Biodegradation by White-Rot Fungi

  • J. P. Ralph
  • D. E. A. Catcheside
Part of the The Mycota book series (MYCOTA, volume 10)


White-rot basidiomycete fungi selectively decay lignin in plant tissues. They are the only organisms known which are able to extensively mineralise lignin to carbon dioxide and water. This ability is unusual because lignin is a particularly complex aromatic macromolecule intrinsically resistant to enzymatic and hydrolytic attack. In its native state, lignin provides accessory strengthening to the more regular glucose polymers cellulose and hemicellulose that comprise the bulk of wood and prevents ready access by hydrolytic enzymes targeting wood polysaccharides. It has become evident over the last two decades that ligninolytic enzyme systems expressed by white-rot fungi are extracellular, relatively non-specific and involve the generation of a suite of powerful enzymatic and non-enzymatic oxidants. These enzyme systems have been shown to transform a large variety of chemicals that are, like lignin, relatively long-lived in the environment by virtue of their high molecular weight, insolubility, chemical irreg- ularity, thermodynamic stability or recent origin precluding the evolution of specific microbial decay mechanisms.


Wheat Straw Kraft Pulp Ligninolytic Enzyme Olive Mill Wastewater Pulp Mill 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addleman K, Dumonceaux T, Paice MG, Bourbonnais R, Archibald FS (1995) Production and characterization of Trametes versicolor mutants unable to bleach hardwood kraft pulp. Appl Environ Microbiol 61: 3687–3694Google Scholar
  2. Akhtar M (1997) Method of enhancing biopulping efficiency. US Patent no. 5, 620, 564Google Scholar
  3. Akhtar M (1998) Method of enhancing biopulping efficiency. US Patent no. 5, 750, 005Google Scholar
  4. Akhtar M, Attridge MC, Blanchette RA, Myers GC, Wall MB, Sykes MS, Koning JW Jr, Burgess RR, Wegner TH, Kirk TK (1992) The white-rot fungus Ceriporiopsis subvermispora saves electrical energy and improves strength properties during biomechanical pulping of wood. In: Kuwahara M, Shimada M (eds) Biotechnology in the pulp and paper industry. Proceedings of the 5th international conference on biotechnology in the pulp and paper industry, Univ Publishers Co Ltd, Tokyo, pp 3–8Google Scholar
  5. Akhtar M, Kirk TK, Blanchette RA (1996) Biopulping: an overview of consortia research. In: Srebotnik E, Messner K (eds) Biotechnology in the pulp and paper industry. Proceedings of the 6th international conference on biotechnology in the pulp and paper industry, Facultas-Universitätsverlag, Vienna, pp 187]92Google Scholar
  6. Alleman BC, Logan BE, Gilbertson RL (1995) Degradation of pentachlorophenol by fixed films of white rot fungi in rotating tube bioreactors. Water Res 29: 61–67CrossRefGoogle Scholar
  7. Andersson BE, Henrysson T (1996) Accumulation and degradation of dead-end metabolites during treatment of soil contaminated with polycyclic aromatic hydrocarbons with five strains of white-rot fungi. Appl Microbiol Biotechnol 46: 647–652CrossRefGoogle Scholar
  8. Archibald F (1992) The role of fungus-fibre contact in the biobleaching of kraft brownstock by Trametes (Coriolus) versicolor. Holzforschung 4: 305–310CrossRefGoogle Scholar
  9. Aust SD (1989) Biodegradation of agrochemicals by white rot fungi. In: Hattori T, Maruyama Y, Uchida A, Ishida Y, Morita R (eds) Recent advances in microbial ecology, 5th international symposium of microbial ecology, Japan Scientific Societies Press, Tokyo, pp 529–533Google Scholar
  10. Badkoubi A, Stevens DK, Murarka IP (1996) Quantification of pentachlorophenol transformation product distribution in the presence of Phanerochaete chrysosporium. Arch Environ Contam Toxico130: 1–8Google Scholar
  11. Bajpai P, Bajpai PK (1992) Biobleaching of kraft pulp. Process Biochem 27: 319–325CrossRefGoogle Scholar
  12. Ball AS, Colton J (1996) Decolorization of the polymeric dye Poly R by Streptomyces viridosporus T7 A. J Basic Microbiol 36: 13–18CrossRefGoogle Scholar
  13. Barr DP, Aust SD (1994) Mechanisms white-rot fungi use to degrade pollutants. Environ Sci Technol 28: 79A - 87AGoogle Scholar
  14. Barrasa TM, Camarero S, Martinez AT, Ruel K (1995) Ultrastructural aspects of wheat straw delignification by Phanerochaete chrysosorium and Trametes versicolor. Appl Microbiol Biotechnol 43: 766–770CrossRefGoogle Scholar
  15. Behrendt CJ, Blanchette RA (1997) Biological processing of pine logs for pulp and paper production with Phlebiopsis gigantea. App] Environ Microbiol 63: 1995–2000Google Scholar
  16. Bezalel L, Hadar, Y, Fu, PP, Freeman, JP, Cerniglia CE (1996) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62: 2554–2559Google Scholar
  17. Blanchette RA, Leatham GF, Attridge M, Akhtar M, Myers GC (1991) Biomechanical pulping with C. subvermispora. US Patent no. 5, 055, 159Google Scholar
  18. Bogan BW, Lamar RT (1995) One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 61: 2631–2635Google Scholar
  19. Bogan BW, Lamar RT (1996) Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl Environ Microbiol 62: 1597–1603Google Scholar
  20. Bogan BW, Lamar RT, Hammel KE (1996) Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. App] Environ Microbiol 62: 1788–1792Google Scholar
  21. Bogan BW, Lamar RT, Burgos WD, Tien M (1999) Extent of humification of anthracene, fluoranthene, and benzo(alpha)pyrene by Pleurotus ostreams during growth in PAH-contaminated soils. Lett Appl Microbiol 28: 250–254CrossRefGoogle Scholar
  22. Bonnarme P, Delattre M, Drouet H, Corrieu G, Asther M (1993) Toward a control of lignin and manganese peroxidase hypersecrction by Phanerochaete chrysosporium in agitated vessels: evidence of the superiority of pneumatic bioreactors on mechanically agitated bioreactors. Biotechnol Bioeng 41: 440–450CrossRefGoogle Scholar
  23. Boominathan K, Reddy CA (1992) Fungal degradation of lignin - biotechnological applications. In: Arora DK, Elander RP. Mukerji KG (eds) Handbook of applied mycology, vol 4: fungal biotechnology. Dekker, New York, pp 763–822Google Scholar
  24. Bourbonnais R, Paice MG, Reid ID, Lanthier P, Yaguchi M (1995) Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2’azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbiol 61: 1876–1880Google Scholar
  25. Braun-Lüllemann A, Majcherczyk A, Hüttermann A (1997) Degradation of styrene by white-rot fungi. Appl Microbiol Biotcchnol 47: 150–1 55Google Scholar
  26. Breccia JD, Bettucci L, Siiïeriz F (1997) Degradation of sugar cane bagasse by several white-rot fungi. Acta Biotechnol 17: 177–184CrossRefGoogle Scholar
  27. Bumpus JA, Aust SD (1986) Biodegradation of environmental pollutants by the white-rot fungus Phanerochaete chrysosporium: involvement of the I ignin degrading system. Bioessays 6: 166–170CrossRefGoogle Scholar
  28. Buswell JA, Odier E (1987) Lignin biodegradation. Crit Rev Biotechnol 6: 1–60CrossRefGoogle Scholar
  29. Call HP, Mücke I (1996) The laccase-mediator-system (I,MS)–a new concept. In: Srebotnik E, Messner K (eds) Biotechnology in the pulp and paper industry. Proceedings of the 6th international conference on biotechnology in the pulp and paper industry, Facultas-Universitätsverlag, Vienna, pp 27–32Google Scholar
  30. Cammarota MC, SantAnna GL (1992) Decolorization of kraft bleach plant El stage effluent in a fungal bioreactor. Environ Technol 13: 65CrossRefGoogle Scholar
  31. Capelari M, Zadrazil F (1997) Lignin degradation and in vitro digestibility of wheat straw treated with Brazilian tropical species of white rot fungi. Folia Microbiol 42: 481–487CrossRefGoogle Scholar
  32. Chen J, Fates SL, Varga GA, Royse DJ (1995) Biodegradation of cell wall components of maize stover colonised by white-rot fungi and resulting impact on in-vitro digestibility. J Sci Food Agric 68: 91–98CrossRefGoogle Scholar
  33. Chiang S-T, Miles PG (1989) Edible mushrooms and their cultivation. CRC Press, Boca RatonGoogle Scholar
  34. Chivukula M, Renganathan V (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61: 4374–4377Google Scholar
  35. Chung N, Aust SD (1995) Veratryl alcohol-mediated indirect oxidation of pcntachlorophenol by lignin peroxidase. Arch Biochem Biophys 322: 143–148CrossRefGoogle Scholar
  36. Collins PJ, Kotterman ME, Field JA, Dobson ADW (1996) Oxidation of anthracene and benzo[a]pyrene by lac-cases from Trametes versicolor. Appl Environ Microbiol 62: 4563–4567Google Scholar
  37. Cullen D, Kersten RI (1996) Enzymology and molecular biology of lignin degradation. In: Brambl R, Marzulf GA (eds) The Mycota III. Biochemistry and molecular biology, Chap. 13. Springer, Berlin Heidelberg New York, pp 295–312CrossRefGoogle Scholar
  38. Davis S, Burns RG (1990). Decolorization of phenolic effluents by soluble and immobilized phenol oxidases. Appl Microbiol Biotechnol 32: 721–726CrossRefGoogle Scholar
  39. de Jong E, Field JA, de Bont JAM (1994) Aryl alcohols in the physiology of ligninolytic fungi. FEMS Microbiol Rev 13: 153–188CrossRefGoogle Scholar
  40. de Jong E, Chandra RP, Saddler JN (1997) Effects of a fungal treatment on the brightness and strength properties of a mechanical pulp from Douglas-fir. Biore-sour Technol 61: 61–68CrossRefGoogle Scholar
  41. Deschler C. Duran R, Junqua M, Landou C, Salvado JC, Goulas P (1998) Involvement of 3,4-dichlorophenol hydroxylase in degradation of 3,4-dichlorophenol by the white rot fungus Phanerochaete chrysosporium. J Mol Catalysis B Enzym 5: 423–428CrossRefGoogle Scholar
  42. Dietrich D, Hickey WJ, Lamar R (1995) Degradation of 4,4’-dichlorobiphenyl, 3,3’.4,4’-tetrachlorobiphenyl, and 2,2’4,4’5,5’-hexachlorobiphenyl by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 61: 3904–3909Google Scholar
  43. Donnelly KC, Chen JC, Huebner HJ, Brown KW, Autenrieth RL, Bonner JS (1997) Utility of four strains of white-rot fungi for the detoxification of 2,4,6-trinitrotoluene in liquid culture. Environ Toxicol Chem 16: 1105–1110CrossRefGoogle Scholar
  44. Eaton DC, Chang H-M, Joyce TW, Jeffries TW, Kirk TK (1982) Method obtains fungal reduction of the colour of extraction-stage kraft bleach effluents. Tappi J 65: 89–92Google Scholar
  45. Eilers A, Ruengeling E, Stuendl UM, Gottschalk G (1999) Metabolism of 2,4,6-trinitrotoluene by the white-rot side fungus Bjerkandera adusta DSM 3375 depends on cytochrome P-450. Appl Microbiol Biotechnol 53: 75–80CrossRefGoogle Scholar
  46. Eriksson KE, Kirk TK (1985) Biopulping, biobleaching and treatment of kraft bleaching effluents with white-rot fungi. In: Moo-Young M (ed) Comprehensive biotechnology: the principals, applications and regulations of biotechnology in industry, agriculture and medicine, vol 4. Pergamon Press, New York, pp 271–295Google Scholar
  47. Esposito E, Canhos VP, Duran N (1991) Screening of lignin-degrading fungi for removal of color from kraft mill wastewater with no additional carbon source. Biotechnol Lett 13: 571–576CrossRefGoogle Scholar
  48. Evans CS, Dutton MV. Guillen F, Veness RG (1994) Enzymes and small molecular mass agents involved with lignocellulose degradation. FEMS Microbiol Rev 13:235–240Google Scholar
  49. Feijoo G, Dosoretz C, Lema JM (1995a) Production of lignin peroxidase by Phanerochaete chrysosporium in a packed bed bioreactor operated in semicontinuous mode. J Biotechnol 42: 247–253CrossRefGoogle Scholar
  50. Feijoo G, Vidal G, Moreira MT, Méndez R, Lema JM (1995b) Degradation of high molecular weight compounds of kraft pulp mill effluents by a combined treatment with fungi and bacteria. Biotechnol Lett 17: 1261–1266CrossRefGoogle Scholar
  51. Field JA, de Jong E, Feijoo-Costa G. de Bont JAM (1993) Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol 11: 44–49CrossRefGoogle Scholar
  52. Field JA, Boelsma F, Baten H, Rulkens WH (1995a) Oxidation of anthracene in water/solvent mixtures by the white-rot fungus, Bjerkandera sp. strain BOS55. Appl Microbiol Biotechnol 44: 234–240CrossRefGoogle Scholar
  53. Field JA. Verhagen FJM, de Jong E (1995b) Natural organohalogen production by Basidiomycetes. Trends Biotechnol 13: 451–456CrossRefGoogle Scholar
  54. Field JA, Vledder RH, van Zelst JG, Rulkens WH (1996) The tolerance of lignin peroxidase and manganese-dependent peroxidase to miscible solvents and the in vitro oxidation of anthracene in solvent:water mixtures. Enzyme Microbial Technol 18: 300–308CrossRefGoogle Scholar
  55. Fischer K, Akhtar M. Messner K, Blanchette RA, Kirk TK (1996) Pitch reduction with the white-rot fungus Ceriporiopsis subvermispora. In: Srebotnik E, Messner K (eds) Biotechnology in the pulp and paper industry. Proceedings of the 6th international conference on biotechnology in the pulp and paper industry, Facultas-Universitätsverlag, Vienna, pp 193–198Google Scholar
  56. Freitag M, Morrell JJ (1992) Decolorization of the polymeric dye Poly R-478 by wood-inhabiting fungi. Can J Microbiol 8: 811–822CrossRefGoogle Scholar
  57. Glenn JK, Gold MH (1983) Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 45: 1741–1747Google Scholar
  58. Gold MH, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete-chrysosporium. Microbiol Rev 57: 605–622Google Scholar
  59. Gold MH, Glenn.1K, Alic M (1988) Use of polymeric dyes in lignin biodegradation assays. In: Wood WA, Kellog ST (eds) Methods of enzymology, vol 161B: lignin, pectin and chitin. Academic Press, London, pp 74–78Google Scholar
  60. Gold MH, Wariishi H, Valli K (1989) Extracellular per- oxidases involved in lignin degradation by the white rot basidiomycete Phanerochaete chysosporium. In: Whitaker JR, Sonnet PE (eds) Biocatalysts in agricultural biotechnology. American Chemical Society, Washington, DC, pp 127–140CrossRefGoogle Scholar
  61. Grabski AC, Coleman PL, Drtina G.I. Burgess RR (1995) Immobilization of manganese peroxidase from Lentinula edodes on azlactone-functional polymers and generation of Mn’ by the enzyme-polymer complex. Appl Biochem Biotechnol 55: 55–73CrossRefGoogle Scholar
  62. Hadar Y, Kerem Z, Gorodecki B (1993) Biodegradation of lignocellulosic agricultural wastes by Pleurotus ostreatus. J Biotechnol 30: 133–139CrossRefGoogle Scholar
  63. Hall IM, Buchanan PK, Wang Y, Cole AU (1998) Edible and poisonous mushrooms, an introduction. New Zealand Institute for Crop and Food Research Ltd, Christchurch, NZGoogle Scholar
  64. Hammel KE, Jensen KA, Mozuch MD, Landucci LL, Tien M, Pease EA (1993) Ligninolysis by a purified lignin peroxidase. J Biol Chem 268: 12274–12281Google Scholar
  65. Harazono K, Kondo R. Sakai K (1996) Bleaching of hardwood kraft pulp with manganese peroxidase from Phanerochaete sordida YK-624 without addition of MnSO4. Appl Environ Microbiol 62: 913–917Google Scholar
  66. Harvey PJ, Schoemaker HE, Palmer JM (1985) Enzymatic degradation of lignin and its potential to supply chemicals. Ann Proc Phytochem Soc Eur 26: 249–266Google Scholar
  67. Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi -production and role in lignin degradation. FEMS Microbiol Rev 13: 125–135CrossRefGoogle Scholar
  68. Hatakka A, Mettälä A, Härkönen T, Paavilainen L (1996) Biopulping of gramineous plants by white-rot fungi. In: Srebotnik E, Messner K (eds) Biotechnology in the pulp and paper industry. Proceedings of the 6th international conference on biotechnology in the pulp and paper industry, Facultas-Universitätsverlag, Vienna, pp 229–232Google Scholar
  69. Henriksson G, Ander P, Pettersson B, Pettersson G (1995) Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood degrading enzyme. Studies on cellulose, xylan and synthetic lignin. Appl Microbiol Biotechnol 42: 790–796Google Scholar
  70. Higuchi T (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24: 23–63CrossRefGoogle Scholar
  71. Hundt K. Jonas U, Hammer E, Schauer F (1999) Transformation of diphenyl ethers by Trametes versicolor and characterization of ring cleavage products. Biodegradation 10: 279–286Google Scholar
  72. Ichinose H, Wariishi H, Tanaka H (1999) Bioconversion of recalcitrant 4-methyldibenzothiophene to water-extractable products using lignin-degrading basidiomycete Coriolus versicolor. Biotechnol Prog 15: 706–714CrossRefGoogle Scholar
  73. Iimura Y, Hartikainen P, Tatsumi K (1996) Dechlorination of tetrachloroguaiacol by laccase of white-rot basidiomycete Coriolus versicolor. Appl Microbiol Biotechnol 45: 434–439CrossRefGoogle Scholar
  74. Jalc D, Nerud F, Erbanova P, Siroka P (1996) Effect of white-rot Basidiomycetes-treated wheat straw on rumen fermentation in artificial rumen. Reprod Nutr Dcv 36: 263–270CrossRefGoogle Scholar
  75. Jalc D, Siroka P, Ceresnakova Z (1997) Effect of six species of white-rot Basidiomycetes on the chemical composition and rumen degradability of wheat straw. J Gen Appl Microbiol 43: 133–137CrossRefGoogle Scholar
  76. Jaspers CJ, Jimenez G. Penninckx MJ (1994) Evidence for a role of manganese peroxidase in the decolorization of Kraft pulp bleach plant effluent by Phanerochaete chrysosporium: effects of initial culture conditions on enzyme production. J Biotechnol 37: 229–234CrossRefGoogle Scholar
  77. Jeffries TW, Choi S, Kirk TK (1981) Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl Environ Microbial 42: 290–296Google Scholar
  78. Johannes C, Majcherczyk A, Hüttermann A (1996) Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds. Appl Microbiol Biotechnol 46: 313–317CrossRefGoogle Scholar
  79. Kaal EEJ, Field JA, Joyce TW (1995) Increasing ligninolytic enzyme activities in several white-rot Basidiomycetes by nitrogen-sufficient media. Bioresour Technol 53: 133–139CrossRefGoogle Scholar
  80. Kang G. Stevens DK (1994) Degradation of pentachlorophenol in bench-scale bioreactors using the white rot fungus Phanerochaete chrysosporium. Hazard Waste Hazard Mater 11: 397–410CrossRefGoogle Scholar
  81. Kaneko R. Iimori T, Yoshikawa H, Machida M, Yoshioka H. Murakami K (1994) A possible role of manganese peroxidase during biobleaching by the pulp bleaching fungus SKB-1152. Biosci Biotech Biochem 58: 1517–1518Google Scholar
  82. Kaneko R, Iimori T, Miyawaki S, Machida M, Murakami K (1995) Biobleaching with manganese peroxidase purified from the pulp bleaching fungus SKB-1152. Biosci Biotech Biochem 59: 1584–1585CrossRefGoogle Scholar
  83. Karunanandaa K, Varga GA (1996) Colonization of rice straw by white-rot fungi (Cyathus stercoreus): effect on ruminai fermentation pattern, nitrogen metabolism, and fibre utilization during continuous culture. Anim Feed Sci Technol 61: 1–16CrossRefGoogle Scholar
  84. Katagiri N, Tsutsumi Y, Nishida T (1995) Correlation of brightening with cumulative enzyme activity related to lignin biodegradation during biobleaching of kraft pulp by white rot fungi in the solid-state fermentation system. Appt Environ Microbial 61: 617–622Google Scholar
  85. Kawabe T, Morita H (1994) Production of benzaldehyde and benzyl alcohol by the mushroom Polyporus tuberaster K2606. J Agric Food Chem 42: 2556–2560CrossRefGoogle Scholar
  86. Kirby N, McMullan G, Marchant R (1995) Decolourisation of an artificial textile effluent by Phanerochaete chrysosporium. Biotechnol Lett 17: 761–764CrossRefGoogle Scholar
  87. Kirk TK, Farrell RI. (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbial 41: 465–505CrossRefGoogle Scholar
  88. Kondo R, Harazono K, Sakai K (1994a) Biobleaching of hardwood kraft pulp with manganese peroxidase from Phanerochaete sordida YK-624. Appt Environ Microbial 60: 4359–4363Google Scholar
  89. Kondo R, Kurashiki K, Sakai K (1994b) In vitro biobleaching of hardwood kraft pulp by extracellular enzymes excreted from white-rot fungi in a cultivation system using a membrane filter. Appl Environ Microbial 60: 921–926Google Scholar
  90. Kondo R, Tsuchikawa K, Iarazono K, Sakai K (1996) Biobleaching of kraft pulp with lignin-degrading fungi and their enzymes. In: Srebotnik E, Messner K (eds) Biotechnology in the pulp and paper industry. Proceedings of the 6th international conference on biotechnology in the pulp and paper industry, Facultas-Universitätsverlag. Vienna, pp 33–38Google Scholar
  91. Kotterman MJJ, Heessels E, de Jong E. Field JA (1994) The physiology of anthracene biodegradation by the white-rot fungus Bjerkandera sp. strain BOS55. Appt Microbial Biotechnol 42: 179–186CrossRefGoogle Scholar
  92. Krcmâr P, Ulrich R (1998) Degradation of polychlorinated biphenyl mixtures by the lignin-degrading fungus Phanerochaete chrysosporium. Folia Microbial 43: 79–84CrossRefGoogle Scholar
  93. Krcmâr P, Kubatova A, Votruba J, Erhanova P, Novotny C, Sasek V (1999) Degradation of polychlorinated biphenyls by extracellular enzymes of Phanerochaete chrysosporium produced in a perforated plate bioreactor. World J Microbial Biotechnol 15: 237–242Google Scholar
  94. Lack K, Duvnjak Z (1999) A method for the decrease of phenolic content in commercial canota meal using an enzyme preparation secreted by the white-rot fungus Trametes versicolor. Biotechnol Bioengineering 62: 422–433CrossRefGoogle Scholar
  95. Lapadatescu C, Feron G, Vergoignan C, Djian A, Durand A, Bonnarme P (1997) Influence of cell immobilization on the production of benzaldehyde and benzyl alcohol by the white-rot fungi Bjerkandera adusta, Ischnoderma benzoinum and Dichomiius squalens. Appl Microbial Biotechnol 47: 708–714CrossRefGoogle Scholar
  96. Laugero C, Sigoillot JC, Moukha S, Frasse P, Bellafontaine MN, Bonnarme P, Mougin C, Asther M (1996) Selective hyperproduction of manganese peroxidase by Phanerochaete chrysosporium I-1512 immobilised on nylon net in a bubble column reactor. Appl Microbial Biotechnol 44: 717–723Google Scholar
  97. Lesage-Meessen L, Delattre M, Haon M, Thibault J, Ceccaldi BC, Brunerie P, Asther M (1996) A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J Biotechnol 50: 107–113CrossRefGoogle Scholar
  98. Lest an D, Lamar RT (1996) Development of fungal inocula for bioaugmentation of contaminated soils. Appt Environ Microbial 62: 2045–2052Google Scholar
  99. Liang R, McFarland MJ (1994) Biodegradation of pentachlo rophenol in soil amended with the white rot fungus Phanerochaete chrysosporium. Haz Waste Haz Mat 11: 411–421CrossRefGoogle Scholar
  100. Liu D, Maguire RJ, Lau YL, Pacepavicius GJ, Okamura H, Aoyama I (1997) Transformations of the new antifouling compound Irgarol 1051 by Phanerochaete chrysosporium. War Res 31: 2363–2369CrossRefGoogle Scholar
  101. Logan BE, Alleman BC, Amy GL, Gilbertson RL (1994) Adsorption and removal of pentachlorophenol by white rot fungi in batch culture. Wat Res 28: 1533–1538CrossRefGoogle Scholar
  102. Lomascolo A, Stentelaire C, Asther M, Lesage ML (1999) Basidiomycetes as new biotechnological tools to generate natural aromatic flavours for the food industry. Trends Biotechnol 17: 282–289CrossRefGoogle Scholar
  103. Manzanares R Fajardo S, Martin C (1995) Production of ligninolytic activities when treating paper pulp effluents by Trametes versicolor. J Biotechnol 43: 125–132CrossRefGoogle Scholar
  104. Martinez AT, Camarero S, Guillén F, Gutiérrez A, Munoz C, Varela E, Martinez MJ, Barrasa JM, Ruel K, Pelayo JM (1994) Progress in biopulping of non-woody materials: chemical, enzymatic and ultrastructurai aspects of wheat straw delignification with ligninolytic fungi from the genus Pleurotus. FEMS Microbiol Rev 13: 265–274CrossRefGoogle Scholar
  105. Marvin-Sikkema FD, de Bont JAM (1994) Degradation of nitroaromatic compounds by microorganisms. Appt Microbial Biotechnol 42: 499–507CrossRefGoogle Scholar
  106. Masaphy S, Henis Y, Lavanon D (1996) Manganese-enhanced biotransformation of atrazine by the white rot fungus Pleurotus pulmonarius and its correlation with oxidation activity. Appt Environ Microbiol 62: 3587–3593Google Scholar
  107. Masaphy S. Henis Y, Krinfeld B, Lavanon D (1997) In-vitro N-de-ethylation of atrazine by cell-free extract of Pleurotus pulmonarius is induced by Mn’. Biotechnol Lett 19: 861–864Google Scholar
  108. Masaphy S, Lamb DC, Kelly SL (1999) Purification and characterization of a benzo(a)pyrene hydroxylase from Pleurotus pulmonarius. Biochem Biophys Res Commun 266: 326–329CrossRefGoogle Scholar
  109. May RG, Sparrer 1, Hogue E, Sandermann H Jr (1997) Mineralization of native pesticidal cell-wall complexes by the white-rot fungus. Phanerochaete chrysosporium. J Agric Food Chem 45: 1911–1915CrossRefGoogle Scholar
  110. McFarland MJ, Salladay D, Ash D, Baiden E (1996) Corn-posting treatment of Alachlor impacted soil amended with the white rot fungus Phanerochaete chrysosporium. Haz Waste Haz Mat 13: 363–373CrossRefGoogle Scholar
  111. Mehna A, Bapai P, Bajpai PK (1995) Studies on decolorization of effluent from a small pulp mill utilizing agriresidues with Trametes versicolor. Enzyme Microb Technol 17: 18–22CrossRefGoogle Scholar
  112. Messner K, Srebotnik E (1994) Biopulping: an overview of developments in an environmentally safe paper-making technology. FEMS Microbiol Rev 13: 351–364CrossRefGoogle Scholar
  113. Messner K, Ertler G, Jaklin-Farcher S, Boskovsky P, Regensberger U, Blaha A (1990) Treatment of bleach plant effluents by the MYCOPOR system. In: Kirk TK, Chang HM (eds) Biotechnology in pulp and paper manufacture: applications and fundamental investigations. Butterworth-Heinemann, Boston, pp 245–251Google Scholar
  114. Miura M, Kitaoka Y, Kakezawa M, Nishida T (1998) Biobleaching of hardwood kraft pulp with cellulase-deficient mutant from hyper ligninolytic fungus IZU154. Appl Biochem Biotechnol 73: 113–126CrossRefGoogle Scholar
  115. Moreira MT, Feijoo G, Sierra-Alvarez R, Lema J, Field JA (1997) Manganese is not required for biobleaching of oxygen-delignified kraft pulp by the white rot fungus Bjerkandera sp. strain BOS55. Appl Environ Microbiol 63: 1749–1755Google Scholar
  116. Mougin C, Laugero C, Asther M, Chaplian V (1997) Biotransformation of s-triazine herbicides and related degradation of products in liquid cultures by the white rot fungus Phanerochaete chrysosporium. Pestic Sci 49: 169–177CrossRefGoogle Scholar
  117. Mpofu IDT, Ndlovu LR (1994) The potential of yeast and natural fungi for enhancing fibre digestibility of forages and roughages. Anim Feed Sci Technol 48: 39–47CrossRefGoogle Scholar
  118. Murphy NBK, Kaufman DD, Fries F (1979) Degradation of pentachlorophenol ( PCP) in aerobic and anaerobic soil. J Environ Sci Health B14: 1–14Google Scholar
  119. Nandan R, Raisuddin S (1992) Fungal degradation of industrial wastes and wastewater. ln: Arora DK. Elander RP, Mukerji KG (eds) Handbook of applied mycology, vol 4. Fungal biotechnology. Dekker, New York, pp 931–961Google Scholar
  120. Nanny MA, Bortiatynski JM, Tien M, Hatcher PG (1996) Investigations of enzymatic alterations of 2,4dichlorophenol using 13C-nuclear magnetic resonance in combination with site-specific 13C-labeling: understanding the environmental fate of this pollutant. Environ Toxicol Chem 15: 1857–1864Google Scholar
  121. Nigam P, Armour G, Banat IM, Singh D, Marchant R (2000) Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresource Technol 72: 219–226CrossRefGoogle Scholar
  122. Nishida T, Katagiri N, Ehara K, Tsutsumi Y (1996) New analysis of lignin-degrading enzymes related to biobleaching of kraft pulp by white-rot fungi. In: Srebotnik E, Messner K (eds) Biotechnology in the pulpGoogle Scholar
  123. and paper industry. Proceedings of the 6th international conference on biotechnology in the pulp and paper industry, Facultas-Universitätsverlag, Vienna, pp 51–54Google Scholar
  124. Novotny C, Vyas BRM, Erbanova P. Kubatova A, äaöek V (1997) Removal of PCBs by various white rot fungi in liquid cultures. Folia Microbiol 42: 136–140Google Scholar
  125. Novotny C, Erbanova P, Sasek V, Kubatova A, Cajthaml T, Lang E, Krahl J, Zadrazil F (1999) Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. Biodegradation 10: 159–168CrossRefGoogle Scholar
  126. Odier E, Artaud I (1992) Degradation of lignin. In: Winkelmann G (ed) Microbial degradation of natural products. VCH, Weinheim, pp 161–192Google Scholar
  127. Paice MG. Jurasek L, Ho C, Boubonnais R, Archibald F (1989) Direct biological bleaching of hardwood kraft pulp with the fungus Coriolus versicolor. Tappi J 72:217–221Google Scholar
  128. Pal N, Korfiatis GP, Patel V (1997) Sonochemical extraction and biological treatment of pentachlorophenol contaminated wood. J Hazard Mater 53: 165–182CrossRefGoogle Scholar
  129. Pallerla S, Chambers RP (1995) Continuous decolorization and AOX reduction of bleach plant effluents by free and immobilized T versicolor. J Environ Sci Health A30: 423–437Google Scholar
  130. Pallerla S, Chambers RP (1997) Characterization of a Ca-alginate-immobilized Trametes versicolor bioreactor for decolorization and AOX reduction of paper mill effluents. Bioresouree Technology 60:1–8. J Environ Sci Health A30: 423–437Google Scholar
  131. Paszczynski A, Crawford RL (1995) Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chr_ysosporium. Biotechnol Prog 11: 368–379CrossRefGoogle Scholar
  132. Prasad GK, Gupta RK (1997) Decolourization of pulp and paper mill effluent by two white-rot fungi. Indian J Environ Health 39: 89–96Google Scholar
  133. Presnell TL, Swaisgood HE, Joyce TW, Chang H (1994) Investigation into the kinetic properties of immobilised lignin peroxidases. J Biotechnol 35: 77–85CrossRefGoogle Scholar
  134. Prouty AL (1990) Bench-scale development and evaluation of a fungal bioreactor for colour removal from bleach effluents. Appl Microbiol Biotechnol 32: 490–493CrossRefGoogle Scholar
  135. Raghukumar C, Chandramohan D, Michel FC Jr, Reddy CA (1996) Degradation of lignin and decolorization of paper mill bleach plant effluent ( BPE) by marine fungi. Biotechnol Lett 18: 105–106Google Scholar
  136. Reid TD, Paice MG (1994) Biological bleaching of kraft pulps by white-rot fungi and their enzymes. FEMS Microbiol Rev 13: 369–376CrossRefGoogle Scholar
  137. Reid ID, Paice MG, Ho C, Jurasek L (1990) Biological bleaching of softwood kraft pulp with the fungus Trametes (Coriolus) versicolor. Tappi J 73: 149–153Google Scholar
  138. Ricotta A, Unz RF, Bollag J-M (1996) Role of a lactase in the degradation of pentachlorophenol. Bull Environ Contam Toxicol 57: 560–567CrossRefGoogle Scholar
  139. Ritter WF, Scarborough RW (1995) A review of bioremediation of contaminated soils and groundwater. J Environ Sei Health A30: 333–357Google Scholar
  140. Rodriguez E, Pickard MA, Vazquez DR (1999) Industrial dye decolorization by laccases from ligninolytic fungi. Cur Microbiol 38: 27–32CrossRefGoogle Scholar
  141. Rothschild N, Levkowitz A, Hadar Y, Dosoretz C (1999) Extracellular mannose-6-phosphatase of Phanerochaete chrysosporium: a lignin peroxidase- modifying enzyme.Arch Biochem Biophys 372: 107–111CrossRefGoogle Scholar
  142. Rüttimann-Johnson C, Lamar RT (1996) Polymerization of pentachlorophenol and ferulic acid by fungal extra-cellular lignin-degrading enzymes. Appl Environ Microbiol 62: 3890–3893Google Scholar
  143. Rüttimann-Johnson C, Lamar RT (1997) Binding of pentachlorophenol to humic substances by the action of white rot fungi. Soil Biol Biochem 29: 1143–1148CrossRefGoogle Scholar
  144. Sabharwal HS,Akhtar M. Yu E, D’Agostono D. Young RA, Blanchette RA (1996) Development of biological pulping processes for non-woody plants. In: Srehotnik E, Messner K (eds) Biotechnology in the pulp and paper industry. Proc 6th Int Conf on Biotechnology in the pulp and paper industry, Facultas-Universitätsverlag, Vienna, pp 233–236Google Scholar
  145. Sack U, Hofrichter M, Fritsche W (1997) Degradation of phenanthrene and pyrene by Nematoloma frowardii. J Basic Microbiol 37: 287–293CrossRefGoogle Scholar
  146. Sarikaya A, Ladisch MR (1997) Mechanism and potential applications of bio-ligninolytic systems in a CELSS. Appl Biochem Biotechnol 62: 131–149CrossRefGoogle Scholar
  147. Scheibner K, Hofrichter M, Fritsche W (1997) Mineralization of 2-amino-4,6-dinitrotoluene of the white-rot fungus Nematoloma frowardii. Biotechnol Lett 19: 835–839CrossRefGoogle Scholar
  148. Schliephake K, Lonergan GT, Ones CL, Mainwaring DE (1993) Decolourisation of a pigment plant effluent by Pycnoporus cinnabarinus in a packed-bed bioreactor. Biotechnol Lett 15: 1185–1188CrossRefGoogle Scholar
  149. Schwarze FWMR, Lonsdale D, Fink S (1997) An overview of wood degradation patterns and their implications for tree hazard assessment. Arboricult J 21: 1–32CrossRefGoogle Scholar
  150. Sermanni GG, D’Annibale A, Di Lena G, Vitale NS, Di Mattia E, Mine11i V (1994) The production of exoenzymes by Lentinus edodes and Pleurotus ostreatus and their use for upgrading corn straw. Bioresour Technol 48: 173–178CrossRefGoogle Scholar
  151. Shah MM, Barr DP, Chung N, Aust S (1992) Use of white rot fungi in the degradation of environmental chemicals. Toxicol Lett 64 /65: 493–501CrossRefGoogle Scholar
  152. Sinsabaugh RL, Liptak MA (1997) Enzymatic conversion of biomass. In: Wicklow DT, Söderström BE (eds) The Mycota IV. Environmental and microbial relationships, Chap. 21. Springer, Berlin Heidelberg New York, pp 347–357Google Scholar
  153. Spadaro JT, Renganathan V (1994) Peroxidase-catalysed oxidation of azo dyes: mechanism of disperse yellow 3 degradation. Arch Biochem Biophys 312: 301–307CrossRefGoogle Scholar
  154. Srehotnik E, Jensen KA Jr, Hammel KE (1994) Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase. Proc Natl Acad Sci USA 91: 12794–12797CrossRefGoogle Scholar
  155. Srinivasan C, Dsouza TM, Boominathan K, Reddy CA (1995) Demonstration of lactase in the white rot basidiomycete Phanerochaete chrysosporium BKMF1767. Appl Environ Microbiol 61: 4274–4277Google Scholar
  156. Stamets P (1993) Growing gourmet and medicinal mushrooms. Ten Speed Press, BerkleyGoogle Scholar
  157. Stevens DK, Badkoubi A, Murarka IP (1996) Pentachlorophenol mineralization by Phanerochaete chrysosporium in liquid culture in the presence of syringic acid or humic acid. Hazard Waste Hazard Mater 13: 473–484CrossRefGoogle Scholar
  158. Sutherland JB (1992) Detoxification of polycyclic aromatic hydrocarbons by fungi. J Ind Microbiol 9: 53–62.CrossRefGoogle Scholar
  159. Sutherland GRJ, Haselbach J, Aust SD (1997) Biodegradation of crosslinked acrylic polymers by a white-rot fungus. Environ Sci Pollut Res 4: 16–20CrossRefGoogle Scholar
  160. Suzuki Y, Okano K, Kato S (1995) Characteristics of white-rotted woody materials obtained from shiitake mushroom (Lentinus edodes) and nameko mushroom (Pholiota nameko) cultivation with in vitro rumen fermentation. Anim Feed Sci Technol 54: 227–236CrossRefGoogle Scholar
  161. Swamy J, Ramsay JA (1999) The evaluation of white rot fungi in the decoloration of textile dyes. Enzyme Microbial Technol 24: 130–137CrossRefGoogle Scholar
  162. Takada S, Nakamura M, Matsueda T, Kondo R, Sakai K (1996) Degradation of polychlorinated dibenzo-pdioxins and polychlorinated dibenzufurans by the white rot fungus Phanerochaete sordida YK-624Google Scholar
  163. Thurston CF (1994) The structure and function of fungal laccases. Microbiology UK 140: 19–26CrossRefGoogle Scholar
  164. Tien M (1987) Properties of ligninase from Phanerochaete chrysosporium and their possible applications. Crit Rev Microbiol 15: 141–168CrossRefGoogle Scholar
  165. Timofeevski SL, Nie G, Reading NS, Aust SD (1999) Addition of veratryl alcohol oxidase activity to manganese peroxidase by site-directed mutagenesis. Biochem Biophys Res Commun 256: 500–504CrossRefGoogle Scholar
  166. Timofeevski SL, Nie G, Reading NS, Aust SD (2000) Substrate specificity of lignin peroxidase and a S168 W variant of manganese peroxidase. Arch Biochem Biophys 373: 147–153CrossRefGoogle Scholar
  167. Tuomela M, Lyytikainen M, Oivanen P, Hatakka A (1999) Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungus Trametes versicolor. Soil Biol Biochem 31: 65–74CrossRefGoogle Scholar
  168. Tuor U, Winterhalter K, Fiechter A (1995) Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J Biotechnol 41: 1–17CrossRefGoogle Scholar
  169. Van Aken B, Hofrichter M, Scheibner K, Hatakka A, Naveau H, Agathos SN (1999) Transformation and mineralization of 2,4,6-trinitrotoluene (TNT) by manganese peroxidase from the white-rot basidiomycete Phlebia radiata. Biodegradation 10: 83–91CrossRefGoogle Scholar
  170. Vares T, Kalsi M, Hatakka A (1995) Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat straw. Appl Environ Microbiol 61: 3515–3520Google Scholar
  171. Viikari L, Kantelinen A, Sundquist J Linko M (1994) Xylanases in bleaching: from an idea to industry. FEMS Microbiol Rev 13: 335–350CrossRefGoogle Scholar
  172. Vinciguerra V, D’Annibale A, Della Monache G, Giovannozzi-Sermanni G (1993) Degradation and biotransformation of phenolic compounds of waste olive waters by the white-rot basidiomycete Lentinus edodes. Med Fac Landbouww Univ Gent 58/4a: 1811–1814Google Scholar
  173. Vinciguerra V, D’Annibale A, Della Monache G, Giovannozzi-Sermanni G (1995) Correlated effects during the bioconversion of waste olive waters by Lentinus edodes. Bioresour Technol 51: 221–226CrossRefGoogle Scholar
  174. Vyas BRM, Sasek V, Matucha M, Bubner M (1994) Degradation of 3,3’,4,4’-tetrachlorobiphenyl by selected white rot fungi. Chemosphere 28: 1127–1134CrossRefGoogle Scholar
  175. Wall MB, Stafford G, Noel Y, Fritz A, Iverson S, Farrell RL (1996) Treatment with Ophiostomna piliferum improves chemical pulping efficiency. In: Srebotnik E, Messner K (eds) Biotechnology in the pulp and paper industry. Proceedings of the 6th international conference on biotechnology in the pulp and paper industry. Facultas-Universitätsverlag, Vienna, pp 205–210Google Scholar
  176. Wang X. Ruckenstein E (1994) Immobilization of Phonerochaete chrysosporium on porous polyurethane particles with application to biodegradation of 2-chlorophenol. Biotechnol Tech 8: 339–344CrossRefGoogle Scholar
  177. Wariishi H, Valli K. Gold MH (1991) In vitro depolymerisation of lignin by manganese peroxidase of Phonerochaete chrysosporium. Biochem Biophys Res Commun 176: 269–275CrossRefGoogle Scholar
  178. Wiesche C, Martens R. Zadrazil F (1996) Two-step degradation of pyrcnc by white-rot fungi and soil microorganisms. Appl Microbiol Biotechnol 46: 653–659CrossRefGoogle Scholar
  179. Wolfaardt JF, Bosman IL, Jacobs A, Male JR. Rabie C.1 (1996) Bio-kraft pulping of softwood. In: Srebotnik E, Messner K (cds) Biotechnology in the pulp and paper industry. Proceedings of the 6th international conference on biotechnology in the pulp and paper industry, Facultas-Universitätsverlag, Vienna, pp 211–216Google Scholar
  180. Wong KKY. de Jong E, Saddler JN (1996) Lignin-xylan complexes in kraft pulp appear to be the target substrates for xylanase prebleaching. In: Srebotnik E, Messner K (eds) Biotechnology in the pulp and paper industry. Proceedings of the 6th international conference on biotechnology in the pulp and paper industry, Facultas-Universitätsverlag, Vienna, pp 93–98Google Scholar
  181. Wuest PJ, Royce DJ, Beelman RB (eds) (1987) Cultivating edible fungi. Developments in crop science, vol 10. Elsevier, AmsterdamGoogle Scholar
  182. Yateem A, Balba MT, AI-Awardhi N (1998) White rot fungi and their role in remediating oil-contaminated soil. Environ Int 24: 181–187CrossRefGoogle Scholar
  183. Yesilada O, Fiskin K (1995) Decolorization of alcoholic waste water by white rot fungi Coriolus versicolor, Funalia trogii and Phanerochaete chrysosporium ME446. Tr J Biol 19: 191–200Google Scholar
  184. Yesilada O, Fiskin K, Yesilada E (1995) The use of white rot fungus Funalia trogii ( Malatya) for the decolourisation and phenol removal from olive mill wastewater. Environ Technol 16: 95–100Google Scholar
  185. Young L, Yu J (1997) Ligninase-catalysed decolorization of synthetic dyes. Wat Res 31: 1187–1193CrossRefGoogle Scholar
  186. Zadrazil F, Kamra ON, Isikhuemhen OS, Schuchardt F, Flachowsky G (1996) Bioconversion of lignocellulose into ruminant feed with white rot fungi — review of work done at the FAL. Braunschweig. J Appl Anim Res 10: 105–124Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • J. P. Ralph
    • 1
  • D. E. A. Catcheside
    • 2
  1. 1.Food and Wine ScienceRegency Institute of Technical and Further EducationRegency ParkAustralia
  2. 2.School of Biological SciencesFlinders UniversityAdelaideAustralia

Personalised recommendations