Advertisement

Biosorption of Metals

  • M. Zimmermann
  • K. Wolf
Part of the The Mycota book series (MYCOTA, volume 10)

Abstract

There are many interactions between living cells and metals. Essential metals must he taken up by the cells, and they must be stored at their destinations. When the metals are present in the medium in too low a concentration, they must be accumulated. If the ambient metal concentration is too high, even essential metals become toxic and mechanisms of detoxification must ensure survival of the cell. Non-essential metals may enter cells in several ways and cause damage to their metabolism. Therefore, these metals have to be detoxified. All living cells have developed mechanisms by which they take up, store, detoxify or dispose of metals. Surprisingly, some species have been found which are able to concentrate metals to an extent which far exceeds necessary concentrations (Gabriel et al. 1994, 1997; Muraledharand et al. 1995; Pillichshammer et al. 1995; Michelot et al. 1998). Even non-essential metals are concentrated by these organisms to a tremendously high extent. This property has attracted the attention of many researchers looking for cheap ways to concentrate metals from dilute solutions of various origins. This chapter deals with the use of fungal biomass for removal of metals from solution. We refer to the literature since 1990, as the older literature has been reviewed exhaustively by Volesky (1990). It is not the aim of this chapter to give a detailed description of the physicochemical process of sorption, or to discuss in detail the mechanisms by which intracellular metal concentrations are regulated. The physicochemistry of sorption has been discussed extensively by Volesky (1990, 1994), the industrial use of biosorption as well as different types of biosorbents by Volesky and Holan (1995), metal cation uptake by yeast by Blackwell et al. (1995), metal transport in Saccharomyces cerevisiae by Eide (1998), and metal dependent regulation of genes by Winge et al. (1998). More general reviews on the interaction of fungi with toxic metals have been given by Gadd (1993) and Gray (1998).

Keywords

Heavy Metal Aspergillus Niger Mycorrhizal Fungus Fungal Biomass Neurospora Crassa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akira N, Takashi S (1993) Accumulation of uranium by Basidiomycetes. Appl Microbiol Biotechnol 38: 574–578Google Scholar
  2. Aksu Z. Calik A, Dursun AY, Demircan Z (1999) Biosorption of iron(I1I)-cyanide complex anions to Rhizopus arrhizus: application of adsorption isotherms. Process Biochem 34: 483–491Google Scholar
  3. Akhtar N, Sastry S, Mohan M (1995) Biosorption of silver anions by processed Aspergillus niger biomass. Biotechnol Lett 17: 551–556CrossRefGoogle Scholar
  4. Akthar N, Sastry S, Mohan M (1996) Mechanism of metal ion biosorption by fungal biomass. Biometals 9: 21–28CrossRefGoogle Scholar
  5. Al-Asheh S, Duvnjak Z (1995) Adsorption of copper and chromium by Aspergillus carbonarius. Biotechnol Prog 11: 638–642CrossRefGoogle Scholar
  6. Aloysius R, Karim MIA, Ariff AB (1999) The mechanism of cadmium removal from aqueous solution by non-metabolizing free and immobilized live biomass of Rhizopus oligosporus. World J Microbiol Biotechnol 15: 571–578CrossRefGoogle Scholar
  7. Ariff AB, Mel M, Hasan MA, Karin MIA (1999) The kinetics and mechanism of lead (II) biosorption of powderized Rhizopus oligosporus. World J Microbiol Biotechnol 15: 291–298CrossRefGoogle Scholar
  8. Ashkenazy R, Gottlieb L. Yannai S (1997) Characterisation of acetone-washed yeast biomass functional groups involved in lead biosorption. Biotechnol Bioeng 55: 1–10CrossRefGoogle Scholar
  9. Atkinson BW, Bux F, Kasan HC (1998) Considerations for application of biosorption technology to remediate metal-contaminated industrial effluents. Water S Afr (Pretoria) 24: 129–135Google Scholar
  10. Avery SV, Tobin JM (1992) Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Appl Environ Microbiol 58: 3883–3889Google Scholar
  11. Bai RS, Abraham TE (1998) Studies on biosorption of chromium (VI) by dead fungal biomass. J Sci Ind Res 57: 821–824Google Scholar
  12. Bakkaloglu I. Butter Ti, Evinson LM, Holland FS, Hancock IC (1998) Screening of various types biomass for removal and recovery of heavy metals (Zn, Cu. Ni) by biosorption, sedimentation and desorption. Water Sci Technol 38: 269–277Google Scholar
  13. Bengtsson L, Johansson B, Hackett TJ, McHale L, McHale AP (1995) Studies on the biosorption of uranium by Talarornyces emersonii CBS814.70 biomass. Appl Microbiol Biotechnol 42: 807–811CrossRefGoogle Scholar
  14. Ben Omar N, Larbi Merroun M, Arias Penalver JM, Gonzalez Munoz MT (1997) Comparative heavy metal biosorption study of brewery yeast and Myxococcus xanthus biomass. Chemosphere 35: 2277–2283CrossRefGoogle Scholar
  15. Bhainsa KC, D’Souza SF (1999) Biosorption of uranium(VI) by Aspergillus furnigatus. Biotech Tech 13: 695–699CrossRefGoogle Scholar
  16. Blackwell KJ, Singleton 1, Tobin M (1995) Metal cation uptake by yeast: a review. Appl Microbiol Biotechnol 43: 579–584CrossRefGoogle Scholar
  17. Brady D, Duncan JR (1994a) Cation loss during accumulation of heavy metal cations by Saccharomyces cerevisiae. Biotech Lett 16: 543–548CrossRefGoogle Scholar
  18. Brady D, Duncan JR (1994b) Binding of heavy metals by the cell walls of Saccharomyces cerevisiae. Enzyme Microb Technol 16: 633–638CrossRefGoogle Scholar
  19. Brady D, Duncan JR (1994e) Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 41: 149–154CrossRefGoogle Scholar
  20. Brady D, Rose PD, Duncan JR (1994a) The use of hollow fiber cross-flow microfiltration in bioaccumulation and continuous removal of heavy metals from solution by Saccharomyces cerevisiae. Biotechnol Bioeng 44: 1362–1366CrossRefGoogle Scholar
  21. Brady D. Stoll AD, Starke L, Duncan JR (1994b) Chemical and enzymatic extraction of heavy metal binding polymers from isolated cell walls of Saccharomyces cerevisiae. Biotechnol Bioeng 44: 297–302CrossRefGoogle Scholar
  22. Brady JM, Tobin JT, Roux JC (1999) Continuous fixed bed Biosorption of Cu’ ions: application of a simple two parameter mathematical model. J Chem Technol Biotechnol 74: 71–77CrossRefGoogle Scholar
  23. Bustard M, McHale AP (1997) Biosorption of uranium by cross-linked and alginate immobilised residual biomass from distillery spent wash. Bioprocess Eng 17: 127–130CrossRefGoogle Scholar
  24. Bustard M. McHale AP (1998) Biosorption of heavy metals by distillery-derived biomass. Bioprocess Eng 19: 351–353CrossRefGoogle Scholar
  25. Bustard M, Donnellan N, Rollan A, McHale AP (1997) Studies on the biosorption of uranium by a thermotolerant, ethanol-producing strain of Kluyveromyces marxianus. Bioprocess Eng 17: 45–50Google Scholar
  26. Bustard M, Rollan A, McHale AP (1998) The effect of pulse voltage and capacitance on biosorption of uranium by biomass derived from whiskey distillery spent wash. Bioprocess Eng 18: 59–62CrossRefGoogle Scholar
  27. Castro F, Viedma P, Cotoras D (1992) Biomass of Rhizopus oligosporus as an adsorbent for metal ions. Microbiologica 8: 94–105Google Scholar
  28. Cervantes C, Gutierrez-Corona F (1994) Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev 14: 121–138CrossRefGoogle Scholar
  29. Cihangir N, Saglam N (1999) Removal of cadmium by Pleurotus sajor-caju basidiomycetes. Acta Biotech 19: 171–177CrossRefGoogle Scholar
  30. Delgado A, Anselmo AM, Novais JM (1998) Heavy metal biosorption by dried powdered mycelium of Fusarium flocciferum. Water Environ Res 70: 370–375CrossRefGoogle Scholar
  31. Del Val C, Barea JM, Azcon-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy metal-contaminated soils. Appl Environ Microbiol 65: 718–723Google Scholar
  32. Dey S, Rao PRN, Bhattacharyya BC, Bandyopadhyay M (1997) Sorption of heavy metals by four basidiomycetous fungi. Bioprocess Eng 12: 273–277CrossRefGoogle Scholar
  33. Dhami PS, Gopalakrishnan V, Kannan R, Ramanujam A, Salvi N (1998) Biosorption of radionuclides by Rhizopus arrhizus. Biotech Lett 20: 225–228CrossRefGoogle Scholar
  34. Dhawale SS, Lane AC, Dhawale W (1996) Effects of mercury on the white rot fungus Phanerochaete chrysosporium. Bull Environ Contam Toxicol 56: 825–832CrossRefGoogle Scholar
  35. Donnellan N, Rollan A, McHale L, McHale AP (1995) The effect of electric field stimulation on the biosorption of uranium by non-living biomass derived from Kluyveromyces marxianus IMB3. Biotech Lett 17: 439–442CrossRefGoogle Scholar
  36. Eide DJ (1998) The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 18: 441–469CrossRefGoogle Scholar
  37. Falih AM (1997) Influence of heavy metals toxicity on the growth of Phanerochaete chrysosporium. Bioresource Tech 60: 87–90CrossRefGoogle Scholar
  38. Fourest E. Roux JC (1992) Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl Microbiol Biotech 37: 399–403CrossRefGoogle Scholar
  39. Fourest E. Canal C, Roux JC (1994) Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Mucor miehei and Penicillium chrysogenum): pH control and cationic activation. FEMS Microbiol Rev 14: 325–332Google Scholar
  40. Gabriel J, Mokrejs M, Bily J, Rychlovsky P (1994) Accumulation of heavy metals by some wood-rotting fungi. Folia Microbiol 39: 115–118CrossRefGoogle Scholar
  41. Gabriel J. Kovronova O, Rychlovsky P, Krenzelok M (1996a) Accumulation and effect of cadmium in the wood-rotting basidiomycete Daedalea quercina. Bull Environ Toxicol 57: 383–390CrossRefGoogle Scholar
  42. Gabriel J, Vosahlo J, Baldrian P (1996b) Biosorption of cadmium to mycelial pellets of wood-rotting fungi. Biotechnol Tech 10: 345–348CrossRefGoogle Scholar
  43. Gabriel J, Baldrian P, Rychlovsky P, Krenzelok M (1997) Heavy metal content in wood-decaying fungi collected in Prague and in the national park Sumava in the Czech republic. Bull Environ Toxicol 59: 595–602CrossRefGoogle Scholar
  44. Gadd GM (1993) Tansley review no 47. Interactions of fungi with toxic metals. New Phytol 124: 25–60CrossRefGoogle Scholar
  45. Gadd GM, White C (1993) Microbial treatment of metal pollution — a working biotechnology? Trends Biotechnol 11: 353–359CrossRefGoogle Scholar
  46. Galli U, Schüepp H, Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Physiol Plant 92: 364–368CrossRefGoogle Scholar
  47. Galli U. Schüepp H. Brunold C (1995) Thiols of Cu-treated maize plants inoculated with the arbuscularmycorrhizal fungus Glomus intraradices. Physiol Plant 94: 247–253CrossRefGoogle Scholar
  48. Glatzl C, Haselwandter K, Katzensteiner K, Sterba H, Weissbacher J (1990) The use of organic and mineral fertilizers in reforestation and in revitalization of declining protective forests in the Alps. Water Air Soil Pollut 54: 567–576Google Scholar
  49. Gomes NCM, Linardi VR (1996) Removal of gold, silver and copper by living and nonliving fungi from leach liquor obtained from the gold mining industry. Rev Microbiol 27: 218–222Google Scholar
  50. Gorovoi LF, Kosyakov VN (1996) Cell wall of fungi: optimal structure for biosorption. Biopolymera i Kletka 12: 49–60Google Scholar
  51. Gray SN (1998) Fungi as potential bioremediation agents in soil contaminated with heavy or radioactive metals. Biochem Soc Trans 26: 666–670Google Scholar
  52. Guibal E, Roulph C, Le Cloirec P (1995) Infrared spectroscopic study of uranyl biosorption by fungal biomass and materials of biological origin. Environ Sci Technol 29: 2496–2503CrossRefGoogle Scholar
  53. Haselwandter K (1995) Soil microorganisms, mycorrhizac and restoration ecology. Restoration ecology and sustainable development. Cambridge Univ Press, Cambridge, pp 65–80Google Scholar
  54. Holan ZR, Volesky B (1995) Accumulation of cadmium, lead, and nickel by fungal and wood biosorbents. Appl Biochem Biotechnol 53: 133–146CrossRefGoogle Scholar
  55. Huang C, Huang CP (1996) Application of Aspergillus oryzae and Rhizopus oryzae for Cu(II) removal. Water Res 30: 1985–1990CrossRefGoogle Scholar
  56. Jentschke G, Marschner P, Vodnik D, Mardi C, Bredemeier M, Rapp C,Eberhard F, Gogala N, Godbold DL (1998) Lead uptake by Picea abies seedlings: effects of nitrogen source and mycorrhizas. J Plant Phys 153:97–104Google Scholar
  57. Junghans K, Straube G (1991) Biosorption of copper by yeasts. Biol Met 4: 233–237CrossRefGoogle Scholar
  58. Kambe-Honjoh H, Sugarawa A Yoda K, Kitamoto K, Yamasaki M (1997) Isolation and characterization of nickel-accumulating yeasts. Appl Microbiol Biotechnol 48: 373–378CrossRefGoogle Scholar
  59. Kapoor A, Viaraghavan T (1997) Heavy metal biosorption sites in Aspergillus niger. Bioresour Technol 61: 221–227CrossRefGoogle Scholar
  60. Kapoor A, Viaraghavan T (1998a) Biosorption of heavy metals of Aspergillus niger: effect on pretreatment. Bioresour Technol 63: 109–113CrossRefGoogle Scholar
  61. Kapoor A, Viaraghavan T (1998b) Removal of heavy metals from aqueous solutions using immobilised fungal biomass in continuous mode. Water Res 32: 1968–1977CrossRefGoogle Scholar
  62. Kapoor A, Viaraghavan T (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol 70: 95–104CrossRefGoogle Scholar
  63. Karna RR, Sajani LS, Mohan PM (1996) Bioaccumulation and biosorption of Coe’ by Neurospora crassa. Biotechnol Lett 18: 1205–1208CrossRefGoogle Scholar
  64. Korenevskii AA, Khamidova K, Avakyan ZA, Karavaiko GI (1999) Silver biosorption by micromycetes. Microbiology 68: 139–145Google Scholar
  65. Koronclli TV, Yuferova SG, Udel’nova TM, Komerova TI (1999) Binding of Cue’ and Sr’ by the micromycete Mucor dimorphosporus, a degrader of fatty substances. Priki Biochem Microbiol 35: 342–344Google Scholar
  66. Krantz-Rülcker C, Frändberg E, Schnürer J (1995) Metal loading and enzymatic degradation of fungal cell walls and chitin. Biometals 8: 12–18CrossRefGoogle Scholar
  67. Kratochvil D, Volesky B (1998) Advances in the biosorp- tion of heavy metals. Trends Biochem 16: 291–300Google Scholar
  68. Krauter P, Martinelli R. Williams K, Martins S (1996) Removal of Cr(VI) from ground water by Saccharomyces cerevisiae. Biodegradation 7: 277–286CrossRefGoogle Scholar
  69. Leyval C,Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonisation and function: physiological, ecological and applied aspects. Mycorrhiza 7: 139–153CrossRefGoogle Scholar
  70. Li L, Kaplan J (1998) Defects in the yeast high affinity iron transport system result in increased metal sensitivity because of the increased expression of transporters with a broad transition metal specificity. J Biol Chem 273: 22181–22187CrossRefGoogle Scholar
  71. Li ZS, Lu YP, Zhen RG, Szcypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar sequestration in Saccharomyces cerevisiae: YCFI-catalysed transport of (bisglutathionato)cadmium. Proc Nall Acad Set USA 94: 42–47CrossRefGoogle Scholar
  72. Lovely DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8: 285–289CrossRefGoogle Scholar
  73. Lilly WW, Wallweber GJ, Lukefahr TA (1992) Cadmium adsorption and its effects on growth and mycelial morphology of the basidiomycete fungus. Schizophyllum commune. Microbios 72: 227–237Google Scholar
  74. Lu Y, Wilkins E (1996) Heavy metal removal by caustic-treated yeast immobilised in alginate. J Hazard Mat 49: 165–179CrossRefGoogle Scholar
  75. Lucf E, Prey T, Kubicek CP (1991) Biosorption of zinc by fungal mycelial wastes. Appl Microbiol Biotechnol 34: 688–692CrossRefGoogle Scholar
  76. Madrid Y, Camara C (1997) Biological substrates for metal preconcentration and speciation. Trends Anal Chem 16: 36–44CrossRefGoogle Scholar
  77. Matis KA, Zouboulis AI, Grigoriadou AA, Lazaridis NK, EkateriniadouAA (1996) Metal biosorption-flotation. Application to cadmium removal. Appl Microbiol Biotechnol 45: 569–573Google Scholar
  78. Merrin JS, Sheela R, Saswathi N, Prakasham RS (1998) Biosorption of chromium VI using Rhizopus arrhizus. Ind J Exp Biol 36: 1052–1055Google Scholar
  79. Meyer A, Wallis FM (1997) The use of Aspergillus niger (strain 4) biomass for lead uptake from aqueous systems. Water SA 23: 187–192Google Scholar
  80. Michelot D. Siobud E, Dore JC, Viel C Poirier F (1998) Update on metal content profiles in mushrooms–toxicological implications and tentative approach to the mechanisms of bioaccumulation. Toxicon 36: 1997–2012CrossRefGoogle Scholar
  81. Mogollon L, Rodriguez R, Larrota W, Ramirez N, Torres R (1998) Biosorption of nickel using filamentous fungi. App] Biochem Biotechnol 70–72: 593–601CrossRefGoogle Scholar
  82. Mullen MD, Wolf DC, Beveridge TJ, Bailey GW (1992) Sorption of heavy metals by the soil fungi Aspergillus niger and Mucor rouxü. Soil Biol Biochem 24: 129–135CrossRefGoogle Scholar
  83. Muraledharand TR, Iyengar L, Venkobachar C (1995) Screening of tropical wood-rotting mushrooms for copper biosorption. Appl Environ Microbiol 61: 3507–3508Google Scholar
  84. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51: 730–750CrossRefGoogle Scholar
  85. Niu H, Xu XS, Wang JH (1993) Removal of lead from aqueous solutions by Penicillium biomass. Biotechnol Bioeng 42: 785–787CrossRefGoogle Scholar
  86. Omar NB, Merroun MI., Gonzalez-Munoz MT, Arias JM (1996) Brewery yeast as a biosorbent for uranium. J Appl Bacteriol 81: 283–287CrossRefGoogle Scholar
  87. Ono BI, Ohue H, Ishihara F (1988) Role of cell wall in Saccharomyces cerevisiae mutants resistant to Hg’. J Bacteriol 170: 5877–5882Google Scholar
  88. Pena MMO, Koch KA, Thiele DJ (1998) Dynamic regulalion of copper uptake and detoxification genes in Saccharomyces cerevisiae. Mol Cell Biol 18: 2514–2523Google Scholar
  89. Perez-Corona T, Madrid Y. Camara C (1997) Evaluation of selective uptake of selenium [Se(IV) and Se(VI)] and antimony [Sb(III) and Sb(V)] species by baker’s yeast cells (Saccharomyces cerevisiae). Analyt Chim Acta 345: 249–255CrossRefGoogle Scholar
  90. Pillichshammer M, Pümpel T, Pöder R, Eller K, Klima J, Schinner F (1995) Biosorption of chromium to fungi. BioMetals 8: 117–121Google Scholar
  91. Plaza G, Lukasik W, Ulfig K (1996) Sorption of cadmium by filamentous soil fungi. Acta Microbiol Pol 45: 193–201Google Scholar
  92. Prakasham RS, Merrie JS, Sheela R, Saswathi N, Ramakrishna SV (1999) Biosorption of chromium VI by free and immobilised Rhizopus arrhizus. Environ Pollut 104: 421–427CrossRefGoogle Scholar
  93. Puranik PR, Paknikar KM (1997) Biosorption of lead and zinc from solutions using Streptoverticillium cinnamoneum waste biomass. J Biotechnol 55: 113–124CrossRefGoogle Scholar
  94. Rama Rao VSKV, Wilson CH, Mohan PM (1997) Zinc resistance in Neurospora crassa. BioMetals 10: 147–156CrossRefGoogle Scholar
  95. Ricken B, Hoefner W (1996) Effect of arbuscular mycorrhizal fungi (AMF) on heavy metal tolerance of alfalfa (Medicago saliva L.) and oat (Avena sativa L.) on a sewage-sludge treated soil. Z Pflanzenernähr Bodenkd 159: 189–194CrossRefGoogle Scholar
  96. Riordan C. McHale AP (1998) Removal of lead from solution using non-living residual brewery yeast. Bioprocess Eng 19: 277–280CrossRefGoogle Scholar
  97. Riordan C, Bustard M, Putt R, McHale AP (1997) Removal of uranium from solution using residual brewery yeast: combined biosorption and precipitation. Biotechnol Lett 19: 385–387CrossRefGoogle Scholar
  98. Rizzo DM, Blanchette RA, Palmer MA (1992) Biosorption of metal ions by Armillaria rhizomorphs. Can J Bot 70: 1515–1520CrossRefGoogle Scholar
  99. Sag Y, Acikel U. Akzu Z, Kutsal T (1998a) Competitive biosorption of chromium(VI), iron(III) and copper(II) ions from binary metal mixtures by R. arrhizus and C. vulgaris. Turkish J Eng Environ Sci 22: 145–154Google Scholar
  100. Sag Y, Kaya A, Kutsal T (1998b) The simultaneous biosorption of Cu(II) and Zn on Rhizopus arrhizus: application of the adsorption models. Hydrometallurgy 51: 297–314CrossRefGoogle Scholar
  101. Saglam N. Say R, Denizli A, Patir S, Arica MY (1999) Biosorption of inorganic mercury and alkylmercury species onto Phanerochaete chrysosporium mycelium. Process Biochem 34: 725–730Google Scholar
  102. Sajani LS, Mohan PM (1997) Characterisation of a cobalt-resistant mutant of Neurospora crassa with transport block. BioMetals 10: 175–184Google Scholar
  103. Sajani LS, Mohan PM (1998) Cobalt resistance in Neurospora crassa: overproduction of a cobalt protein in a resistant strain. BioMetals 11: 33–40CrossRefGoogle Scholar
  104. Sanna G, Maddau L, Franceschini A, Melis P (1997) Bioaccumulation and biosorption of heavy metals by Trichoderma viride. Micol 26: 63–72Google Scholar
  105. Sarret G. Manceau A, Spadini L, Roux JC, Hazemann JL, Soldo Y, Eybert-Berard L, Menthonnex JJ (1999) Structural determination of Pb binding sites in Peniediti m chrysogenum cell walls by EXAFS spectroscopy and solution chemistry. J Synchrotron Radiat 6: 414–416Google Scholar
  106. Satofuka H, Amano S, Atomi H, Takagi M, Hirata K, Miyamoto K, Imanaka T (1999) Rapid method for detection and detoxification of heavy metal ions in water environments using phytochelatin. J Biosci Bioeng 88: 287–292CrossRefGoogle Scholar
  107. Sayer JA, Kierans M, Gadd GM (1997) Solubilisation of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger. FEMS Microbiol Lett 154: 29–35CrossRefGoogle Scholar
  108. Shetty KG. Hetrick BAD, Figge DAH, Schwab AP (1994) Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environ Pollution 86: 181–188CrossRefGoogle Scholar
  109. Simmons P, Singleton I (1996) A method to increase silver biosorption by an industrial strain of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 45: 278–285CrossRefGoogle Scholar
  110. Simmons P. Tobin JM, Singleton 1 (1995) Considerations on the use of commercially available yeast biomass for the treatment of metal-containing effluents.1 Ind Microbiol 14: 240–246CrossRefGoogle Scholar
  111. Sing C, Yu J (1998) Copper adsorption and removal from water by living mycelium of white-rot fungus Phonerochaete chrysosporium. Water Res 32: 2746–2752CrossRefGoogle Scholar
  112. Stoll A, Duncan JR (1997) Implementation of a continuous-flow stirred bioreactor system in the bioremediation of heavy metals from industrial waste water. Environ Pollution 97: 247–251CrossRefGoogle Scholar
  113. Suh JH, Yun JW, Kim DS (1999a) Effect of pH on Pb2 accumulation in Saccharomyces cerevisiae and Aureobasidium pullulans. Bioprocess Eng 20: 471–474Google Scholar
  114. Suh JH, Yuri JW, Kim DS (1999b) Effect of extracellular polymeric substances (EPS) on Pb2 accumulation by Aureobasidium pullulans. Bioprocess Eng 21: 1–4Google Scholar
  115. Tam PCF (1995) Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5: 181–187CrossRefGoogle Scholar
  116. Tobin JM, Roux JC (1998) Mucor biosorbent for chromium removal from tanning effluent. Water Res 32: 1407–1416CrossRefGoogle Scholar
  117. Tsezos M, Georgousis Z, Remoudaki E (1997) Mechanism of aluminium interference on uranium biosorption by Rhizopus arrhizus. Biotechnol Bioeng 55: 16–27CrossRefGoogle Scholar
  118. Volesky B (1990) Biosorption by fungal biomass. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 139–172Google Scholar
  119. Volesky B (1994) Advances in biosorption of metals: selection of biomass types. FEMS Microbiol Rev 14: 291–302CrossRefGoogle Scholar
  120. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11: 235–250CrossRefGoogle Scholar
  121. Volesky B, May-Phillips HA (1995) Biosorption of heavy metals by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42: 797–806CrossRefGoogle Scholar
  122. Volesky B, May H, Holan ZR (1992) Cadmium biosorption by Saccharomyces cerevisiae. Biotechnol Bioeng 41: 826–829CrossRefGoogle Scholar
  123. Wales DS, Sagar BF (1990) Recovery of metal ions by microfungal filters. J Chem Technol Biotechnol 49: 345–355CrossRefGoogle Scholar
  124. Wemmie JA, Szczypka MS, Thiele DJ, Moye-Rowley SM (1994) Cadmium tolerance mediated by the yeast AP-1 protein requires the presence of an ATP-binding cassette transporter-encoding gene, YCF1. J Biol Chem 269: 32592–32597Google Scholar
  125. White C, Gadd GM (1990) Biosorption of radionuclides by fungal biomass. J Chem Technol Biotechnol 49: 331–343CrossRefGoogle Scholar
  126. Whiteside SG, Plocke D (1992) Selection and characterisation of a copper-resistant subpopulation of Schizosaccharomyces pombe. J Gen Microbiol 138: 2417–2423CrossRefGoogle Scholar
  127. Wilhelmi BS, Duncan JR (1995) Metal recovery from Saccharomyces cerevisiae biosorption columns. Biotechnol Lett 17: 1007–1012CrossRefGoogle Scholar
  128. Winge DR, Jensen LT, Srinivasan C (1998) Metal-ion regulation of gene expression in yeast. Curr Opin Chem Biol 2: 216–221CrossRefGoogle Scholar
  129. Wunderlich C, Zhao Q. Zimmermann M, Wolf K (1995) Physiological characterization of a cadmium-resistant mutant in the fission yeast Schizosaccharomyces pombe. Microbiol Res 150: 233–237Google Scholar
  130. Yazgan A, Ozcengiz G (1994) Subcellular distribution of accumulated heavy metals in Saccharomyces cerevisiae and Kluyveromyces marxianus. Biotechnol Lett 16: 871–874CrossRefGoogle Scholar
  131. Yetis U, Ozcengiz G, Dilek FB, Ergen N, Dolek A (1998) Heavy metal biosorption by white-rot fungi. Water Sci Technol 38: 323–330Google Scholar
  132. Yin PH, Yu QM, Jin B, Ling Z (1999) Biosorption removal of cadmium from aqueous solution by using pretreated fungal biomass cultured from starch wastewater. Water Res 33: 1960–1963CrossRefGoogle Scholar
  133. Zhao M, Duncan JR (1997) Use of formaldehyde cross-linked Saccharomyces cerevisiae in column bioreactors for removal of metals from aqueous solutions. Biotech Lett 19: 953–955CrossRefGoogle Scholar
  134. Zhou JL (1999) Zn biosorption by Rhizopus arrhizus and other fungi. Appl Microbiol Biotechnol 51: 686–693CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • M. Zimmermann
    • 1
  • K. Wolf
    • 1
  1. 1.Institut für Biologie IV (Mikrobiologie)Rheinisch-Westfälische Technische Hochschule AachenAachenGermany

Personalised recommendations