Skip to main content

Biodegradation by Brown Rot Fungi

  • Chapter

Part of the book series: The Mycota ((MYCOTA,volume 10))

Abstract

The decay of lignocellulose is one of the most important processes for all life on earth. Carbon fixed by green plants is recycled back into the atmosphere principally by fungi through the process of lignocellulose decay, estimated at 85 billion tons of carbon per year (Cowling 1963). Wood lignocellulose accounts for most of the biomass on earth, being made up of the two most abundant biopolymers, cellulose, and lignin. Wood decay fungi have long been of interest due to the tremendous amount of wood and wood products damaged due to their actions. These fungi have been intensively studied in order to develop ways to control their wood degradative abilities and, more recently, to understand how to apply these same decay abilities for the biodegradation or bioremediation of xenobiotic compounds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andes P, Marzullo L (1997) Sugar oxidoreductases and veratryl alcohol oxidase as related to lignin degradation. J Biotechnol 53: 115–131

    Article  Google Scholar 

  2. Anonymous (1998) E10–91, standard method of testing wood preservatives by laboratory soil-block cultures. American Wood Preservers Association, Woodstock, MD, 345 pp

    Google Scholar 

  3. Bills SN, Richter DL, Podila GK (1995) Genetic transformation of the ectomycorrhizal fungus Paxillus involutos by particle bombardment. Mycol Res 99: 557–561

    Article  Google Scholar 

  4. Blanchette RA (1995) Degradation of the lignocellulose complex in wood. Can J Bot 73 (Suppl 1): 5999–51010

    Google Scholar 

  5. Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present, and future applications in bioremediation. J Ind Microbiol Biotechnol 19: 324–333

    Article  CAS  Google Scholar 

  6. Chen M-J, Gunnelss DW, Gardner DJ, Milstein O, Ger-sonde R, Feine JH, Hucttermann A, Frund R, Luedemann HD, Meiser JJ (1996) Graft copolymers of lignin with 1-ethylbenzene. 2. Properties. Macromolecules 29: 1389–1398

    Google Scholar 

  7. Collett O (1992) Aromatic compounds as growth substrates for isolates of the brown-rot fungus Lentinus lepideus (Fr. ex Fr.) Fr. Mater Org 27: 67–77

    CAS  Google Scholar 

  8. Cowling EB (1963) Structural features of cellulose that influence its susceptibility to enzymatic hydrolysis. In: Reese ET (ed) Advances in enzymatic hydrolysis of cellulose and related materials. Pergamon Press, New York, pp 1–32

    Google Scholar 

  9. De Jong E, Field JA (1997) Sulfur tuft and turkey tail: biosynthesis and biodegradation of organohalogens by Basidiomycetes. In: Ornston LN, Balows A

    Google Scholar 

  10. Greenberg EP (eds) Annual review of microbiology, vol 51. Annual Reviews, Palo Alto, pp 375–414

    Google Scholar 

  11. Eaton RA, Hale MDC (1993) Wood, decay, pests and protection. Chapman and Hall, London, 546 pp

    Google Scholar 

  12. Enoki A, Itakura S, Tanaka H (1997) The involvement of extracellular substances for reducing molecular oxygen to hydroxyl radical and ferric iron to ferrous iron in wood degradation by wood decay fungi. J Biotechnol 53: 265–272

    Article  CAS  Google Scholar 

  13. Eslyn WE (1986) Utility pole decay. part 4: growth temperature relationships and decay capacities of eleven major utility pole decay fungi. Holzforschung 40: 69–77

    Article  CAS  Google Scholar 

  14. Fahr K, Wetzstein J-G, Grey R. Schlosser D (1999) Degradation of 2.4-dichlorophenol and pentachlorophenol by two brown rot fungi. FEMS Microbiol Lett 175: 127–132

    Article  CAS  Google Scholar 

  15. Ferrey ML, Koskinen WC, Blanchette RA, Burnes TA (1994) Mineralization of alachlor by lignin-degrading fungi. Can J Microbiol 40: 795–798

    Article  CAS  Google Scholar 

  16. Fekete FA, Chandhoke V, Jellison J (1989) Iron-binding compounds produced by wood-decaying Basidiomycetes. Appl Environ Microbiol 55: 2720–2722

    CAS  Google Scholar 

  17. Gilbertson RL (1980) Wood rotting fungi in North America. Mycologia 72: 1–49

    Article  Google Scholar 

  18. Gilbertson RL, Ryvarden L (1986) North American polypores, vol 1. Fungiflora, Gronlands Grafiske A/S, Oslo, Norway, pp 1–433

    Google Scholar 

  19. Gilbertson RL, Ryvarden L (1987) North American polypores, vol 2. Fungiflora, Gronlands Grafiske A/S, Oslo, Norway, pp 434–885

    Google Scholar 

  20. Goodell B, Jellison J (1998) The role of biological metal chelators in wood degradation and in xenobiotic degradation. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor and Francis, London, pp 235–249

    Google Scholar 

  21. Goodell B, Jellison J. Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S. Jun L, Zu G (1997) Low molecular weigh chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53: 133–162

    CAS  Google Scholar 

  22. Green F III, Highley TL (1997) Mechanism of brown-rot decay: paradigm or paradox. Int Biodeter Biodegrad 39: 113–124

    Article  CAS  Google Scholar 

  23. Gübitz GM, Mansfield SD, Saddler JN (1998a) Effectiveness of two endoglucanases from Gloeophyllum sp. In deinking mixed office waste paper. In: Proceedings from the 7th international conference on biotechnology in the pulp and paper industry, Montreal, pp C135–C138

    Google Scholar 

  24. Gübitz GM, Stebbing DW, Johansson CI, Saddler JN (1998b) Lignin-hemicellulose complexes restrict enzymatic solubilization of mannan and xylan from dissolving pulp. Appl Microbiol Biotechnol 50: 390–395

    Article  Google Scholar 

  25. Harvey AE, Jurgensen MF, and Larsen MJ (1976) Intensive fiber utilization and prescribed fire: effects on the microbial biology of forests. USDA For Sery Gen Tech Rep INT 28: 1–46

    Google Scholar 

  26. Haygreen JG, Bowyer JL (1996) Forest products and wood science, an introduction, 3rd edn. Iowa State Univ Press, Ames, Iowa, 484 pp

    Google Scholar 

  27. Highley TL, Dashek WV (1998) Biotechnology in the study of brown-and white-rot decay. In: Bruce A. Palfreyman JW (eds) Forest products biotechnology. Taylor and Francis, London, pp 15–36

    Google Scholar 

  28. Hirano T, Tanaka H, Enoki A (1997) Relationship between production or hydroxyl radicals and degradation of wood by the brown-rot fungus, Tyromyces palustris. Holzforschung 51: 389–395

    Article  CAS  Google Scholar 

  29. Hyde SM, Wood PM (1997) A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana: Fe(III) reduction by cellobiose dehydrogenate and Fe(II) oxidation at a distance from the hyphae. Microbiology 143: 259–266

    Google Scholar 

  30. Jeffries TW (1987) Physical. chemical and biochemical considerations in the degradation of wood. In: Kennedy JF, Phillips GO, Williams PA (eds) Wood and cellulosics: industrial utilization, biotechnology, structure and properties. Ellis Horwood, Chichester, West Sussex, England, pp 213–230

    Google Scholar 

  31. Jellison J, Chen Y, Fekete FA (1997a) Hyphal sheath and iron-binding compound formation in liquid cultures of wood decay fungi Gloeophyllum trabeum and Postia placenta. Holzforschung 51: 503–510

    Article  CAS  Google Scholar 

  32. Jellison J, Connolly J, Goodell B, Doyle B. Illman B, Fekete F, Ostrofsky A (1997b) The role of cations in the biodegradation of wood by the brown rot fungi. Int Biodeter Biodegrad 39: 165–179

    Article  CAS  Google Scholar 

  33. Job-Cei C, Keller J. Job D (1996) Degradation of unbleached sulphite pulp paper treated in solid state conditions with five species of the brown-rot Gloeophyllum. Mater Org 30: 105–116

    CAS  Google Scholar 

  34. Kerem A. Bao W, Hammel KE (1998) Rapid polyether cleavage via extracellular one-electron oxidation by a brown-rot basidiomycete. Proc Natl Acad Sei USA 95: 10373–10377

    Google Scholar 

  35. Kerem Z, Jensen KA, Hammel KE (1999) Biodegradative mechanisms of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett 446: 49–54

    Article  CAS  Google Scholar 

  36. Leathan GF, Myers GC, Wegner TH (1990) Biomechanical pulping of aspen chips: paper strength and optical properties resulting from different fungal treatments. Tappi J 73: 249–255

    Google Scholar 

  37. Lee CJB, Fletcher MA, Avila OI, Callanan J, Yunker S, Munnecke DM (1995) Bioremediation of MGP soils with mixed fungal and bacterial cultures. In: Hinchee RE, Fredrickson J, Alleman BC (eds) Bioaugmentation for site remediation. Battelle Press, Columbus, pp 195–202

    Google Scholar 

  38. Lee D-H, Takahashi M. Tsunoda K (1992) Fungal detoxification of organoiodine wood preservatives, part 1. Decomposition of the chemicals in shake cultures of wood-decaying fungi. Holzforschung 46: 81–86

    Google Scholar 

  39. Lewis TA, Edere MM. Crawford RL, Crawford DL (1997) Microbial transformation of 2,4,6-trinitrotoluene. J Ind Microbiol Biotechnol 18: 89–96

    Article  CAS  Google Scholar 

  40. Litchfield CD, Rao M (1998) Pentachlorophenol biodegradation: laboratory and field studies. In: Lewandowski GA, DeFilipi LJ (eds) Biological treatment of hazardous wastes. Wiley, New York, pp 271–302

    Google Scholar 

  41. Manion PD (1991) Tree disease concepts, 2nd edn. Prentice Hall. Englewood Cliffs, 402 pp

    Google Scholar 

  42. Martens R, Wetzstein H-G, Zadrazil F, Capelari M, Hoffman P, Schmeer N (1996) Degradation of the fluoroquinolone enrofloxacin by wood-rotting fungi. Appl Environ Microbiol 2: 4206–4209

    Google Scholar 

  43. Micales JA (1997) Localization and induction of oxalate decarboxylase in the brown-rot wood decay fungus Postia placenta. Int Biodeter Biodegrad 39: 125–132

    Article  CAS  Google Scholar 

  44. Milstein 0, Gersonde R, Huttermann A, Freund R, Feine JH, Lundermann HD, Chen M-J, Meister JJ (1994) Infrared and nuclear magnetic resonance evidence of degradation in thermoplastics based on forest products. J Environ Polym Degrad 2: 137–152

    Article  CAS  Google Scholar 

  45. Osipowicz B, Jablonski L, Siewinski A, Augustyn D, Rymkiewicz A (1996) Screening tests on the biodegradation of organic coal extract by selected fungi. Biores Technol 55: 195–200

    Article  CAS  Google Scholar 

  46. Parra C, Rodriguez J, Baeza J, Freer J, Duran N (1998) Iron-binding catechols oxidating lignin and chlorolignin. Biochem Biophys Res Commun 251: 399–402

    Article  CAS  Google Scholar 

  47. Paszczynski A, Crawford R, Funk D, Goodell B (1999) De novo synthesis of 4,5-dimethoxycatechol and 2,4dimethoxyhydroquinone by the brown rot fungus Gloeophyllum trabeum. Appl Environ Microbiol 65: 674–679

    CAS  Google Scholar 

  48. Pueyo C, Ariza RR (1993) Role of reactive oxygen species in the mutagenicity of complex mixtures of plant origin. In: Halliwell B,Aruoma 01 (cds) DNA and free radicals. Ellis Horwood, Chichester, pp 275–291

    Google Scholar 

  49. Ralph JP, Graham LA, Catchside DEA (1996) Extracellular oxidases and the transformation of solubilized low-rank coal by wood-rot fungi. Appl Microbiol Biotechnol 46: 226–232

    Article  CAS  Google Scholar 

  50. Raper JR, Flexer AS (1971) Mating systems and evolution of the Basidiomycetes. In: Peterson RH (ed) Evolution in the higher Basidiomycetes. Univ Tenn Press, Knoxville, pp 149–167

    Google Scholar 

  51. Rayner ADM, Boddy L (1988) Fungal decomposition of wood: its biology and ecology. Wiley, Chichester, 587 pp

    Google Scholar 

  52. Redhead SA, Ginns JH (1985) A reappraisal of agaric genera associated with the brown rots of wood. Trans Mycol Soc Jpn 26: 349–381

    Google Scholar 

  53. Reid ID (1995) Biodegradation of lignin. Can J Bot 73 (Suppl 1 Sect E-H): S1011 - S1018

    Article  CAS  Google Scholar 

  54. Sack U, Günther T (1993) Metabolism of PAH by fungi and correlation with extracellular enzymatic activities. J Basic Microbiol 33: 269–277

    Article  CAS  Google Scholar 

  55. Sack U, Heinze TM, Deck J, Cerniglia CE, Martens R, Zadrazil F, Fritsche W (1997) Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl Environ Microbiol 63: 3919–3925

    CAS  Google Scholar 

  56. Samson J, Langlois E, Lei J, Piché Y, Chênevert R (1998) Removal of 2,4,6-trinitrotoluene and 2.4-dinitrotoluene by fungi (Ceratocystis coerulescens, Lentinus lepideus and Trichoderma harzianum). Biotechnol Lett 20: 355–358

    Article  CAS  Google Scholar 

  57. Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W (1997) Screening for fungi intensively mineralizing

    Google Scholar 

  58. 6-trinitrotoluene. Appl Microbiol Biotechnol 47: 452–457

    Google Scholar 

  59. Schlosser D, Fahr K, Karl W, Wetzstein H-G (2000) Hydroxylated metabolites of 2,4-dichlorophenol imply a Fenton-type reaction in Gloeophyllum striatum. Appl Environ Microbiol 66: 2479–2483

    Article  CAS  Google Scholar 

  60. Schmidhalter DR, Canevascini G (1992) Characterization of the cellulolytic enzyme system from the brown-rot fungus Coniophora puteana. Appl Microbiol Biotechnol 37: 431–436

    Article  CAS  Google Scholar 

  61. Schmidt VO, Dittberner D, Faix O (1991) Zum Verhalten einiger Bakteriem and Pilze Gegenüber Steinkohlenteeröl. Mater Org 26: 13–30

    Google Scholar 

  62. Score AJ, Palfreyman JW, White NA (1997) Extracellular phenoloxidase and peroxidase enzyme production during interspecific fungal interactions. Int Biodeter Biodegrad 39: 224–233

    Article  Google Scholar 

  63. Shimada M, Akamtsu Y, Tokimatsu T, Mii K, Hattori T (1997) Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot decays. J Biotechnol 53: 103–113

    Article  CAS  Google Scholar 

  64. Spain JC (1995) Biodegradation of nitroaromatic compounds. In: Ornston LN, Balows A, Greenberg EP (eds) Annual review of microbiology, vol 49. Annual reviews, Palo Alto, pp 523–555

    Google Scholar 

  65. Stich HF, Anders F (1989) The involvement of reactive oxygen species in oral cancers of betel quid/tobacco chewers. Mutat Res 214: 47–61

    Article  CAS  Google Scholar 

  66. Viikari L, Buchert J, Suurnäkki A (1998) Enzymes in pulp hioleaching. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor and Francis, London, pp 83–97

    Google Scholar 

  67. Wetzstein H-G, Schmeer N, Karl W (1997) Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: Identification of metabolites. Appl Environ Microbiol 63: 4272–4281

    Google Scholar 

  68. Wetzstein H-G, Stadler M, Tichy H-V, Dalhoff A, Karl W (1999) Degradation of ciprofloxacin by Basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum. Appl Environ Microbiol 66: 1556–1663

    Google Scholar 

  69. Worrall JJ, Anagnost SE, Zabel RA (1997) Comparison of wood decay among diverse lignicolous fungi. Mycologia 89: 199–219

    Article  Google Scholar 

  70. Wunch KG, Feibelman T, Bennett JW (1997) Screening for fungi capable of removing benzo[a]pyrene in culture. Appl Microbiol Biotechnol 47: 620–624

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bagley, S.T., Richter, D.L. (2002). Biodegradation by Brown Rot Fungi. In: Osiewacz, H.D. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10378-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10378-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07481-3

  • Online ISBN: 978-3-662-10378-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics