Skip to main content

Industrial Biotransformations with Fungi

  • Chapter
Industrial Applications

Part of the book series: The Mycota ((MYCOTA,volume 10))

  • 1126 Accesses

Abstract

A great challenge for industrial chemistry during the next few decades will be the development of selective and sustainable processes. One contribution to this task is made by biocatalysts, because biochemical conversions are performed under selective and mild conditions. The foundation for the discovery of new biocatalysts is the enormous diversity of organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam W, Lazarus M, Sahamoller CR, Weichold O, Hoch U, Haering D, Schreier P (1999) Biotransformations with peroxidases. Adv Biochem Eng Bioltechnol 63: 74–108

    Google Scholar 

  • Allain EJ, Hager LP, Deng L, Jacobsen EN (1993) Highly enantioselective epoxidation of disubstituted alkenes with hydrogen peroxide catalyzed by chloroperoxidase. J Am Chem Soc 115: 4415–4416

    Article  CAS  Google Scholar 

  • Anderson EM, Karin M, Kirk 0 (1998) One biocatalyst — many applications — the use of Candida antartica B-lipase in organic synthesis. Biocatalysis Biotransform 16: 181–204

    Google Scholar 

  • Anonymous (1999) Breakthrough in downstream-processing techniques. DSM Mag 88: 26–28

    Google Scholar 

  • Archelas A (1998) Fungal epoxide hydrolases — new tools for the synthesis of enantiopure epoxides and diols. J Mol Catalysis B Enzymatic 5: 79–85

    Article  CAS  Google Scholar 

  • Archelas A, Furstoss R (1997) Synthesis of enantiopure epoxides through biocatalytic approaches. Annu Rev Microbiol 51: 491–525

    Article  CAS  Google Scholar 

  • Archelas A, Furstoss R (1998) Epoxide hydrolases — new tools for the synthesis of fine organic chemicals. Trends Biotechnol 16: 108–116

    Article  CAS  Google Scholar 

  • Archelas A, Furstoss R (1999) Biocatalytic approaches for the synthesis of enantiopure epoxides. In: Fessner WD (ed) Biocatalysis from discovery to application. Springer, Berlin Heidelberg New York pp 159–191

    Chapter  Google Scholar 

  • Archelas A, Delbecque JP, Furstoss R (1993) Microbial transformations. 30. Enatioselective hydrolysis of racemic epoxides: the synthesis of enantiopure insect juvenile hormone analogs ( Bower’s compound ). Tetrahedron Asymmetry 4: 2445–2446

    Google Scholar 

  • Archer IVJ (1997) Epoxide hydrolases as asymmetric catalysts. Tetrahedron 53: 15617–15662

    Article  CAS  Google Scholar 

  • Audras B, More J (1996) Method for producing vanillin using the bioconversion of benzene precursors. Orsan SA, WO 96/34971, 7. 11. 1996

    Google Scholar 

  • Bellet P, Nomine G, Mathieu J (1966) Asymmetric reduction by a microbiological route in the total synthesis of steroids. C R Ser C 263: 88–89

    CAS  Google Scholar 

  • Blum R, Becker KW (1996) Use of L-carnitine as a feed-additive for crustaceans. Lonza AG, WO 96/25859, 29. 8. 1996

    Google Scholar 

  • Bringer-Meyer S, Schmitz KL, Sahm H (1986) Pyruvate decarboxylase from Zymomonas mobilis. Isolation and partial characterization. Arch Microbiol 146: 105–110

    Google Scholar 

  • Bull AT, Goodfellow M, Slater JH (1992) Biodiversity as a source of innovation in biotechnology. Annu Rev Microbiol 46: 219–252

    Article  CAS  Google Scholar 

  • Cardilla R, Fuganti C, Sacerdote G, Barberi M, Cabella F, Squarcia F (1990) Procede de production microbi-ologique de gamma decanolide and d’octanolide. Pernot-Richard, EP 356291, 3. 8. 1989

    Google Scholar 

  • Camel! A, Wittels A (1990a) Biotransformation of cycloalkenones by fungi. Baeyer-Villiger oxidation of bicycloheptenone by dematiaceous fungi. Biotechnol Lett 12: 885–890

    Google Scholar 

  • Carnell A, Wittels A (1990b) Regio-and stereoselective Baeyer-Villiger oxidation by dematiaceous fungi. Biotechnol Lett 4: 17–21

    Google Scholar 

  • Cheetham PSJ, Maume KA, de Roig FJM (1988) Microbial manufacture of gamma decalactone from ricinolic acid. Unilever, EP 258–993, 9. 3. 1988

    Google Scholar 

  • Chen XJ, Archelas A, Furstoss R (1993) Microbial transformations. 27. First example for preparative-scale enantioselective or diastereoselective epoxide hydrolyses using microorganisms, an unequivocal access to all four bisabolol stereoisomers. J Org Chem 58: 5528–5532

    Google Scholar 

  • Cherry JR, Lamsa MH, Schneider P, Vind J, Svendsen A, Jones A, Pedersen AH (1999) Directed evolution of a fungal peroxidase. Nat Biotechnol 17: 379–384

    Article  CAS  Google Scholar 

  • Chibata I, Ishikawa T, Tosa T (1970) e-lysine acylase from Acromobacter pestifer. Methods Enzymol 19: 756–762

    Google Scholar 

  • Chibata 1, Tosa T, Sato T, Mori T (1976) Production of L-amino acids by aminoacylase adsorbed on DEAESephadex. Methods Enzymol 44: 746–759

    Article  CAS  Google Scholar 

  • Colonna S, Gaggero N, Manfredi A, Casella L, Gullotti M, Carrea G, Pasta P (1990) Enantioselective oxidations of sulfides catalyzed by chloroperoxidase. Biochemistry 29: 10465–10468

    Article  CAS  Google Scholar 

  • Colonna S, Gaggero N, Carrea G, Pasta P (1997) A new enzymatic enantioselective synthesis of dialkyl sulfoxides catalysed by monooxygenases. Chem Commun 5: 439–440

    Article  Google Scholar 

  • Colonna S, Gaggero N, Richelmi C, Pasta P (1999) Recent biotechnological developments in the use of peroxidases. Trends Biotechnol 17: 163–168

    Article  CAS  Google Scholar 

  • Cooper B, Ladner W, Hauer B, Siegel H (1990) Process for fermentative production of 2-(4-hydroxyphenoxy) propionic acid. BASF AG, WO90/11362, 4.10. 90

    Google Scholar 

  • Corbett MD, Chipko BR, Batchelor AO (1980) The action of chloride peroxidase on 4-chloroaniline. N-oxidation and ring halogenation. Biochem J 187: 893–903

    Google Scholar 

  • Dai LZ, Klibanov AM (1999) Striking activation of oxidative enzymes suspended in nonaqueous media. Proc Natl Acad Sci USA 96: 9475–9478

    Article  CAS  Google Scholar 

  • Dexter AF, Lakner FJ, Campell RA, Hager LP (1995) Highly enantioselective epoxidation of 1,1-disubstituted alkenes catalyzed by chloroperoxidase. J Am Chem Soc 117: 6412–6413

    Article  CAS  Google Scholar 

  • Dingier C. Krei GA, Hauer B (1996a) Process optimization for the biotransformation of (R)-2-phenoxypropionic acid into (R)-2-(4-hydroxyphenoxy)-propionic acid: modelling of the macrokinetics. International conference on biotechnology for industrial production of fine chemicals. Zermatt, Switzerland, 29.9.1996–2.10. 1996

    Google Scholar 

  • Dingier C, Ladner W. Krei GA, Cooper B, Hauer B (1996b) Preparation of (R)-2-(4-hydroxyphenoxy)propionic acid by biotransformation. Pesticide Sci 46: 33–35

    Article  Google Scholar 

  • Drautz K, Waldmann H (eds) (1994) Enzyme catalysis in organic synthesis. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  • Eiter K, Sackl E (1952) D,L-Desoxychloromycetin D,L-3-pnitrophenyl-2-dichloroacetamido-propanol. Monatsh Chem 83: 123–136

    Article  CAS  Google Scholar 

  • Endrizzi A, Belin JM (1995) Bioconversion of methyl ricinoleate to 4-hydroxy-decanoic acid and to Zdecalactone by yeasts of the genus Candida. J Basic Microbiol 35: 285–292

    Article  CAS  Google Scholar 

  • Endrizzi A, Pagot Y, Le Clainche A, Nicaud JM, Belin JM (1996) Production of lactones and peroxisomal beta-oxidation in yeasts. Crit Rev Biotechnol 16: 301–329

    Article  CAS  Google Scholar 

  • Everse J, Everse KE, Grisham MB (1991) Peroxidases in chemistry and biology. CRC Press, Boca Raton

    Google Scholar 

  • Faber K (1997) Biotransformations in organic chemistry. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Fallon RD, Picataggio SK (1998) Transformed yeast strains and their use for the production of monoterminal and diterminal aliphatic carboxylates. E.I. du Pont, WO 99/04014, 21. 7. 1997

    Google Scholar 

  • Farbood MI, Willis BJ (1985) Production of gammadecalactone. Fritzsche and Dodge, US 4,560, 656, 27. 9. 1982

    Google Scholar 

  • Freyer S, Weuster-Botz D, Wandrey C (1992) Medienoptimierung mit genetischen Algorithmen. BioEngineering 5 /6: 16–25

    Google Scholar 

  • Geigert J, Dalietos DJ, Neidleman SL, Lee TD, Wadsworth J (1983a) Peroxide oxidation of primary alcohols to aldehydes by chloroperoxidase catalysis. Biochem Biophys Res Commun 114: 1104–1108

    Article  CAS  Google Scholar 

  • Geigert J, Neidleman SL, Dalietos DJ (1983b) Novel haloperoxidase substrates. J Biol Chem 258: 2273–2277

    CAS  Google Scholar 

  • Geigert J, Neidleman SL, Dalietos DJ, de Witt SK (1983c) Haloperoxidases: enzymatic synthesis of a,ß-halohydrins from gaseous alkenes. Appt Environ Microbiol 45: 366–374

    CAS  Google Scholar 

  • Geigert J, Neidleman SL, Dalietos DJ, de Witt SK (1983d) Novel haloperoxidase reaction: synthesis of dihalogenated products. Appt Environ Microbiol 45: 1575–1581

    CAS  Google Scholar 

  • Greenstein JP (1957) Resolution of DL-mixtures of a-amino acids. Methods Enzymol 3: 554–570

    Article  Google Scholar 

  • Gröger D, Schmauder HP, Frömmel H (1969) Verfahren zur Herstellung von Ephedrin. Isis-Chemie KG, Zwickau, DE 1543691, 11. 09. 1969

    Google Scholar 

  • Gross B, Asther M, Corrieu G, Brunerie P (1996) Production of vanillin by bioconversion of benzenic precursors. Pernot-Richard, EP 453368, 31. 7. 1996

    Google Scholar 

  • Hager LP, Morris DR, Brown FS, Eberwein H (1966) Chloroperoxidase. II. Utilization of halogen anions. J Biol Chem 241: 1769–1777

    Google Scholar 

  • Hager LP, Lakner FJ, Basavapathruni A (1998) Chiral synthons via chloroperoxidase catalysis. J Mol Catalysis B Enzymatic 5: 95–101

    Article  CAS  Google Scholar 

  • Hallgas J (1992) Biocatalysts in organic synthesis. Elsevier, Amsterdam

    Google Scholar 

  • Hildebrandt G, Klavehn W (1932) Verfahren zur Herstellung von L-1-Phenyl-2-methylaminopropan-lol. Knoll AG, DRP 548459, 24. 3. 1932

    Google Scholar 

  • Hoeks F (1990) Verfahren zur diskontinuierlichen Herstellung von L-Carnitin auf mikrobiologischem Weg. Lonza AG, EP 410430, 25. 7. 1990

    Google Scholar 

  • Hofmeister H,Annen K, Petzold K, Wiechert R (1986) Synthese von Gestoden. Arzneimittelforschung 36: 76 1783

    Google Scholar 

  • Iding H, Siegert P, Mesch K, Pohl M (1998) Application of a-keto acid decarboxylases in biotransformations. Biochim Biophys Acta 2: 307–322

    Article  Google Scholar 

  • lizuka H, Naito H (1981) Microbial conversion of steroids and alkaloids. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Jung H, Kleber HP (1991) Metabolism of D(+)-carnitin by Escherichia coli. Appt Microbiol Biotechnol 35: 393395

    Google Scholar 

  • Kaneyuki H, Deno H, Hiratsuka H, Matsuyoshi T, Furukawa T (1980) Production of sebacic acid from ndecan by mutants derived from Torulopsis magnoliae. J Ferment Technol 58: 405–410

    CAS  Google Scholar 

  • Kataoka M, Shimizu K, Sakamoto K, Yamada H, Shimizu S (1995a) Lactonohydrolase-catalyzed optical resolution of pantoyl lactone: selection of a potent enzyme producer and optimization of culture and reaction conditions for practical resolution. Appl Microbiol Biotechnol 43: 333–338

    Article  Google Scholar 

  • Kataoka M, Shimizu K, Sakamoto K, Yamada H, Shimizu S (1995b) Optical resolution of racemic pantolactone with a novel fungal enzyme, lactonohydrolase. Appt Microbiol Biotechnol 43: 974–977

    Article  CAS  Google Scholar 

  • Kataoka M, Yamamoto K, Shimizu S, Ohta M, Kita A, Higuchi Y, Miki K (1998) Crystallization and preliminary X-ray diffraction study of lactonohydrolase from Fusarium oxysporum. Acta Crystallogr Sect D Biol Crystallogr 54: 1432–1434

    Article  CAS  Google Scholar 

  • Kieslich K (1980) Steroid conversion. In: Rose A (ed) Economic microbiology — microbial enzymes and transformations, Academic Press, London pp 369465

    Google Scholar 

  • Kieslich K, Leuenberger HGW (1994) Biotransformations. In: Präve P, Faust U, Sittig W, Sukatsch D (eds) Handbuch der Biotechnologie. Oldenbourg Verlag, Munich, pp 705–759

    Google Scholar 

  • Koichi K, Namio U (1982) Process for the preparation of long chain dicarboxylic acids by fermentation. US 4339536, 3. 6. 1980

    Google Scholar 

  • Kolattukudy PE, Brown L (1975) Fate of naturally occurring epoxy acids: a soluble epoxide hydrase, which catalyzes cis hydration, from Fusarium solani pisi. Arch Biochem Biophys 166: 599–607

    Google Scholar 

  • Komnieck LA (1971) Process for the microbial 1-dehydrogenation of certain 4,9(11)-pregnadiens. US 3770586, 24. 3. 1971

    Google Scholar 

  • Königsberger K, Braunegg G, Faber K, Griengl H (1990) Baeyer-Villiger oxidation of bicyclic ketones by cylindrocarpon destructans. Biotechnol Lett 12: 509514

    Google Scholar 

  • Kosmol H, Kieslich K, Vossing R, Koch H, Petzoldt K, Gibian H (1967) total synthesis 8.14-seco-1.3.5(10).9estratetraen-14.17-dion. Justus Liebigs Ann Chem 701: 198–205

    Google Scholar 

  • Krings U, Berger Rg (1998) Biotechnological production of flavours and fragrances. Appt Microbiol Biotechnol 49: 1–8

    Article  CAS  Google Scholar 

  • Kulla HG (1991) Enzymatic hydroxylations in industrial application. Chimia 45: 81–85

    CAS  Google Scholar 

  • Kulla HG, Lehky P, Squaretti G (1985) Verfahren zur kontinuirlichen Herstellung von L-Carnitin. Lonza AG, EP 195944, 25. 2. 1986

    Google Scholar 

  • Labuda IM, Goers SK, Keon KA (1992) Bioconversion for the production of vanillin. Kraft General Food Inc, US 5.128, 253, 7. 7. 1992

    Google Scholar 

  • Labuda IM, Goers SK, Keon KA (1994) Bioconversion for the production of vanillin. Kraft General Food Inc, US 5,279, 950, 18. 1. 1994

    Google Scholar 

  • Ladner W. Staudemaier HR, Hauer B, Müller U, Pressler U, Meyer J (1992) Hydroxylation of alkyl carboxylic acids using fungi. BASF AG, W093/13214, 14. 12. 1992

    Google Scholar 

  • Lakner FJ, Hager LP (1996) Chloroperoxidase as enantioselective epoxidation catalyst: an efficient synthesis of ( R)-(-)-mevalonolactone. J Org Chem 61: 3923–3925

    Google Scholar 

  • Lakner FJ, Cain KP, Hager LP (1997) Enantioselective epoxidation of w-bromo-2-methyl-l-alkenes catalyzed by chloroperoxidase–effect of chain length on selectivity and efficiency. J Am Chem Soc 119: 443–444

    Article  CAS  Google Scholar 

  • Lesage-Meessen L, Delattre M, Haon M, Thibault JF, Ceccaldi BC, Brunerie P, Asther M (1996) A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J Biotechnol 50: 107–113

    Article  CAS  Google Scholar 

  • Lesage-Meessen L, Stentelaire C, Lomascolo A, Couteau D, Asther M, Moukha S, Record E, Sigoillot JC (1999) Fungal transformation of ferulic acid from sugar beet pulp to natural vanillin. J Sci Food Agric 79: 487–490

    Article  CAS  Google Scholar 

  • Leuenberger HGW, Boguth W, Widmer E, Zell R (1976) Synthese von optisch aktiven natürlichen Carotinoiden und strukturell verwandeten Naturprodukten I. Synthese der chiralen Schlüsselverbindung (4R,6R)4-Hydroxy-2,2,6-trimethylcyclohexanon. Helvetica Chimia Acta 59: 1832–1849

    Article  CAS  Google Scholar 

  • Lomascolo A, Stentelaire C, Asther M. Lesage-Meessen L (1999) Basidiomycetes as new biotechnological tools to generate natural aromatic flavours for the food industry. Trends Biotechnol 17: 282–289

    CAS  Google Scholar 

  • Mahato SB, Garai S (1997) Advances in microbial steroid biotransformation. Steroids 62: 332–345

    Article  CAS  Google Scholar 

  • Mahato SB, Mukerjee A (1989) Steroid transformations by microorganisms. Phytochemistry 28: 7–40

    Article  CAS  Google Scholar 

  • Mischitz M, Kroutil W, Wandel U, Faber K (1995) Asymmetric microbial hydrolysis of epoxides. Tetrahedron Asymmetry 6: 1261–1272

    Article  CAS  Google Scholar 

  • Morne T, Hattori S, Komatsu A, Yamaguchi Y (1968) Verfahren zur biochemischen Abtrennung von L-Menthol. Tagasago Perfumery Co., DE 1815845, 19. 12. 1968

    Google Scholar 

  • Morris DR, Hager LP (1966) Chloroperoxidase. I. Isolation and properties of the crystalline glycoprotein. J Biol Chem 241: 1763–1768

    Google Scholar 

  • Nakayama T, Amachi T (1999) Fungal peroxidase: its structure. function, and application. J Mol Catalysis B Enzymatic 6: 185–198

    Article  CAS  Google Scholar 

  • Neidleman SL (1975) Microbial halogenation. CRC Crit Rev Microbiol 3: 333–58

    Article  CAS  Google Scholar 

  • Neidleman SL. Geigert J (1983) Biological halogenation and epoxidation. Biochem Soc Symp 48: 39–52

    Google Scholar 

  • Nellaiah H. Morisseau C, Archelas A, Furstoss R, Baratti JC (1996) Enantioselective hydrolysis of pnitrostyrene oxide by an epoxide hydrolase preparation from Aspergillus niger. Biotechnol Bioengineer 49: 70–77

    Google Scholar 

  • Neuberg C,Hirsch J (1921) über ein Kohlenstoffketten knüpfendes Ferment (Carboligase). Biochem Zeitung 115:282–311

    Google Scholar 

  • Ogawa J, Shimizu S (1999) Microbial enzymes: new industrial applications from traditional screening methods. Trends Biotechnol 17: 13–21

    Article  CAS  Google Scholar 

  • Orru RV, Archelas A, Furstoss R, Faber K (1999) Epoxide hydrolases and their synthetic applications. Adv Biochem Eng Biotechnol 63: 145–167

    CAS  Google Scholar 

  • Pagot Y. Endrizzi A, Nicaud JM, Belin JM (1997) Utilization of an auxotrophic strain of the yeast Yarrowia lipolytica to improve y-decalactone production yields. Lett Appl Microbiol 25: 113–116

    Google Scholar 

  • Parmar A, Kumar H, Marwaha SS, Kennedy JF (1998) Recent trends in enzymatic conversion of cephalosporin C to 7-aminocephalosporanic acid (7-ACA). Crit Rev Biotechnol 18: 1–12

    Article  CAS  Google Scholar 

  • Pasta P, Carrea G, Monzani E, Gaggero N, Colonna S (1999) Chloroperoxidase-catalyzed enantioselective oxidation of methyl phenyl sulfide with dihydroxyfumarie acid oxygen or ascorbic acid oxygen as oxidants. Biotechnol Biocng 62: 489–493

    Article  CAS  Google Scholar 

  • Pedragosa-Moreau S, Archelas A, Furstoss R (1993) Microbial transformations. 28. Enantiocomplemetary epoxide hydrolyses as a preparative access to both enantiomers of styrene oxide. J Org Chem 58: 5533–5536

    Google Scholar 

  • Pedragosa-Moreau S, Archelas A, Furstoss R (1996a) Microbial transformations. 32. Use of epoxide hydro-lases mediated biohydrolysis as a way to enantiopure epoxides and vicinal diols: application to substituted styrene oxides derivates. Tetrahedron 52: 4593–4606

    Article  CAS  Google Scholar 

  • Pedragosa-Moreau S, Morisseau C, Zylber J, Archelas A, Furstoss R (1996b) Microbial transformations. 33. Fungal epoxide hydrolases applied to the synthesis of enantiopure para-substituted styrene oxides. A mechanistic approach. J Org Chem 61: 7402–7407

    Google Scholar 

  • Peterson DH, Murray HC (1952) Microbiological oxygenation of steroids at carbon 11. J Am Chem Soc 74: 1871–1872

    Article  CAS  Google Scholar 

  • Picataggio SK, Deanda K, Eirich LD (1989) Site-specific modification of the Candida tropicalis genome. Henkel Research Corp, US 5,254, 466

    Google Scholar 

  • Pohl M (1997) Protein design on pyruvate decarboxylase (PDC) by site-directed mutagenesis. Application to mechanistical investigations, and tailoring PDC for use in organic synthesis. Adv Biochem Engineer Biotechnol 58: 15–43

    Article  CAS  Google Scholar 

  • Poppe L, Nowak L (1992) Selective biocatalysis, a synthetic approach. VCH, Weinheim

    Google Scholar 

  • Rabenhorst J. Hopp R (1993) Verfahren zur Herstellung von natürlichem Vanillin. Haarmann and Reimer GmbH, EP 405 197

    Google Scholar 

  • Richards HC (1979) Procede de preparation de 2aminoalkyl-tetrahydroquinolines. Pfizer Corp, CH 498116

    Google Scholar 

  • Roberts SM (1998) Preparative biotransformations–the employment of enzymes and whole-cells in synthetic organic chemistry. J Chem Soc. Perkin Transact 1: 157–169

    Article  Google Scholar 

  • Roberts SM, Turner NJ (1992) Some recent developments in the use of enzyme catalysed reactions in organic synthesis. J Biotechnol 22: 227–244

    Article  CAS  Google Scholar 

  • Roberts SM. Wan PWH (1998) Enzyme-catalyzed BaeyerVilliger oxidations. J Mol Catalysis B Enzymatic 4: 111–136

    Google Scholar 

  • Roberts SM, Wiggins K, Casy G (1992) Preparative biotransformations: whole cell and isolated enzymes in organic synthesis. Wiley, New York

    Google Scholar 

  • Rolls JP (1978) Dehydrogenation of corticoids without side-chain degradation by Streptomyces. US 4088537. 21. 6. 1976

    Google Scholar 

  • Rosi D, Peruzzotti G, Dennis EW, Berberian DA, Freele H, Tullar BF, Archer S (1967) Hycanthone, a new active metabolite of lucanthone. J Med Chem 10: 867876

    Google Scholar 

  • Rufer C, Kosmol H, Schroder E, Kieslich K, Gibian H (1967) Totalsynthese von optisch aktiven 13-Athylgonan-Derivaten. Justus Liebigs Ann Chemie 702: 141148

    Google Scholar 

  • Sakamoto K, Yamada H, Shimizu S (1991) Method of producing D-pantolactone. Fuji Pharmaceutical Industries Co Ltd, EP 436 730, 27. 7. 1990

    Google Scholar 

  • Sato T, Tosa T (1993) Optical resolution of racemic amino acids by aminoacylase. Industrial applications of immobilized hiocatalysts. Bioprocess Technol 16: 314

    Google Scholar 

  • Sauber K (1993) Lessons from industry. In: van der Tweet W, Buitelaar R, Harder A (eds) Stability and stabilization of enzymes. Elsevier. New York

    Google Scholar 

  • Sedlaczek L (1989) Biotransformation of steroids. Crit Rev Biotechnol 7: 187–236

    Article  Google Scholar 

  • Shimizu S, Kataoka M (1996) Optical resolution of pantolactone by a novel fungal enzyme, lactonohydrolase. Ann NY Acad Sci 799: 650–658

    Article  CAS  Google Scholar 

  • Shimizu S, Kataoka M, Shimizu K, Hirakata M, Sakamoto K, Yamada H (1992) Purification and characterization of a novel lactonohydrolase, catalyzing the hydrolysis of aldonate lactones and aromatic lactones, from Fusarium oxysporum. Eur J Biochem 209: 383–390

    Article  CAS  Google Scholar 

  • Silverstein RM, Hager LP (1974) The chloroperoxidasecatalyzed oxidation of thiols and disulfides to sulfenyl chlorides. Biochemistry 13: 5069–5073

    Article  CAS  Google Scholar 

  • Stewart JD, Reed KW, Martinez CA, Zhu J, Chen G. Kayser MM (1998) Recombinant bakers yeast as a whole-cell catalyst for asymmetric Baeyer-Villiger oxidations. J Am Chem Soc 120: 3541–3548

    Google Scholar 

  • Suzuki Y, Marumo S (1972) Fungal metabolism of(+/—)epoxyfarnesol and its absolute stereochemistry. Tetrahedron Lett 19: 1887–1890

    Article  Google Scholar 

  • Taschner MJ, Black DJ (1988) The enzymatic BaeyerVilliger oxidation: enantioselective synthesis of lactones from mesomeric cyclohexanones. J Am Chem Soc 110: 6892–6893

    Article  CAS  Google Scholar 

  • Tokozeki K, Kubota K (1987) Method of producing Lcarnitin. US 4,650, 759

    Google Scholar 

  • Tosa T, Mori T. Fuse N, Chibata I (1966a) Studies on continuous enzyme reactions. 1. Screening of carriers for preparation of water-insoluble aminoacylase. Enzymologia 31: 214–224

    Google Scholar 

  • Tosa T, Mori T, Fuse N, Chibata I (t966b) Studies on continuous enzyme reactions. Il. Preparation of DEAEcellulose-aminoacylase column and continuous optical resolution of acetyl-DL-methionine. Enzymologia 31: 225–238

    Google Scholar 

  • Tosa T, Mori T, Fuse N, Chibata I (1967a) Studies on continuous enzyme reactions. III. Enzymatic properties of the DEAE-cellulose-aminoacylase complex. Enzymologia 32: 153–168

    Google Scholar 

  • Tosa T, Mori T, Fuse N, Chibata I (1967b) Studies on continuous enzyme reactions. IV. Preparation of a DEAE-Sephadex-aminoacylase column and continuous optical resolution of acyl-DL-amino acids. Biotechnol Bioeng 9: 603

    Google Scholar 

  • Tulloch AP, Spencer JF (1966) Fermentation of long chain compounds by Torulopsis magnoliae. 3. Preparation of dicarboxylic acids from hydroxy fatty acid sophorosides. J Am Oil Chem Soc 43: 153–156

    Google Scholar 

  • van Deurzen MPJ, Remkes Ii. van Rantwijk F, Sheldon RA (1997a) Chloroperoxidase catalyzed oxidations in T-butyl alcohol/water mixtures. J Mol Catalysis A Chem 117: 329–337

    Google Scholar 

  • van Deurzen MPJ, Seelbach K, van Rantwijk F, Kragl U, Sheldon RA (1997b) Chloroperoxidase — use of a hydrogen peroxide-stat for controlling reactions and improving enzyme performance. Biocatal Biotrans-form 15: 1–16

    Article  Google Scholar 

  • van Deurzen MPJ. van Rantwijk F, Sheldon RA (1997c) Chloroperoxidase-catalyzed oxidation of 5-hydroxymethylfurfural. J Carbohydr Chem 16: 299–309

    Google Scholar 

  • Vicenzi JT, Hansen GJ (1993) Enzymatic oxidation of cephalosporin C using whole cells of the yeast Triginopsis variabilis within a “cross-flow filter-reactor”. Enzyme Microbial Technol 15: 281–285

    Article  CAS  Google Scholar 

  • Weaver EA, Konney HE, Wall ME (1960) Effect on concentration on the microbiological hydroxylation of progesterone. Appl Microbiol 8: 345–348

    CAS  Google Scholar 

  • Weijers CAGM (1997) Enantioselective hydrolysis of aryl, alicyclic and aliphatic epoxides by Rhodotorula glutinis. Tetrahedron Asymmetry 8: 639–647

    Article  CAS  Google Scholar 

  • Weijers CAGM, de Bont JAM (1999) Epoxide hydrolases from yeasts and other sources: versatile tools in biocatalysis. J Mol Catalysis B Enzymatic 6: 199–214

    Article  CAS  Google Scholar 

  • Weijers CAGM, Botes AL, Vandyk MS, de Bont JAM (1998) Enantioselective hydrolysis of unbranched aliphatic 1,2-epoxides by Rhodotorula glutinis. Tetrahedron Asymmetry 9: 467–473

    Article  CAS  Google Scholar 

  • Willetts A (1997) Structural studies and synthetic applications of Baeyer-Villiger monooxygenases. Trends Biotechnol 15: 55–62

    Article  CAS  Google Scholar 

  • Wong CH, Whitesides GH (1994) Enzymes in synthetic organic chemistry. Pergamon/Elsevier Science, Oxford

    Google Scholar 

  • Yamada H (1993) Biotransformations in organic chemistry. Chimia 47: 5–10

    Google Scholar 

  • Yamaguchi Y, Komatsu A, Moroe T (1977) Asymmetric hydrolysis of D,L-menthylacetate by Rhodotorula mucilaginosa; optical resolution of menthols and related compounds IV. J Agric Chem Soc 51: 411–416

    CAS  Google Scholar 

  • Zaks A, Dodds DR (1995) Chloroperoxidase-catalyzed asymmetric oxidations: substrate specificity and mechanistic study. J Am Chem Soc 117: 10419–10424

    Article  CAS  Google Scholar 

  • Zhang JY, Reddy J, Roberge C. Senanayake C, Greasham R, Chartrain M (1995) Chiral bio-resolution of racemic indene oxide by fungal epoxide hydrolases. J Ferment Bioeng 80: 244–246

    Google Scholar 

  • Zhang XM, Archelas A, Furstoss R (1991) Microbial transformations. 19. Asymmetric dihydroxylation of the remote double bond of geraniol: a unique stereo-chemical control allowing easy access to both enantiomers of geraniol-6,7-diol. J Org Chem 56: 38143817

    Google Scholar 

  • Zimmermann TP Robins KT, Werlen J, Hocks FWJMM (1997) Bio-transformation in the production of Lcarnitine. In: Collins A. Sheldrake G, Crosby J (eds) Chirality in industry II. Wiley, New York, pp 287–305

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zelinski, T., Hauer, B. (2002). Industrial Biotransformations with Fungi. In: Osiewacz, H.D. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10378-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10378-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07481-3

  • Online ISBN: 978-3-662-10378-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics