Skip to main content

Biosorption of Metals

  • Chapter
Industrial Applications

Part of the book series: The Mycota ((MYCOTA,volume 10))

  • 1143 Accesses

Abstract

There are many interactions between living cells and metals. Essential metals must he taken up by the cells, and they must be stored at their destinations. When the metals are present in the medium in too low a concentration, they must be accumulated. If the ambient metal concentration is too high, even essential metals become toxic and mechanisms of detoxification must ensure survival of the cell. Non-essential metals may enter cells in several ways and cause damage to their metabolism. Therefore, these metals have to be detoxified. All living cells have developed mechanisms by which they take up, store, detoxify or dispose of metals. Surprisingly, some species have been found which are able to concentrate metals to an extent which far exceeds necessary concentrations (Gabriel et al. 1994, 1997; Muraledharand et al. 1995; Pillichshammer et al. 1995; Michelot et al. 1998). Even non-essential metals are concentrated by these organisms to a tremendously high extent. This property has attracted the attention of many researchers looking for cheap ways to concentrate metals from dilute solutions of various origins. This chapter deals with the use of fungal biomass for removal of metals from solution. We refer to the literature since 1990, as the older literature has been reviewed exhaustively by Volesky (1990). It is not the aim of this chapter to give a detailed description of the physicochemical process of sorption, or to discuss in detail the mechanisms by which intracellular metal concentrations are regulated. The physicochemistry of sorption has been discussed extensively by Volesky (1990, 1994), the industrial use of biosorption as well as different types of biosorbents by Volesky and Holan (1995), metal cation uptake by yeast by Blackwell et al. (1995), metal transport in Saccharomyces cerevisiae by Eide (1998), and metal dependent regulation of genes by Winge et al. (1998). More general reviews on the interaction of fungi with toxic metals have been given by Gadd (1993) and Gray (1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akira N, Takashi S (1993) Accumulation of uranium by Basidiomycetes. Appl Microbiol Biotechnol 38: 574–578

    Google Scholar 

  • Aksu Z. Calik A, Dursun AY, Demircan Z (1999) Biosorption of iron(I1I)-cyanide complex anions to Rhizopus arrhizus: application of adsorption isotherms. Process Biochem 34: 483–491

    Google Scholar 

  • Akhtar N, Sastry S, Mohan M (1995) Biosorption of silver anions by processed Aspergillus niger biomass. Biotechnol Lett 17: 551–556

    Article  Google Scholar 

  • Akthar N, Sastry S, Mohan M (1996) Mechanism of metal ion biosorption by fungal biomass. Biometals 9: 21–28

    Article  CAS  Google Scholar 

  • Al-Asheh S, Duvnjak Z (1995) Adsorption of copper and chromium by Aspergillus carbonarius. Biotechnol Prog 11: 638–642

    Article  CAS  Google Scholar 

  • Aloysius R, Karim MIA, Ariff AB (1999) The mechanism of cadmium removal from aqueous solution by non-metabolizing free and immobilized live biomass of Rhizopus oligosporus. World J Microbiol Biotechnol 15: 571–578

    Article  CAS  Google Scholar 

  • Ariff AB, Mel M, Hasan MA, Karin MIA (1999) The kinetics and mechanism of lead (II) biosorption of powderized Rhizopus oligosporus. World J Microbiol Biotechnol 15: 291–298

    Article  Google Scholar 

  • Ashkenazy R, Gottlieb L. Yannai S (1997) Characterisation of acetone-washed yeast biomass functional groups involved in lead biosorption. Biotechnol Bioeng 55: 1–10

    Article  CAS  Google Scholar 

  • Atkinson BW, Bux F, Kasan HC (1998) Considerations for application of biosorption technology to remediate metal-contaminated industrial effluents. Water S Afr (Pretoria) 24: 129–135

    CAS  Google Scholar 

  • Avery SV, Tobin JM (1992) Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Appl Environ Microbiol 58: 3883–3889

    CAS  Google Scholar 

  • Bai RS, Abraham TE (1998) Studies on biosorption of chromium (VI) by dead fungal biomass. J Sci Ind Res 57: 821–824

    CAS  Google Scholar 

  • Bakkaloglu I. Butter Ti, Evinson LM, Holland FS, Hancock IC (1998) Screening of various types biomass for removal and recovery of heavy metals (Zn, Cu. Ni) by biosorption, sedimentation and desorption. Water Sci Technol 38: 269–277

    Google Scholar 

  • Bengtsson L, Johansson B, Hackett TJ, McHale L, McHale AP (1995) Studies on the biosorption of uranium by Talarornyces emersonii CBS814.70 biomass. Appl Microbiol Biotechnol 42: 807–811

    Article  CAS  Google Scholar 

  • Ben Omar N, Larbi Merroun M, Arias Penalver JM, Gonzalez Munoz MT (1997) Comparative heavy metal biosorption study of brewery yeast and Myxococcus xanthus biomass. Chemosphere 35: 2277–2283

    Article  CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (1999) Biosorption of uranium(VI) by Aspergillus furnigatus. Biotech Tech 13: 695–699

    Article  CAS  Google Scholar 

  • Blackwell KJ, Singleton 1, Tobin M (1995) Metal cation uptake by yeast: a review. Appl Microbiol Biotechnol 43: 579–584

    Article  CAS  Google Scholar 

  • Brady D, Duncan JR (1994a) Cation loss during accumulation of heavy metal cations by Saccharomyces cerevisiae. Biotech Lett 16: 543–548

    Article  CAS  Google Scholar 

  • Brady D, Duncan JR (1994b) Binding of heavy metals by the cell walls of Saccharomyces cerevisiae. Enzyme Microb Technol 16: 633–638

    Article  CAS  Google Scholar 

  • Brady D, Duncan JR (1994e) Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 41: 149–154

    Article  CAS  Google Scholar 

  • Brady D, Rose PD, Duncan JR (1994a) The use of hollow fiber cross-flow microfiltration in bioaccumulation and continuous removal of heavy metals from solution by Saccharomyces cerevisiae. Biotechnol Bioeng 44: 1362–1366

    Article  CAS  Google Scholar 

  • Brady D. Stoll AD, Starke L, Duncan JR (1994b) Chemical and enzymatic extraction of heavy metal binding polymers from isolated cell walls of Saccharomyces cerevisiae. Biotechnol Bioeng 44: 297–302

    Article  Google Scholar 

  • Brady JM, Tobin JT, Roux JC (1999) Continuous fixed bed Biosorption of Cu’ ions: application of a simple two parameter mathematical model. J Chem Technol Biotechnol 74: 71–77

    Article  CAS  Google Scholar 

  • Bustard M, McHale AP (1997) Biosorption of uranium by cross-linked and alginate immobilised residual biomass from distillery spent wash. Bioprocess Eng 17: 127–130

    Article  CAS  Google Scholar 

  • Bustard M. McHale AP (1998) Biosorption of heavy metals by distillery-derived biomass. Bioprocess Eng 19: 351–353

    Article  Google Scholar 

  • Bustard M, Donnellan N, Rollan A, McHale AP (1997) Studies on the biosorption of uranium by a thermotolerant, ethanol-producing strain of Kluyveromyces marxianus. Bioprocess Eng 17: 45–50

    CAS  Google Scholar 

  • Bustard M, Rollan A, McHale AP (1998) The effect of pulse voltage and capacitance on biosorption of uranium by biomass derived from whiskey distillery spent wash. Bioprocess Eng 18: 59–62

    Article  CAS  Google Scholar 

  • Castro F, Viedma P, Cotoras D (1992) Biomass of Rhizopus oligosporus as an adsorbent for metal ions. Microbiologica 8: 94–105

    CAS  Google Scholar 

  • Cervantes C, Gutierrez-Corona F (1994) Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev 14: 121–138

    Article  CAS  Google Scholar 

  • Cihangir N, Saglam N (1999) Removal of cadmium by Pleurotus sajor-caju basidiomycetes. Acta Biotech 19: 171–177

    Article  CAS  Google Scholar 

  • Delgado A, Anselmo AM, Novais JM (1998) Heavy metal biosorption by dried powdered mycelium of Fusarium flocciferum. Water Environ Res 70: 370–375

    Article  CAS  Google Scholar 

  • Del Val C, Barea JM, Azcon-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy metal-contaminated soils. Appl Environ Microbiol 65: 718–723

    CAS  Google Scholar 

  • Dey S, Rao PRN, Bhattacharyya BC, Bandyopadhyay M (1997) Sorption of heavy metals by four basidiomycetous fungi. Bioprocess Eng 12: 273–277

    Article  Google Scholar 

  • Dhami PS, Gopalakrishnan V, Kannan R, Ramanujam A, Salvi N (1998) Biosorption of radionuclides by Rhizopus arrhizus. Biotech Lett 20: 225–228

    Article  CAS  Google Scholar 

  • Dhawale SS, Lane AC, Dhawale W (1996) Effects of mercury on the white rot fungus Phanerochaete chrysosporium. Bull Environ Contam Toxicol 56: 825–832

    Article  CAS  Google Scholar 

  • Donnellan N, Rollan A, McHale L, McHale AP (1995) The effect of electric field stimulation on the biosorption of uranium by non-living biomass derived from Kluyveromyces marxianus IMB3. Biotech Lett 17: 439–442

    Article  CAS  Google Scholar 

  • Eide DJ (1998) The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 18: 441–469

    Article  CAS  Google Scholar 

  • Falih AM (1997) Influence of heavy metals toxicity on the growth of Phanerochaete chrysosporium. Bioresource Tech 60: 87–90

    Article  CAS  Google Scholar 

  • Fourest E. Roux JC (1992) Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl Microbiol Biotech 37: 399–403

    Article  Google Scholar 

  • Fourest E. Canal C, Roux JC (1994) Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Mucor miehei and Penicillium chrysogenum): pH control and cationic activation. FEMS Microbiol Rev 14: 325–332

    Google Scholar 

  • Gabriel J, Mokrejs M, Bily J, Rychlovsky P (1994) Accumulation of heavy metals by some wood-rotting fungi. Folia Microbiol 39: 115–118

    Article  CAS  Google Scholar 

  • Gabriel J. Kovronova O, Rychlovsky P, Krenzelok M (1996a) Accumulation and effect of cadmium in the wood-rotting basidiomycete Daedalea quercina. Bull Environ Toxicol 57: 383–390

    Article  Google Scholar 

  • Gabriel J, Vosahlo J, Baldrian P (1996b) Biosorption of cadmium to mycelial pellets of wood-rotting fungi. Biotechnol Tech 10: 345–348

    Article  CAS  Google Scholar 

  • Gabriel J, Baldrian P, Rychlovsky P, Krenzelok M (1997) Heavy metal content in wood-decaying fungi collected in Prague and in the national park Sumava in the Czech republic. Bull Environ Toxicol 59: 595–602

    Article  CAS  Google Scholar 

  • Gadd GM (1993) Tansley review no 47. Interactions of fungi with toxic metals. New Phytol 124: 25–60

    Article  CAS  Google Scholar 

  • Gadd GM, White C (1993) Microbial treatment of metal pollution — a working biotechnology? Trends Biotechnol 11: 353–359

    Article  CAS  Google Scholar 

  • Galli U, Schüepp H, Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Physiol Plant 92: 364–368

    Article  CAS  Google Scholar 

  • Galli U. Schüepp H. Brunold C (1995) Thiols of Cu-treated maize plants inoculated with the arbuscularmycorrhizal fungus Glomus intraradices. Physiol Plant 94: 247–253

    Article  Google Scholar 

  • Glatzl C, Haselwandter K, Katzensteiner K, Sterba H, Weissbacher J (1990) The use of organic and mineral fertilizers in reforestation and in revitalization of declining protective forests in the Alps. Water Air Soil Pollut 54: 567–576

    Google Scholar 

  • Gomes NCM, Linardi VR (1996) Removal of gold, silver and copper by living and nonliving fungi from leach liquor obtained from the gold mining industry. Rev Microbiol 27: 218–222

    CAS  Google Scholar 

  • Gorovoi LF, Kosyakov VN (1996) Cell wall of fungi: optimal structure for biosorption. Biopolymera i Kletka 12: 49–60

    Google Scholar 

  • Gray SN (1998) Fungi as potential bioremediation agents in soil contaminated with heavy or radioactive metals. Biochem Soc Trans 26: 666–670

    CAS  Google Scholar 

  • Guibal E, Roulph C, Le Cloirec P (1995) Infrared spectroscopic study of uranyl biosorption by fungal biomass and materials of biological origin. Environ Sci Technol 29: 2496–2503

    Article  CAS  Google Scholar 

  • Haselwandter K (1995) Soil microorganisms, mycorrhizac and restoration ecology. Restoration ecology and sustainable development. Cambridge Univ Press, Cambridge, pp 65–80

    Google Scholar 

  • Holan ZR, Volesky B (1995) Accumulation of cadmium, lead, and nickel by fungal and wood biosorbents. Appl Biochem Biotechnol 53: 133–146

    Article  CAS  Google Scholar 

  • Huang C, Huang CP (1996) Application of Aspergillus oryzae and Rhizopus oryzae for Cu(II) removal. Water Res 30: 1985–1990

    Article  CAS  Google Scholar 

  • Jentschke G, Marschner P, Vodnik D, Mardi C, Bredemeier M, Rapp C,Eberhard F, Gogala N, Godbold DL (1998) Lead uptake by Picea abies seedlings: effects of nitrogen source and mycorrhizas. J Plant Phys 153:97–104

    Google Scholar 

  • Junghans K, Straube G (1991) Biosorption of copper by yeasts. Biol Met 4: 233–237

    Article  CAS  Google Scholar 

  • Kambe-Honjoh H, Sugarawa A Yoda K, Kitamoto K, Yamasaki M (1997) Isolation and characterization of nickel-accumulating yeasts. Appl Microbiol Biotechnol 48: 373–378

    Article  CAS  Google Scholar 

  • Kapoor A, Viaraghavan T (1997) Heavy metal biosorption sites in Aspergillus niger. Bioresour Technol 61: 221–227

    Article  CAS  Google Scholar 

  • Kapoor A, Viaraghavan T (1998a) Biosorption of heavy metals of Aspergillus niger: effect on pretreatment. Bioresour Technol 63: 109–113

    Article  CAS  Google Scholar 

  • Kapoor A, Viaraghavan T (1998b) Removal of heavy metals from aqueous solutions using immobilised fungal biomass in continuous mode. Water Res 32: 1968–1977

    Article  CAS  Google Scholar 

  • Kapoor A, Viaraghavan T (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol 70: 95–104

    Article  CAS  Google Scholar 

  • Karna RR, Sajani LS, Mohan PM (1996) Bioaccumulation and biosorption of Coe’ by Neurospora crassa. Biotechnol Lett 18: 1205–1208

    Article  CAS  Google Scholar 

  • Korenevskii AA, Khamidova K, Avakyan ZA, Karavaiko GI (1999) Silver biosorption by micromycetes. Microbiology 68: 139–145

    CAS  Google Scholar 

  • Koronclli TV, Yuferova SG, Udel’nova TM, Komerova TI (1999) Binding of Cue’ and Sr’ by the micromycete Mucor dimorphosporus, a degrader of fatty substances. Priki Biochem Microbiol 35: 342–344

    Google Scholar 

  • Krantz-Rülcker C, Frändberg E, Schnürer J (1995) Metal loading and enzymatic degradation of fungal cell walls and chitin. Biometals 8: 12–18

    Article  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorp- tion of heavy metals. Trends Biochem 16: 291–300

    CAS  Google Scholar 

  • Krauter P, Martinelli R. Williams K, Martins S (1996) Removal of Cr(VI) from ground water by Saccharomyces cerevisiae. Biodegradation 7: 277–286

    Article  CAS  Google Scholar 

  • Leyval C,Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonisation and function: physiological, ecological and applied aspects. Mycorrhiza 7: 139–153

    Article  Google Scholar 

  • Li L, Kaplan J (1998) Defects in the yeast high affinity iron transport system result in increased metal sensitivity because of the increased expression of transporters with a broad transition metal specificity. J Biol Chem 273: 22181–22187

    Article  CAS  Google Scholar 

  • Li ZS, Lu YP, Zhen RG, Szcypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar sequestration in Saccharomyces cerevisiae: YCFI-catalysed transport of (bisglutathionato)cadmium. Proc Nall Acad Set USA 94: 42–47

    Article  CAS  Google Scholar 

  • Lovely DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8: 285–289

    Article  Google Scholar 

  • Lilly WW, Wallweber GJ, Lukefahr TA (1992) Cadmium adsorption and its effects on growth and mycelial morphology of the basidiomycete fungus. Schizophyllum commune. Microbios 72: 227–237

    CAS  Google Scholar 

  • Lu Y, Wilkins E (1996) Heavy metal removal by caustic-treated yeast immobilised in alginate. J Hazard Mat 49: 165–179

    Article  CAS  Google Scholar 

  • Lucf E, Prey T, Kubicek CP (1991) Biosorption of zinc by fungal mycelial wastes. Appl Microbiol Biotechnol 34: 688–692

    Article  Google Scholar 

  • Madrid Y, Camara C (1997) Biological substrates for metal preconcentration and speciation. Trends Anal Chem 16: 36–44

    Article  CAS  Google Scholar 

  • Matis KA, Zouboulis AI, Grigoriadou AA, Lazaridis NK, EkateriniadouAA (1996) Metal biosorption-flotation. Application to cadmium removal. Appl Microbiol Biotechnol 45: 569–573

    CAS  Google Scholar 

  • Merrin JS, Sheela R, Saswathi N, Prakasham RS (1998) Biosorption of chromium VI using Rhizopus arrhizus. Ind J Exp Biol 36: 1052–1055

    CAS  Google Scholar 

  • Meyer A, Wallis FM (1997) The use of Aspergillus niger (strain 4) biomass for lead uptake from aqueous systems. Water SA 23: 187–192

    CAS  Google Scholar 

  • Michelot D. Siobud E, Dore JC, Viel C Poirier F (1998) Update on metal content profiles in mushrooms–toxicological implications and tentative approach to the mechanisms of bioaccumulation. Toxicon 36: 1997–2012

    Article  Google Scholar 

  • Mogollon L, Rodriguez R, Larrota W, Ramirez N, Torres R (1998) Biosorption of nickel using filamentous fungi. App] Biochem Biotechnol 70–72: 593–601

    Article  Google Scholar 

  • Mullen MD, Wolf DC, Beveridge TJ, Bailey GW (1992) Sorption of heavy metals by the soil fungi Aspergillus niger and Mucor rouxü. Soil Biol Biochem 24: 129–135

    Article  CAS  Google Scholar 

  • Muraledharand TR, Iyengar L, Venkobachar C (1995) Screening of tropical wood-rotting mushrooms for copper biosorption. Appl Environ Microbiol 61: 3507–3508

    Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51: 730–750

    Article  CAS  Google Scholar 

  • Niu H, Xu XS, Wang JH (1993) Removal of lead from aqueous solutions by Penicillium biomass. Biotechnol Bioeng 42: 785–787

    Article  CAS  Google Scholar 

  • Omar NB, Merroun MI., Gonzalez-Munoz MT, Arias JM (1996) Brewery yeast as a biosorbent for uranium. J Appl Bacteriol 81: 283–287

    Article  CAS  Google Scholar 

  • Ono BI, Ohue H, Ishihara F (1988) Role of cell wall in Saccharomyces cerevisiae mutants resistant to Hg’. J Bacteriol 170: 5877–5882

    CAS  Google Scholar 

  • Pena MMO, Koch KA, Thiele DJ (1998) Dynamic regulalion of copper uptake and detoxification genes in Saccharomyces cerevisiae. Mol Cell Biol 18: 2514–2523

    CAS  Google Scholar 

  • Perez-Corona T, Madrid Y. Camara C (1997) Evaluation of selective uptake of selenium [Se(IV) and Se(VI)] and antimony [Sb(III) and Sb(V)] species by baker’s yeast cells (Saccharomyces cerevisiae). Analyt Chim Acta 345: 249–255

    Article  CAS  Google Scholar 

  • Pillichshammer M, Pümpel T, Pöder R, Eller K, Klima J, Schinner F (1995) Biosorption of chromium to fungi. BioMetals 8: 117–121

    CAS  Google Scholar 

  • Plaza G, Lukasik W, Ulfig K (1996) Sorption of cadmium by filamentous soil fungi. Acta Microbiol Pol 45: 193–201

    CAS  Google Scholar 

  • Prakasham RS, Merrie JS, Sheela R, Saswathi N, Ramakrishna SV (1999) Biosorption of chromium VI by free and immobilised Rhizopus arrhizus. Environ Pollut 104: 421–427

    Article  CAS  Google Scholar 

  • Puranik PR, Paknikar KM (1997) Biosorption of lead and zinc from solutions using Streptoverticillium cinnamoneum waste biomass. J Biotechnol 55: 113–124

    Article  CAS  Google Scholar 

  • Rama Rao VSKV, Wilson CH, Mohan PM (1997) Zinc resistance in Neurospora crassa. BioMetals 10: 147–156

    Article  Google Scholar 

  • Ricken B, Hoefner W (1996) Effect of arbuscular mycorrhizal fungi (AMF) on heavy metal tolerance of alfalfa (Medicago saliva L.) and oat (Avena sativa L.) on a sewage-sludge treated soil. Z Pflanzenernähr Bodenkd 159: 189–194

    Article  CAS  Google Scholar 

  • Riordan C. McHale AP (1998) Removal of lead from solution using non-living residual brewery yeast. Bioprocess Eng 19: 277–280

    Article  Google Scholar 

  • Riordan C, Bustard M, Putt R, McHale AP (1997) Removal of uranium from solution using residual brewery yeast: combined biosorption and precipitation. Biotechnol Lett 19: 385–387

    Article  CAS  Google Scholar 

  • Rizzo DM, Blanchette RA, Palmer MA (1992) Biosorption of metal ions by Armillaria rhizomorphs. Can J Bot 70: 1515–1520

    Article  CAS  Google Scholar 

  • Sag Y, Acikel U. Akzu Z, Kutsal T (1998a) Competitive biosorption of chromium(VI), iron(III) and copper(II) ions from binary metal mixtures by R. arrhizus and C. vulgaris. Turkish J Eng Environ Sci 22: 145–154

    CAS  Google Scholar 

  • Sag Y, Kaya A, Kutsal T (1998b) The simultaneous biosorption of Cu(II) and Zn on Rhizopus arrhizus: application of the adsorption models. Hydrometallurgy 51: 297–314

    Article  Google Scholar 

  • Saglam N. Say R, Denizli A, Patir S, Arica MY (1999) Biosorption of inorganic mercury and alkylmercury species onto Phanerochaete chrysosporium mycelium. Process Biochem 34: 725–730

    Google Scholar 

  • Sajani LS, Mohan PM (1997) Characterisation of a cobalt-resistant mutant of Neurospora crassa with transport block. BioMetals 10: 175–184

    CAS  Google Scholar 

  • Sajani LS, Mohan PM (1998) Cobalt resistance in Neurospora crassa: overproduction of a cobalt protein in a resistant strain. BioMetals 11: 33–40

    Article  CAS  Google Scholar 

  • Sanna G, Maddau L, Franceschini A, Melis P (1997) Bioaccumulation and biosorption of heavy metals by Trichoderma viride. Micol 26: 63–72

    Google Scholar 

  • Sarret G. Manceau A, Spadini L, Roux JC, Hazemann JL, Soldo Y, Eybert-Berard L, Menthonnex JJ (1999) Structural determination of Pb binding sites in Peniediti m chrysogenum cell walls by EXAFS spectroscopy and solution chemistry. J Synchrotron Radiat 6: 414–416

    Google Scholar 

  • Satofuka H, Amano S, Atomi H, Takagi M, Hirata K, Miyamoto K, Imanaka T (1999) Rapid method for detection and detoxification of heavy metal ions in water environments using phytochelatin. J Biosci Bioeng 88: 287–292

    Article  CAS  Google Scholar 

  • Sayer JA, Kierans M, Gadd GM (1997) Solubilisation of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger. FEMS Microbiol Lett 154: 29–35

    Article  CAS  Google Scholar 

  • Shetty KG. Hetrick BAD, Figge DAH, Schwab AP (1994) Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environ Pollution 86: 181–188

    Article  Google Scholar 

  • Simmons P, Singleton I (1996) A method to increase silver biosorption by an industrial strain of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 45: 278–285

    Article  CAS  Google Scholar 

  • Simmons P. Tobin JM, Singleton 1 (1995) Considerations on the use of commercially available yeast biomass for the treatment of metal-containing effluents.1 Ind Microbiol 14: 240–246

    Article  Google Scholar 

  • Sing C, Yu J (1998) Copper adsorption and removal from water by living mycelium of white-rot fungus Phonerochaete chrysosporium. Water Res 32: 2746–2752

    Article  CAS  Google Scholar 

  • Stoll A, Duncan JR (1997) Implementation of a continuous-flow stirred bioreactor system in the bioremediation of heavy metals from industrial waste water. Environ Pollution 97: 247–251

    Article  CAS  Google Scholar 

  • Suh JH, Yun JW, Kim DS (1999a) Effect of pH on Pb2 accumulation in Saccharomyces cerevisiae and Aureobasidium pullulans. Bioprocess Eng 20: 471–474

    CAS  Google Scholar 

  • Suh JH, Yuri JW, Kim DS (1999b) Effect of extracellular polymeric substances (EPS) on Pb2 accumulation by Aureobasidium pullulans. Bioprocess Eng 21: 1–4

    CAS  Google Scholar 

  • Tam PCF (1995) Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5: 181–187

    Article  CAS  Google Scholar 

  • Tobin JM, Roux JC (1998) Mucor biosorbent for chromium removal from tanning effluent. Water Res 32: 1407–1416

    Article  CAS  Google Scholar 

  • Tsezos M, Georgousis Z, Remoudaki E (1997) Mechanism of aluminium interference on uranium biosorption by Rhizopus arrhizus. Biotechnol Bioeng 55: 16–27

    Article  CAS  Google Scholar 

  • Volesky B (1990) Biosorption by fungal biomass. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 139–172

    Google Scholar 

  • Volesky B (1994) Advances in biosorption of metals: selection of biomass types. FEMS Microbiol Rev 14: 291–302

    Article  CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11: 235–250

    Article  CAS  Google Scholar 

  • Volesky B, May-Phillips HA (1995) Biosorption of heavy metals by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42: 797–806

    Article  CAS  Google Scholar 

  • Volesky B, May H, Holan ZR (1992) Cadmium biosorption by Saccharomyces cerevisiae. Biotechnol Bioeng 41: 826–829

    Article  Google Scholar 

  • Wales DS, Sagar BF (1990) Recovery of metal ions by microfungal filters. J Chem Technol Biotechnol 49: 345–355

    Article  CAS  Google Scholar 

  • Wemmie JA, Szczypka MS, Thiele DJ, Moye-Rowley SM (1994) Cadmium tolerance mediated by the yeast AP-1 protein requires the presence of an ATP-binding cassette transporter-encoding gene, YCF1. J Biol Chem 269: 32592–32597

    CAS  Google Scholar 

  • White C, Gadd GM (1990) Biosorption of radionuclides by fungal biomass. J Chem Technol Biotechnol 49: 331–343

    Article  CAS  Google Scholar 

  • Whiteside SG, Plocke D (1992) Selection and characterisation of a copper-resistant subpopulation of Schizosaccharomyces pombe. J Gen Microbiol 138: 2417–2423

    Article  CAS  Google Scholar 

  • Wilhelmi BS, Duncan JR (1995) Metal recovery from Saccharomyces cerevisiae biosorption columns. Biotechnol Lett 17: 1007–1012

    Article  CAS  Google Scholar 

  • Winge DR, Jensen LT, Srinivasan C (1998) Metal-ion regulation of gene expression in yeast. Curr Opin Chem Biol 2: 216–221

    Article  CAS  Google Scholar 

  • Wunderlich C, Zhao Q. Zimmermann M, Wolf K (1995) Physiological characterization of a cadmium-resistant mutant in the fission yeast Schizosaccharomyces pombe. Microbiol Res 150: 233–237

    CAS  Google Scholar 

  • Yazgan A, Ozcengiz G (1994) Subcellular distribution of accumulated heavy metals in Saccharomyces cerevisiae and Kluyveromyces marxianus. Biotechnol Lett 16: 871–874

    Article  CAS  Google Scholar 

  • Yetis U, Ozcengiz G, Dilek FB, Ergen N, Dolek A (1998) Heavy metal biosorption by white-rot fungi. Water Sci Technol 38: 323–330

    CAS  Google Scholar 

  • Yin PH, Yu QM, Jin B, Ling Z (1999) Biosorption removal of cadmium from aqueous solution by using pretreated fungal biomass cultured from starch wastewater. Water Res 33: 1960–1963

    Article  CAS  Google Scholar 

  • Zhao M, Duncan JR (1997) Use of formaldehyde cross-linked Saccharomyces cerevisiae in column bioreactors for removal of metals from aqueous solutions. Biotech Lett 19: 953–955

    Article  CAS  Google Scholar 

  • Zhou JL (1999) Zn biosorption by Rhizopus arrhizus and other fungi. Appl Microbiol Biotechnol 51: 686–693

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zimmermann, M., Wolf, K. (2002). Biosorption of Metals. In: Osiewacz, H.D. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10378-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10378-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07481-3

  • Online ISBN: 978-3-662-10378-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics