen WO, Vengedal S (1962) The structure of fusidic acid. Tetrahedron 18: 1029–1048

    CAS  Google Scholar 

  • Godtfredsen WO, Jahnsen S, Lorck H et al. (1962) Fusidic acid. A new antibiotic. Nature 193, 987

    Google Scholar 

  • Godtfredsen WO, Lorck H. Jahnsen S (1964) Canadian Patent no 930, 786

    Google Scholar 

  • Godfredsen WO, von Daehne W, Vangedal S, Arigoni D et al (1965) The stereochemistry of fusidic acid. Tetrahedron 21: 3505–3530

    Google Scholar 

  • Godfredsen WO, Rastrup-Andersen N, Vangedal S, Ollis WD (1979) Metabolites of Fusidium coccineum. Tetrahedron 35: 2419–2431

    Google Scholar 

  • Gomez-Lorenzo MG, Garcia-Bustos JF (1998) Ribosomal P-protein stalk function is targeted by sordarin. J Biol Chem 273: 25041–25044

    CAS  Google Scholar 

  • Gomez-Lorenzo MG, Spahn CM, Agrawal RK, Grassucci RA, Penczek P, Chakraburtty, K, Ballesta JP, Lavandera JL, Garcia-Bustos JF, Frank J (2000) Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 A resolution. EMBO J 19: 2710–2718

    CAS  Google Scholar 

  • Graybill JR, Najvar L, Fothergill A, Bocanegra R, de las Heras FG (1999) Activities of sordarins in murine histoplasmosis. Antimicrob Agents Chemother 43: 17162–1718

    Google Scholar 

  • Grove FK (1964) Griseofulvin and some analogues. In: Zechmeister L (ed) Progress in the chemistry of organic natural products, vol 22. Springer, Vienna New York, pp 201–264

    Google Scholar 

  • Grove JF’, McGowan JC (1947) Identitiy of griseofulvin and “curling factor”. Nature 160: 574

    Google Scholar 

  • Grove JF, MacMillian J, Mulholland TPC, Rogers MAT (1952) Griseofulvin, part IV: structure. J Chem Soc (Lond) 3977

    Google Scholar 

  • Gupta RS (1984) Griseofulvin resistance mutation of Chinese hamster ovary cells that affect the apparent molecular weight of a 200,000-dalton protein. Mol Cell Biol 4: 1761–1768

    CAS  Google Scholar 

  • Haller B, Loeffler W (1969) Stoffwechselprodukte von Mikroorganismen. 71. Mitteilung. Fusidinsäure aus Dermatophyten and anderen Pilzen. Arch Mikrobiol 65: 181–194

    Google Scholar 

  • Hauser D, Sigg HP (1971) Isolierung and Abbau von Sordarin. Helv Chim Acta 54: 1187–1190

    Google Scholar 

  • Hawser S, Borgonovi M, Markus A, Isert D (1999) Mulundocandin, an echinocandin-like lipopeptide antifungal agent: biological activities in vitro. J Antibiot 52: 305–310

    CAS  Google Scholar 

  • Hellwig V, Dasenbrock J, Klostermeyer D, Kroiß S, Sindlinger T, Spiteller P, Steffan B, Steglich W, EnglerLohr M, Semar S, Anke T (1999) New benzodioxepin type strobilurins from basidiomycetes. Structural revision and determination of the absolute configuration of strobilurin D and related ß-methoxyacylate antibiotics. Tetrahedron 55: 10101–10118

    Google Scholar 

  • Herbert RB (1989) The biosynthesis of secondary metabolites. Chapman and Hall, London

    Google Scholar 

  • Herreros E, Martinez CM, Almela MJ, Marriott MS, De Las Heras FG, Gargallo-Viola D (1998) Sordarins: in vitro activities of new antifungal derivatives against pathogenic yeasts, Pneumocystis carinii, and filamentous fungi. Antimicrob Agents Chemother 42: 2863–2869

    CAS  Google Scholar 

  • Hervey AH (1947) A survey of 500 basidiomycetes for antibacterial activity. Bull Torrey Bot Club 74: 476–503

    CAS  Google Scholar 

  • Hikino H, Asada Y; Arihara S et al (1972) Fungal metabolites.[1. Fusidic acid, a steroidal antibiotic from Isaria kogane. Chem Pharm Bull 20: 1067–1069

    CAS  Google Scholar 

  • Högenauer G (1979) Tiamulin and pleuromutilin. In: Hahn FE (ed) Antibiotics, vol 1. Springer, Berlin Heidelberg New York, pp 340–360

    Google Scholar 

  • Huber FM (1975) Griseofulvin. In: Corcoran JW, Hahn FE (eds) Antibiotics, vol 3, pp 606–613

    Google Scholar 

  • Iwamoto T, Fujie A, Sakamoto K, Tsurumi Y, Shigematsu N, Yamashita M, Hashimoto S, Okuhara M, Kohsaka M (1994a) WF11899 A, B and C, novel antifungal lipopeptides. I. Fermentation, isolation and physicochemical properties. J Antibiot 47: 1084–1091

    Google Scholar 

  • Iwamoto T, Fujie A, Nitta K, Hashimoto S, Okuhara M, Kohsaka M (1994b) WF11899 A, B and C, novel antifungal lipopeptides. II. Biological properties. J Antibiot 47: 1092–1097

    Google Scholar 

  • Iwasaki S. Sair MI, Igarashi H, Okuda S (1970) Revised structure of helvolic acid. Chem Commun 1119–1120

    Google Scholar 

  • Johanson U, Hughes D (1994) Fusidic acid-resistant mutations define three regions in elongation factor G of Salmonella typhimurium. Gene 143: 55–59

    CAS  Google Scholar 

  • Justice CJ, Hsu M, Tse B, Ku T, Baljovec J, Schmatz D. Nielsen J (1998) Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J Biol Chem 273: 3148–3151

    CAS  Google Scholar 

  • Kaise H, Munaka K, Sassa T (1972) Structure of viridominic acid C, a new steroidal metabolite of a fungus having chlorosis-inducing activity. Tetrahedron Lett 3: 199–202

    Google Scholar 

  • Kaneto R, Chiba H, Agematu H, Shibamoto N, Yoshioka T, Nishida H, Okamoto R (1993) Mer-WF3010, a new member of the papulacandin family. 1. Fermentation, isolation and characterization. J Antibiot 46: 247–250

    Google Scholar 

  • Kavanagh F, Hervey A, Robbins WJ (1951) Antibiotic substances from basidiomycetes. VIII, Pleurotus mutilus (Fr.) Sacc. and Pleurotus passeckerianus Pilat. Proc Natl Acad Sci USA 37: 570–574

    CAS  Google Scholar 

  • Keller-Juslen C, Kuhn M, Loosli HR, Petcher TJ, Weber HP, von Wartburg A (1976) Struktur des CyclopeptidAntibiotikums SL7801 (= Echinocandin B). Tetrahedron Lett 17: 4147–4150

    Google Scholar 

  • Kennedy TC, Webb G, Cannell RJP, Kinsman OS, Middleton RF, Sidebottom PJ, Taylor NL, Dawson MJ, Buss AD (1998) Novel inhibitors of fungal protein synthesis produced by a strain of Graphium putredinis. Isolation, characterisation and biological properties. J Antibiot 51: 1012–1018

    Google Scholar 

  • Kerridge D (1986) Mode of action of clinically important antifungal drugs. Adv Microbial Physiol 27: 1–72

    CAS  Google Scholar 

  • Kingston DG, Chen PN, Vercellotti JR (1976) Metabolites of Aspergillus versicolor:6,8-di-O-methylniduruf n, griseofulvin, dechlorogriseofulvin, and 3,8-dihydroxy6-methoxy-l-methylxanthone. Phytochemistry 15: 1037–1039

    CAS  Google Scholar 

  • Kinsman OS, Chalk PA, Jackson HC. Middleton RF, Shuttleworth A, Rudd BAM, Jones CA, Noble HM, Wildman HG, Dawson MJ, Stylli C, Sidebottom PJ, Lamont B, Lynn S, Hayes MV (1998) Isolation and characterisation of an antifungal antibiotic (GR135402) with protein synthesis inhibition. J Antibiot 51: 41–49

    CAS  Google Scholar 

  • Knauseder F, Brandt E (1976) Pleuromutilins: fermentation, structure and biosynthesis. J Antibiot 29: 125–131

    CAS  Google Scholar 

  • Ko B-S, Oritani T, Yamashita K (1990) Synthesis and biological activities of griseofulvin analogs. Agric Biol Chem 54: 2199–2204

    CAS  Google Scholar 

  • Komori T, Itoh Y (1985) Chaetiacandin, a novel papulacandin. II. Structure determination. J Antibiot 38: 544–546

    Google Scholar 

  • Komori T, Yamashita M, Tsurumi Y, Kohsaka M (1985) Chaetiacandin, a novel papulacandin. I. Fermentation, isolation and characterization. J Antibiot 38: 455459

    Google Scholar 

  • Kraiczy P, Haase U, Gencic S Flindt S, Anke T, Brandt U, von Jagow G (1996) The molecular basis for the natural resistance of the cytochrome bc, complex from strobilurin-producing basidiomycetes to center Op inhibitors. Eur J Biochem 235: 54–63

    CAS  Google Scholar 

  • Lane MP, Nakashima TT, Vederas JC (1982) Biosynthetic source of oxygens in griseofulvin. Spin-echo resolution of oxygen-18 isotope shifts in carbon-13 NMR spectroscopy. J Am Chem Soc 104: 913–915

    CAS  Google Scholar 

  • Langholz E, Brynskov J, Bendtzen K et al (1992) Treatment of Crohn’s decease with fusidic acid: an antibiotic with immunosuppressive properties similar to cyclosporin. Aliment Pharmacol Ther 6: 495–502

    CAS  Google Scholar 

  • Levin DH, Kyner D, Acs G (1973) Protein initiation in eukaryotes. Formation and function of a ternary complex composed of a partially purified ribosomal factor, methionyl transfer RNAf, and guanosine triphosphate. Proc Natl Acad Sci USA 70: 41–45

    Google Scholar 

  • MacMillian J (1959) Griseofulvin, part XIV. Some alcoholic reactions and the absolute configuration of griseofulvin. J Chem Soc (Lond) 1823

    Google Scholar 

  • Mizoguchi J, Saito T, Mizuno K, Hayano K (1977) On the mode of action of a new antifungal antibiotic, aculeacin A: inhibition of cell wall synthesis in Saccharomyces cerevisiae. J Antibiot 30: 308–313

    CAS  Google Scholar 

  • Mizuno K, Yagi A, Satoi S, Takada M, Hayashi M (1977) Studies on aculeacin. I. Isolation and characterization of aculeacin A. J Antibiot 30: 297–302

    Google Scholar 

  • Mukhopadhyay T, Roy K, Bhat RG, Sawant SN, Blumbach J, Ganguli BN, Fehlhaber HW (1992) Deoxymulundocandin — a new echnocandin type antifungal antibiotic. J Antibiot 45: 618–623

    CAS  Google Scholar 

  • Musilek V, Cerna J, Sasek V, Semerzieva M, Vondracek M (1969) Antifungal antibiotic from the basidiomycete Oudemansiella mucida. I. Isolation and cultivation of a producing strain. Folia Microbiol 14: 377–388

    Google Scholar 

  • Nicholas GM, Blunt JW, Cole All, Munro MHG (1997) Investigation of the New Zealand basidiomycete Favolaschia calocera: revision of the structures of 9methoxystrobilurins K and L, strobilurin D, and hydroxystrobilurin D. Tetrahedron Lett 38: 7465–7468

    CAS  Google Scholar 

  • Nicot J (1968) Sur L’identité de l’organisme producteur de l’acide fusidique, antibiotique antistaphylococcique. CR Acad Sci 267: 290–292

    CAS  Google Scholar 

  • Nierhaus KH, Wittman HG (1980) Ribosomal function and its inhibition by antibiotics in prokaryotes. Naturwissenschaften 67: 234–250

    CAS  Google Scholar 

  • Ogita T, Hayashi A, Sato S, Furutani W, Sankyo KK (1987) Antibiotic zopfimarin. Japan Patent 62–40292

    Google Scholar 

  • Oh K, Matsuoka H, Teraoka T, Sumita O. Takatori K, Kurata H (1993) Effects of antimycotics on the biosynthesis of cellular macromolecules in Aspergillus niger protoplasts. Mycopathologia 122: 135–141

    CAS  Google Scholar 

  • Okada H, Kamiya S, Shiina Y, Suwa H, Nagashima M, Nakajima S, Shimokawa H, Sugiyama E. Kondo H, Kojiri K, Suda H (1998) BE-31405, a new antifungal antibiotic produced by Penicillium minioluteum. I. Description of producing organism, fermentation, isolation, physico-chemical and biological properties. J Antibiot 51: 1081–1086

    Google Scholar 

  • Okada H, Kamiya S, Shiina Y, Suwa H, Nagashima M, Nakajima S. Shimokawa H2Okuda S, Sato T, Hattori T et al (1968) Isolation of 3b-hydroxy-4b-hydroxymethylfusida-17(20)[16,21-cis],24-diene. Tetrahedron Lett 9: 4769–4772

    Google Scholar 

  • Oxford AE, Raistrick H, Simonart P (1939) Studies on the biochemistry of microorganisms. 60. Griseofulvin, a metabolic product of Penicillium griseofulvura Dierckx. Biochem J 33: 240–248

    CAS  Google Scholar 

  • Oxley P (1966) Cephalosporin Pl and helvolic acid. Chem Commun 729–730

    Google Scholar 

  • Perez P, Garcia-Atha f, Duran A (1983) Effect of papulacandin B on the cell wall and growth of Geotrichum lattis. J Gen Microbiol 129: 245–250

    CAS  Google Scholar 

  • Perry MJ, Hendricks-Gittins A, Stacey LM et al. (1983) Fusidane antibiotics produced by dermatophytes. J Antibiot 36: 1659–1663

    CAS  Google Scholar 

  • Petraitiene R, Petraitis V, Groll AH, Candelario M, Sein T, Bell A, Lyman CA, McMillian CL, Bacher J, Walsh TJ (1999) Antifungal activity of LY303366, a novel echinocandin B, in experimental disseminated candidiasis in rabbits. Antimicrob Agents Chemother 43: 2148–2155

    CAS  Google Scholar 

  • Pfaller MA, Marco F, Messer SA, Jones RN (1998) In vitro activity of two echinocandin derivatives, I,Y303366 and MK-0991 (L-743,792), against clinical isolates of Aspergillus, Fusarium, Rhizopus, and other filamentous fungi. Diagn Microbiol Infect Dis 30: 25 1255

    Google Scholar 

  • Pirrung MC, Brown WL, Rege S. Laughton P (1991) Total synthesis of (+)-griseofulvin. J Am Chem Soc 113: 8561–8562

    CAS  Google Scholar 

  • Richter D, Lin L. Bodley JW (1971) Translocation. IX. Pattern of action of antibiotic translocation inhibitors in eukaryotic and prokaryotic systems. Arch Biochem Biophys 147: 186–191

    Google Scholar 

  • Riedl K (1976) Studies on pleuromutilin and some of its derivatives. J Antibiot 29: 132–139

    CAS  Google Scholar 

  • Roy K, Mukhopadhyay T, Reddy GCS, Desikan KR, Ganguli BN (1987) Mulundocandin — a new lipopeptide antibiotic. I. Taxonomy, fermentation, isolation, and characterization. J Antibiot 40: 275–280

    Google Scholar 

  • SanMillian MJ, Vazquez D, Modolell J (1975) Interaction of fusidic acid with peptidyl-transfer-ribonucleic-acid ribosome complex. Eur J Biochem 57: 431–440

    Google Scholar 

  • Satoi S, Yagi A, Asano K, Mizuno K, Watanabe T (1977) Studies on aculeacin. II. Isolation and characterization of aculeacins B, C, D,E, F and G. J Antibiot (Tokyo) 30 (4): 303–307

    CAS  Google Scholar 

  • Sauter H, Steglich W, Anke T (1999) Strobilurine: Evolution einer neuen Wirkstoffklasse. Angew Chem 111:1416–1438, Int Ed 39: 1328–1349

    Google Scholar 

  • Schmatz DM, Romancheck MA, Pittarelli LA, Schwartz RE, Fromtling RA, Nollstadt KH, Vanmiddlesworth FL,Wilson KE, Turner MJ (1990) Treatment of Pneumocystis carinii pneumonia with 1,3-beta-glucan synthesis inhibitors. Proc Natl Acad Sci USA 87: 5950–5954

    CAS  Google Scholar 

  • Schmatz DM, Powles M, McFadden DC, Pittarelli LA, Liberator PA, Anderson JW (1991) Treatment and prevention of Pneumocystis carinii pneumonia and further elucidation of the P. carinii life cycle with 1,3beta-glucan synthesis inhibitor L-671,329. J Protozool 38: 151S - 153S

    CAS  Google Scholar 

  • Schneider G, Anke H and Sterner 0 (1995), Xylarin, an antifungal Xylaria metabolite with an unusual tricyclic uronic acid moiety. Nat Prod Lett 7: 309–316

    CAS  Google Scholar 

  • Scholer HJ, Polak A (1984) Resistance to systemic anti-fungal agents. In: Bryan LE (ed) Antimicrobial drug resistance, Chap 14, Academic Press, San Diego, pp 393–460

    Google Scholar 

  • Schramm G (1980) Neue Antibiotika aus Höheren Pilzen (Basidiomyceten). PhD Thesis, Univ Bonn

    Google Scholar 

  • Schramm G, Steglich W, Anke T, Oberwinkler F (1978) Antibiotika aus Basidiomyceten, III. Strobilurin A and B. antifungische Stoffwechselprodukte aus Strobilurus tenacellus. Chem Ber 111: 2779–2784

    CAS  Google Scholar 

  • Schwalge B (1986) Strobilurin A als Modellverbindung für synthetische Analoga. PhD Thesis, Univ Bonn

    Google Scholar 

  • Schwartz RE, Giacobbe RA, Bland JA, Monaghan RL (1989) L-671,329, a new antifungal agent. I. Fermentation and isolation. J Antibiot 42: 163–167

    Google Scholar 

  • Selitrennikoff CP (1995) Antifungal drugs: (l,3)ß-glucan synthase inhibitors. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Simon B (1994) Antivirale and cytotoxische Wirkstoffe aus Basidiomyceten PhD Thesis, Univ Kaiserslautern

    Google Scholar 

  • Sloboda RD, Van Blaricom G, Creasy WA, Rosenbaum JL, Malawista SE (1982) Griseofulvin: association with tubulin and inhibition of in vitro microtubule assembly. Biochem Biophys Res Commun 105: 882888

    Google Scholar 

  • Spahn, CMT, Prescott CD (1996) Throwing a spanner in the works: antibiotics and the translation apparatus. J Mol Med 74: 423–439

    CAS  Google Scholar 

  • Stewart KR (1986) A method for generating protoplasts from Clitopilus pinsitus. J Antibiot 39: 1486–1487

    CAS  Google Scholar 

  • Stringer S, Stringer J, Blase M, Walzer P, Cushion M (1989) Pneumocystis carinii sequence from ribosomal RNA implies a close relationship to fungi. Exp Parasitol 68: 450–461

    Google Scholar 

  • Taft CS, Zugel M, Selitrennikoff CP (1991) In vitro inhibition of stable 1,3-beta-D-glucan synthase activity from Neurospora crassa. Enzym Inhib 5: 41–49

    CAS  Google Scholar 

  • Taha KF, Chu CK (1991) Isolation of the antibiotic griseofulvin from the fungus Nematospora coryli. J Drug Res 20: 137–141

    CAS  Google Scholar 

  • Tanaka N (1975) Fusidic acid. In: Cocoran JW, Hahn FE (eds) Antibiotics, vol 3. Springer, Berlin Heidelberg New York, pp 436–447

    Google Scholar 

  • Tomozane H, Takeuchi Y, Chosi T et al (1990) Syntheses and antifungal activities of dl-griseofulvin and its congeners. Chem Pharm Bull 38: 925–929

    CAS  Google Scholar 

  • Traber R, Keller-Juslen C, Loosli HR, Kuhn M, von Wartburg A (1979) Cyclopeptid-Antibiotika aus Aspergillus-Arten. Struktur der Echinocandine C and D. Heiv Chim Acta 62: 1252–1259

    Google Scholar 

  • Traxler P, Gruner J, Auden JAL (1977a) Papulacandins, a new family of antibiotics with antifungal activity. I. Fermentation, isolation, chemical and biological characterization of papulacandins A, B, C, D and E. J Antibiot 30: 289–296

    Google Scholar 

  • Traxler P, Fritz H, Richter WJ (19776) Zur Struktur von Papulacandin B, einem neuen antifungischen Antibiotikum. He1v Chim Acta 60: 578–584

    Google Scholar 

  • Traxler P, Fritz H, Fuhrer H, Richter WJ (1980) Papulacandins, a new family of antibiotics with antifungal activity. Structures of papulacandins A, B, C and D. J Antibiot 33: 967–978

    Google Scholar 

  • Trowitzsch W, Reifenstahl G, Wray V, Gerth K (1980) Myxothiazol, an antibiotic from Myxococcus fulvus (Myxobacterales). II. Structure elucidation. J Antibiot 33: 1480–1490

    Google Scholar 

  • Tubaki K (1954) Studies on Japanese hyphomycetes. I. Coprophilous group. Nagaoa Mycol J Nagao Inst 4: 7–8

    Google Scholar 

  • Vandcrhaege H, van Dijk P, de Somer P (1965) Identitiy of ramycin with fusidic acid. Nature 205: 710–711

    Google Scholar 

  • van Dijk PJ, de Somer P (1958) Ramycin. A new antibiotic. J Gen Mirobiol 18: 377–381

    Google Scholar 

  • VanMiddlesworth F, Omstead MN, Schmatz D, Bartizal K, Fromtling R, Bills G, Nollstadt K, Honeycutt S, Zweerink M, Garrity G, Wilson K (1991) L-687,781, a new member of the papulacandin family of beta1,3-D-glucan synthesis inhibitors. I. Fermentation, isolation, and biological activity. J Antibiot 44: 4551

    Google Scholar 

  • Verbist L (1990) The antimicrobial activity of fusidic acid. J Antimicrob Chemother 25 (Suppl B): 1–5

    CAS  Google Scholar 

  • Von Jagow G, Gribble GW,Trumpower BL (1986) Mucidin and strobilurin A are identical and inhibit electron transfer in the cytochrome bct complex of the mitochondrial respiratory chain at the same site as myxothiazol. Biochemistry 25: 775–780

    Google Scholar 

  • von Daehne W, Godfredsen WO, Rasmussen PR (1979) Structure-activity relationship in fusidic acid-type antibiotics. Adv Appl Microbiol 25: 95–146

    CAS  Google Scholar 

  • von Daehne W, Jahnsen S, Kirk I et al (1984) Fusidic acid: properties, biosynthesis, and fermenation. Drugs Pharm Sci 22: 427–449

    CAS  Google Scholar 

  • Vondracek M, Capkova J, Slechta J, Benda A, Musilek V, Cudlin J (1970) Czech Pat 136495 (filed 26.9.1969/ obtained 15.5. 1970 ). Isolierung eines neuen antifungischen Antibiotikums. Bezug: Czech 136492

    Google Scholar 

  • Vondracek M, Vondrackova J, Sedmera P, Musilek V (1983) Another antibiotic from the basidiomycete Oudemansiella mucida. Coll Czech Chem Commun 48: 1508–1512

    CAS  Google Scholar 

  • Weber W, Anke T, Steffan B, Steglich W (1990a) Antibiotics from basidiomycetes. XXXII. Strobilurin E: a new cytostatic and antifungal E-ß-methoxyacrylate antibiotic from Crepidotusfulvotontentosus Peck. J Antibiot 43: 207–212

    CAS  Google Scholar 

  • Weber W, Anke T, Bross M, Steglich W (1990b) Antibiotics from basidiomycetes, vol XXXIV. In: Strobilurin D, Strobilurin F (eds) Two new cytostatic and antifungal (E)-ß-methoxyacrylate antibiotics from Cyphellopsis anomala ( Pers ex Fr)Sing. Planta Med 56: 446–450

    Google Scholar 

  • Wichmann CF, Liesch JM, Schwartz RE (1989) L-671,329, a new antifungal agent. II. Structure determination. J Antibiot 42: 168–173

    Google Scholar 

  • Wilson BJ (1971) Miscellaneous Penicillium toxins. In: Ciegler A, Kadis S, Ajl SJ (eds) Microbial toxins, vol 6. Fungal toxins. Academic Press, San Diego, pp 489–506

    Google Scholar 

  • Wolf G (1997) Traditional fermented food. In: Anke T (ed) Fungal biotechnology, Chapman and Hall. London, pp 14–25

    Google Scholar 

  • Wood KA, Kau DA, Wrigley SK, Beneyto R, Renno DV, Ainsworth AM, Penn J, Hill D, Killacky J, Depledge P (1996) Novel ß-methoxyacrylates of the 9-methoxystrobilurin and oudemansin classes produced by the basidiomyccte Favolaschia pustulosa. J Nat Prod 59: 646–649

    CAS  Google Scholar 

  • Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, Yu L, Deisenhofer J (1997) Crystal structure of the cytochrome bel complex from bovine heart mitochondria. Science 277: 60–66

    CAS  Google Scholar 

  • Zadrazil F, Kamra DN (1997) Edible mushrooms. In: Anke T (ed) Fungal biotechnology. Chapman and Hall, London, pp 14–25

    Google Scholar 

  • Zambias RA, Hammond ML, Heck J V, Bartizal K, Trainor C, Abruzzo G, Schmatz DM, Nollstadt KM (1992) Preparation and structure-activity relationships of simplified analogues of the antifungal agent cilofungin: a total synthesis approach. J Med Chem 35: 2843–2855

    CAS  Google Scholar 

  • Zapf S, Anke T, Dasenbrock H, Steglich W (1993) Anti-fungal metabolites from Agaricus sp. 89139. Bioengineering 1: 92

    Google Scholar 

  • Zapf S, Werle A, Anke T, Klostermeyer D. Steffan B and Steglich W (1995) 9-MethoxystrobilurineBindeglieder zwischen Strobilurinen und Oudemansinen. Angew Chem 107: 255–257

    Google Scholar 

  • Zhanel GG, Karlowsky JA, Harding GA, Balko TV, Zelenitsky SA. Friesen M, Kabani A, Turik M, Hoban DJ (1997) In vitro activity of a new semisynthetic echinocandin, LY-303366, against systemic isolates of Candida species, Cryptococcus neoformans, Blastomyces dermatitidis,and Aspergillus species. Antimicrob Agents Chemother 41:863–865

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anke, T., Erkel, G. (2002). Non-β-Lactam Antibiotics. In: Osiewacz, H.D. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10378-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10378-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07481-3

  • Online ISBN: 978-3-662-10378-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics