Skip to main content

Genetic Improvement of Bioherbicides

  • Chapter

Part of the book series: The Mycota ((MYCOTA,volume 10))

Abstract

Plant pathogenic fungi and bacteria potentially provide an ecologically sound means of suppressing weeds in agricultural and natural environments. Traditionally, the challenge of biological control has been to find naturally occurring plant pathogens capable of controlling a weed population (Charudattan 1991; Auld and Morin 1995). In most cases, a plant disease causes only minimal damage to a plant population. However, in a few cases like Dutch elm disease and the Great Potato Famine, the impact of the plant pathogen on its host plant has been devastating. Over the past 50 years, biocontrol researchers have searched for plant pathogens that are capable of inflicting these levels of damage on weed populations. However, few pathogens have proven efficacious and even fewer have been commercialized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams EB, Line RF (1984) Epidemiology and host morphology in the parasitism of rush skeleton by Puccinia chondrillina. Phytopathology 74: 745–748

    Article  Google Scholar 

  • Armstrong JL, Harris DL (1993) Biased DNA integration in Colletotrichum gloeosporioides L sp. aeschynomene transformants with benomyl resistance. Phytopathology 83: 328–332

    Article  CAS  Google Scholar 

  • Auld BA, Morin L (1995) Constraints in the development of bioherbicides. Weed Technol 9: 638–652

    Google Scholar 

  • Auld BA, Schrauwen, JMA, Talbot HE, Radburn KB (1994) Interaction between Colletotrichum orbiculare and Alternaria zinniae or a Phomopsis sp. on Xanthium spinosum. Plant Protect Q 9: 86–87

    Google Scholar 

  • Boland GJ, Hall R (1996) Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol 16: 93–108

    Article  Google Scholar 

  • Bourdôt GW, Harvey IC, Hurrell GA, Saville DJ (1995) Demographic and biomass production consequences of inundative treatment of Cirsium arvense with Sclerotinia sclerotiorum. Biocontrol Sci Technol 5: 11–25

    Article  Google Scholar 

  • Bowers RC (1986) Commercialization of CollegoTM–an industrialist’s view. Weed Sci 34 (Suppl 1): 24–25

    Google Scholar 

  • Brooker NL, Mischke CF, Patterson CD, Mischke S, Bruckart WL, Lydon J (1996) Pathogenicity of bar-transformed Colletotrichum gloeosporioides f. sp. aeschynomene. Biol Control 7: 159–166

    Article  Google Scholar 

  • Brosten BS, Sands DC (1986) Field trials of Sclerotinia sclerotiorum to control Canada thistle (Cirsium arvense). Weed Sci 34: 377–380

    Google Scholar 

  • Bruckart WL, Johnson DR, Frank JR (1988) Bentazon reduces rust-induced disease in yellow nutsedge, (Cypresus esculentus). Weed Technol 2: 299–303

    CAS  Google Scholar 

  • Chacko RJ, Weidemann GJ, TeBeest DO, Correll JC (1994) The use of vegetative compatibility and heterokaryosis to determine potential asexual gene exchange in Colletotrichum gloeosporioides. Biol Control 4: 382–389

    Article  Google Scholar 

  • Charudattan R (1991) The mycoherbicide approach with plant pathogens. In: TeBeest DO (ed) Microbial control of weeds. Chapman and Hall, New York, pp 24–57

    Chapter  Google Scholar 

  • Charudattan R, Linda SB, Kluepfel M, Osman YA (1985) Biocontrol efficacy of Cercospora rodmanii on water hyacinth. Phytopathology 75: 1263–1269

    Article  Google Scholar 

  • Charudattan R, Prange VJ, Devalerio JT (1996) Exploration of the use of the “bialaphos genes” for improving bioherbicide efficacy. Weed Technol 2: 625–636

    Google Scholar 

  • Couscns RD (1987) Theory and reality of weed control thresholds. Plant Protect Quart 2: 13–20

    Google Scholar 

  • Cullen JM, Kable PF, Catt M (1973) Epidemic spread of a rust imported for biological control. Nature 244: 462–464

    Article  Google Scholar 

  • Dik AJ (1991) Interactions among fungicides, pathogens. yeasts, and nutrients in the phyllopshere. In: Andrews JH, Hirano SS (cds) Microbial ecology of leaves. Springer, Berlin Heidelberg New York, pp 412–429

    Google Scholar 

  • Emge RG, Melching JS, Kingsolver CH (1981) Epidemiology of Puccinia chondrillia, a rust pathogen for the biological control of rush skeleton weed in the United States. Phytopathology 71: 839–843

    Article  Google Scholar 

  • Gracia-Garza JA, Fravel DR, Bailey BA. Hebbar PK (1998) Dispersal of formulations of Fusarium oxysporum f.sp. erythroxyli and E oxysporum f.sp. melonis by ants. Phytopathology 88:185–189

    Google Scholar 

  • Grant NT, Prusinkiewicz E, Makowski RMD, Holmstrom-Ruddick B. Mortensen K (1990a) Effect of selected pesticides on survival of Colletotrichum gloeosporiaides f. sp. malvae, a bioherbicide for round-leaved mallow (Malva pusilia). Weed Technol 4: 701–715

    CAS  Google Scholar 

  • Grant NT, Prusinkiewicz E, Mortensen K, Makowski RMD (1990b) Herbicide interactions with Colletotrichum gloeosporioides f. sp. malvae, a bioherbicide for round-leaved mallow (Malva pusilla) control. Weed Technol 4: 716–723

    CAS  Google Scholar 

  • Green S, Bourdot GW, Harvey IC (1995) Limitations of in vitro strain screening methods for the selection of Sclerotinia spp. as potential mycoherbicides against the perennial weed Ranunculus acris. Planta Med 5: 147–155

    Google Scholar 

  • Gressel J, Amsellen Z, Warshawsky A, Kampel V, Michaeli D (1996) Biocontrol of weeds: overcoming evolution for efficacy. J Environ Sci Health B31: 399–405

    Article  Google Scholar 

  • Harvey IC, Bourdot GW, Saville DJ, Sands DC (1998) A comparison of auxotrophic and wild strains of Sclerotinia sclerotiorum used as a mycoherbicide against Californian thistle (Cirsiurn arvense). Biocontrol Sci Technol 8: 73–81

    Article  Google Scholar 

  • Hasan S (1981) A new strain of the rust fungus Puccinia chondrillina for biological control of skeleton weed in Australia. Ann Appl Biol 99: 119–124

    Article  Google Scholar 

  • Holmström-Ruddick B, Mortensen K (1995) Factors affecting pathogenicity of a benomyl-resistant strain of Colletotrichum gloeosporioides f. sp. malvae. Mycol Res 99: 1108–1112

    Article  Google Scholar 

  • Jacobs JS, Sheley RL, Maxwell BD (1996) Effect of Sclerotinia sclerotiorum on the interference between blue bunch wheatgrass (Agropyron spicatum) and spotted knapweed (Centaurea maculosa). Weed Technol 10: 13–21

    Google Scholar 

  • Johnston MR, Carsten LD, Douglas LI, Sands DC (1999) Epidemic development and virulence of Puccinia coronata, a potential biocontrol agent for wild oats on San Clemente Island in 1995–1998. Biol Control 17: 250–257

    Article  Google Scholar 

  • Kennedy A (1995) Molecular biology of bacteria and fungi for biological control of weeds. In: Gunasekaran M, Weber DJ (eds) Molecular biology of the biological control of pests and diseases of plants. CRC Press, Boca Raton, FL, pp 155–172

    Google Scholar 

  • Khodayari K, Smith RJ (1988) A mycoherbicide integrated with fungicides in rice, Oryza sativa. Weed Technol 2: 282–285

    CAS  Google Scholar 

  • Kragelund L, Hosbond C, Nybroc O (1997) Distribution of metabolic activity and phosphate starvation response of lux-tagged Pseudomonas fluorescens reporter bacteria in the barley rhizosphere. Appl Environ Microbiol 63: 4920–4928

    CAS  Google Scholar 

  • Kremer RJ, Schulte l.K (1989) Influence of chemical treatment and Fusarium oxysporum on velvetleaf (Abutilon theophrasti). Weed Technol 3: 369–374

    CAS  Google Scholar 

  • Maor R, Puyesky M, Horwitz BA, Sharon A (1998) Use of green fluorescent protein (GFP) for studying development and fungal-plant interaction in Cochlioboius heterostrophus. Mycol Res 102: 491–496

    Article  Google Scholar 

  • Maxwell BD (1992) Weed thresholds: the space component and considerations for herbicide resistance. Weed Technol 6: 205–212

    Google Scholar 

  • Miller RV, Ford EJ, Zidack NJ, Sands DC (1989a) A pyrimidine auxotroph of Sclerotinia sclerotiorum for use in biological weed control. J Gen Microbial 135: 2085–2091

    CAS  Google Scholar 

  • Miller RV, Ford EJ, Sands DC (1989b) A nonsclerotial pathogenic mutant of Sclerotinia sclerotiorum. Can J Microbiol 35: 517–520

    Article  Google Scholar 

  • Murakami T, Anzai H, Imai S, Satoh A, Nagaoka K, Okazaki M (1986) The bialaphos biosynthetic genes of Streptomyces hygroscopicus: molecular cloning and characterization of the gene cluster. Mol Gen 205: 42–50

    Article  CAS  Google Scholar 

  • Paul ND, Ayres PG, Hallett SG (1993) Mycoherbicides and other biocontrol agents for Senecio spp. Pestic Sci 37: 323–329

    Article  Google Scholar 

  • Prasad R (1994) influence of several pesticides and adjuvants on Chondrostereum purpureum — a bioherbicide agent for control of forest weeds. Weed Technol 8: 445–449

    Google Scholar 

  • Riddle GE, Burpee LL, Boland GJ (1991) Virulence of Sclerotinia sclerotiorum and S. minor on dandelion (Taraxacum officinale). Weed Sci 39: 109–118

    Google Scholar 

  • Sands DC, Miller V (1993) Evolving strategies for biological control of weeds with plant pathogens. Pestic Sci 37: 399–403

    Article  Google Scholar 

  • Sharon A, Amsellem Z, Gressel J (1992) Glyphosate suppression of an elicited defense response. Increased susceptibility of Cassia obtusifolia to a mycoherbicide. Plant Physiol 98: 654–659

    Article  CAS  Google Scholar 

  • Smith RJ, Daniel JT, Fox WT, Templeton GE (1973) Distribution in Arkansas of a fungus disease used for biocontrol of northern jointvetch in rice. Plant Dis Rep 57: 695–697

    Google Scholar 

  • Statler GD (1987) Mutation studies with race 1, Puccinia recondita. Can J Plant Pathol 9: 200–204

    Google Scholar 

  • Supkoff DM, Joley DB, Marois JJ (1988) Effect of introduced biological control organisms on the density of Chondrilla juncea in California. J Appl Ecol 25: 1089–1095

    Article  Google Scholar 

  • TeBeest DO (1984) Induction of tolerance to benomyl in Colletotrichum gloeosporioides f. sp. aeschynomene by ethyl methanesulfonate. Phytopathology 74: 864

    Google Scholar 

  • Tiourebaev K (1999) Virulence and dissemination enhancement of a mycoherbicide. PhD Thesis, Montana State University, Bozeman

    Google Scholar 

  • Toyota K, Tsugc T, Kimura M (1992) Potential application of genetic transformants of Fusarium oxysporum f. sp. raphani for assessing fungal autecology. Soil Biol Biochem 24: 489–494

    Article  Google Scholar 

  • Upchurch RG, Meade MJ, Hightower RC, Thomas RS, Callahan TM (1994) Transformation of the fungal soybean pathogen Cercospora kikuchii with the selectable marker bar. Appl Environ Microbiol 60: 4592–4595

    CAS  Google Scholar 

  • Yang XB, TeBeest DO (1992) Green tree frogs as vectors of Colletotrichum gloeosporioides. Plant Dis 76: 1266–1269

    Article  Google Scholar 

  • Yang XB,TeBeest DO (1993) Epidemiological mechanisms of mycoherbicide effectiveness. Phytopathology 83: 891–893

    Google Scholar 

  • Yang XB, TeBeest DO (1995) Competitiveness of mutant and wild-type isolates of Colletotrichum gloeosporioides f. sp. aeschynomene. Phytopathology 885: 705–710

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pilgeram, A.L., Carsten, L.D., Sands, D.C. (2002). Genetic Improvement of Bioherbicides. In: Osiewacz, H.D. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10378-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10378-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07481-3

  • Online ISBN: 978-3-662-10378-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics