Plant Cell Wall Degrading Enzymes Produced by Aspergillus

  • R. P. de Vries
  • J. A. E. Benen
  • L. H. de Graaff
  • J. Visser
Part of the The Mycota book series (MYCOTA, volume 10)

Abstract

The plant cell wall is a complex structure composed of different polymeric compounds. Most of these compounds (90%) are polysaccharides, such as cellulose, hemicellulose and pectin (McNeill et al. 1984), but the cell wall also contains proteins and lignin, a polymeric compound consisting of aromatic residues.

Keywords

Cellulose Lignin Polysaccharide Acetyl Liquefaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albersheim P. Darvill AG, O’Neill MA, Schols HA, Voragen AGJ (1996) An hypothesis: the same six polysaccharides are components of the primary cell walls of all higher plants. In: Visser J, Voragen AGJ (eds) Progress in biotechnology, vol 14: pectins and pectinases. Elsevier, Amsterdam, pp 47–55Google Scholar
  2. Ali S, Sayed A (1992) Regulation of cellulase biosynthesis in Aspergillus terreur. World J Microbiol Biotechnol 8: 73–75CrossRefGoogle Scholar
  3. Arai M, Takada G, Kawaguchi T, Sumitani J (1998) Published only in database; accession number AB015511Google Scholar
  4. Armand S, Wagemaker M JM, Sanchez-Torres P, Kester HCM, van Santen Y, Dijkstra BW, Visser J, Benen JAE (2000) The active site topology of Aspergillus niger endopolygalacturonase II as studied by site-directed mutagenesis. J Biol Chem 275: 691–696CrossRefGoogle Scholar
  5. Bagga PS, Sandhu, DK, Sharma S (1990) Purification and characterization of cellulolytic enzymes produced by Aspergillus nidulans. J Appl Bact 68: 61–68CrossRefGoogle Scholar
  6. Bajpai P (1997) Microbial xylanolytic enzyme system: properties and applications. Adv Appl Microbiol 43: 141–194CrossRefGoogle Scholar
  7. Baron A, Rombouts F, Drilleau JF, Pilnik W (1980) Purification et proprietés de la pectinesterase produite par Aspergillus niger. Lebensm Wiss U Technol 13: 330–333Google Scholar
  8. Bedford MR, Classen HL (1992) The influence of dietary xylanase on intestinal viscosity and molecular weight distribution of carbohydrates in rye-fed broiler chicks. In: Visser J. Beldman G, Kusters-van Someren MA, Voragen AGJ, (eds) Xylans and xylanases, progress in biotechnology, vol 7. Elsevier, Amsterdam, pp 361–370Google Scholar
  9. Beldman G, Schols HA, Pitson SM, Searle-van Leeuwen MJF, Voragen AGJ (1997) Arabinans and arabinan degrading enzymes. Adv Macromol Carbohydr Res 1: 1–64CrossRefGoogle Scholar
  10. Benen J, Parenicovâ L, Kusters-van Someren M, Kester H, Visser J (1996) Molecular genetic and biochemical aspects of pectin degradation in Aspergillus. In: Visser J, Voragen AGJ (eds) Progress in biotechnology, vol 14. Pectins and pectinases. Elsevier, Amsterdam, pp 331–346Google Scholar
  11. Benen JAE, Kester HCM, Visser J (1999) Kinetic characterization of Aspergillus niger N400 endopolygalacturonases I, II, and C. Eur J Biochem 259: 577–585Google Scholar
  12. Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3: 286–290CrossRefGoogle Scholar
  13. Biely P, Vrsanskâ M, Gorbacheva IV (1983) The active site of an acidic endo-1,4-beta-xylanase of Aspergillus niger. Biochim Biophys Acta 743: 155–161CrossRefGoogle Scholar
  14. Biely P Vrsanskâ M, Claessens M (1991) The endo-1,4beta-glucanase I from Trichoderma reesei — action on beta-1,4-oligomers and polymers derived from 1)- glucose and D-xylose. Eur J Biochem 200: 157–163CrossRefGoogle Scholar
  15. Biely P, Benen JAE, Heinrichovâ K, Kester HCM, Visser J (1996) Inversion of configuration during hydrolysis of alpha-1,4-galacturonidic linkage by three Aspergillus polygalacturonases. FEBS Lett 382: 249–255CrossRefGoogle Scholar
  16. Biely P. de Vries RP, Vrsanskâ M, Visser J (2000) Inverting character of a-glucuronidase A from Aspergillus tubingensis. Biochim Biophys Acta 1474: 360–364CrossRefGoogle Scholar
  17. Bonnin E, Lahaye M, Vigoureux J, Thibault J-F (1995) Preliminary characterization of a new exo-b-(1,4)galactanase with transferase activity. Int J Biol Macromol 17: 3454–351CrossRefGoogle Scholar
  18. Brillouet J-M, Williams P, Moutounet M (1991) Purification and some properties of a novel endo-ß-(1–6)-Dgalactanase from Aspergillus niger. Agric Biol Chem 55: 1565–1571CrossRefGoogle Scholar
  19. Bussink HJD, Buxton FP, Visser J (1991) Expression and sequence comparison of the Aspergillus niger and Aspergillus tubingensis genes encoding polygalacturonase II. Curr Genet 19: 467–474CrossRefGoogle Scholar
  20. Bussink HJD, van den Hombergh JPTW, van den IJssel PRLA, Visser J (1992) Characterization of polygalacturonase-overproducing Aspergillus niger transformants. Appt Microbiol Biotechno137: 324–329Google Scholar
  21. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3: 1–30CrossRefGoogle Scholar
  22. Christgau S, Kofod LV, Halkier T, Anderson LN, Hockauf M, Dorreich K, Dalboge H, Kauppinen S (1996) Pectin methyl esterase from Aspergillus aculeatus: expression cloning in yeast and characterization of the recombinant enzyme. Biochem J 319: 705–712Google Scholar
  23. Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In: Gilbert HJ, Davies GJ, Henrissat B, Svensson B (eds) Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry, Cambridge, pp 3–14Google Scholar
  24. De Graaff LH, van den Broeck HC, van Ooijen AC, Visser J (1994) Regulation of the xylanase-encoding xlnA gene of Aspergillus tubingensis. Mol Microbiol 12: 479–490CrossRefGoogle Scholar
  25. De Vries RP, Visser J (1999) Regulation of the feruloyl esterase (faeA) gene from Aspergillus niger. Appt Environ Microbiol 65: 5500–5503Google Scholar
  26. De Vries RP, Flipphi MJA, Witteveen CFB, Visser J (1994) Characterization of an Aspergillus nidulans L-arabitol dehydrogenase mutant. FEMS Microbiol Lett 123: 83–90CrossRefGoogle Scholar
  27. De Vries RP, Michelsen B, Poulsen CH, Kroon PA, van den Heuvel RHH, Faulds CB, Williamson G, van den Hombergh JPTW, Visser J (1997) The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in the degradation of complex cell wall polysaccharides. Appt Environ Microbiol 63: 4638–4644Google Scholar
  28. De Vries RP, Poulsen CH, Madrid S, Visser J (1998) aguA, the gene encoding an extracellular a-glucuronidase from Aspergillus tubingensis, is specifically induced on xylose and not on glucuronic acid. J Bacteriol 180: 243–249Google Scholar
  29. De Vries RP, van den Broeck HC, Dekkers E, Manzanares P, de Graaff LH, Visser J (1999a) Differential expression of three a-galactosidase genes and a single ß-galactosidase gene from Aspergillus niger. Appt Environ Microbiol 65: 2453–2460Google Scholar
  30. De Vries RP, Visser J, de Graaff LH (1999b) CreA modulates the X1nR induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Res Microbiol 150: 281–285CrossRefGoogle Scholar
  31. De Vries RP, Kester HCM, Poulsen CH. Benen JAE, Visser J (2000) Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr Res 327: 401–410CrossRefGoogle Scholar
  32. Dean RA, Timberlake WE (1989) Regulation of the Aspergillus nidulans pectate lyase gene (pelA). Plant Cell 1: 275–284Google Scholar
  33. Dowzer CEA, Kelly JM (1991) Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol 11: 5701–5709Google Scholar
  34. Ebringerova A, Hromadkova Z, Petrakova E, Hricovini M (1990) Structural features of a water-soluble L-arabinoxylan from rye-bran. Carbohydr Res 198: 57–66CrossRefGoogle Scholar
  35. Faulds CB, Williamson G (1993) Ferulic acid esterase from Aspergillus niger: purification and partial characterization of two forms from a commercial source of pectinase. Biotechnol Appl Biochem 17: 349–359Google Scholar
  36. Flipphi MJA, van der Veen P. Visser J, de Graaff LH (1994) Arabinase gene expression in Aspergillus niger: indications for coordinated regulation. Microbiology 140: 2673–2682Google Scholar
  37. Ganga A. Querol A, Valles S, Ramon D, MacCabe AP, Pinaga F (1998) Heterologous production in Saccharomyces cerevisiae of different Aspergillus nidulans xylanases of potential interest in oenology. J Sci Food Agric 78:315–320Google Scholar
  38. Gielkens MMC (1999) A molecular analysis of (hemi-)cellulose degradation by Aspergilli. PhD Thesis, Wageningen Univ, WageningenGoogle Scholar
  39. Gielkens MMC, Visser J, de Graaff LH (1997) ArabinoxyIan degradation by fungi: characterisation of the arabinoxylan-arabinofuranohydrolase encoding genes from Aspergillus niger and Aspergillus tubingensis. Curr Genet 31: 22–29CrossRefGoogle Scholar
  40. Gielkens MMC, Dekkers E, Visser J, de Graaff LH (1999) Two cellobiohydrolase-encoding genes from Aspergillus niger require D-xylose and the xylanolytic transcriptional activator X1nR for their expression. Appt Environ Microbiol 65: 4340–4345Google Scholar
  41. Grassin C, Fauquembergue P (1996) Applications of pectinases in beverages. In: Visser J, Voragen AGJ (eds) Pectins and pectinases. Progress in biotechnology, vol 14. Elsevier, Amsterdam, pp 453–462CrossRefGoogle Scholar
  42. Hamari Z, Kevei F, Kovacs E, Varga J, Kozakiewicz Z, Croft JH (1997) Molecular and phenotypic characterization of Aspergillus japonicus and Aspergillus aculeatus strains with special regard to their mitochondrial DNA polymorphism. Antonie van Leeuwenhoek 72: 337–347CrossRefGoogle Scholar
  43. Harmsen JAM, Kusters-van Someren MA, Visser J (1990) Cloning and expression of a second Aspergillus niger pectin lyase gene (pelA): indications of a pectin lyase gene family in A. niger. Curr Genet 18: 161–166CrossRefGoogle Scholar
  44. Hayashi T (1989) Xyloglucans in the primary cell wall. Annu Rev Plant Physiol Plant Mol Biol 40: 139–168CrossRefGoogle Scholar
  45. Henrissat B. Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293: 781–788Google Scholar
  46. Heldt-Hansen HP, Kofod LV, Budolfsen G, Nielsen PM, Mittel S, Bladt T (1996) Application of tailor made pectinases. In: Visser J, Voragen AGJ (eds) Pectins and pectinases. Progress in biotechnology, vol 14. Elsevier, Amsterdam, pp 463–474CrossRefGoogle Scholar
  47. Ito K, Ogasawara H, Sugimoto T, Ishikawa T (1992) Purification and properties of acid stable xylanases fromGoogle Scholar
  48. Aspergillus kawachii. Biosci Biotech Biochem 56: 547–550Google Scholar
  49. Jurnak F, Kita N, Garrett M, Heffron SE, Scavetta R, Boyd C, Keen N (1996) Functional implications of the three-dimensional structures of pectate lyases. In: Visser J. Voragen AGJ (eds) Pectins and pectinases. Progress in biotechnology, vol 14. Elsevier, Amsterdam, pp 295–308CrossRefGoogle Scholar
  50. Kantelinen A, Ratto M, Sundquist J, Ranua M, Viikari L, Linko M (1988) Hemicelluloses and their potential role in bleaching. 1988 Int Pulp Bleaching Conf, TAPPI Proc 1–9Google Scholar
  51. Kauppinen S, Christgau S, Kofod LV, Halkier T. Dorreich K, Dalboge H (1995) Molecular cloning and characterization of a rhamnogalacturonan acetylesterase from Aspergillus aculeatus. Synergism between rhamnogalacturonan degrading enzymes. J Biol Chem 270: 27172–27178Google Scholar
  52. Kester HCM, Visser J (1990) Purification and characterization of polygalacturonases produced by the hyphal fungus Aspergillus niger. Biotechnol Appl Biochem 12: 150–160Google Scholar
  53. Kester HCM, Visser J (1994) Purification and characterization of pectin lyase B, a novel pectinolytic enzyme from Aspergillus niger. FEMS Microbiol Lett 120: 63–68CrossRefGoogle Scholar
  54. Kester HCM, Kusters-van Someren MA, Muller Y, Visser J (1996) Primary structure and characterization of an exopolygalacturonase from Aspergillus tubingensis. Eur J Biochem 240: 738–746CrossRefGoogle Scholar
  55. Kester HCM, Benen JAE, Visser J (1999a) The exopolygalacturonase from Aspergillus tubingensis is also active on xylogalacturonan. Biotechnol Appl Biochem 30: 53–57Google Scholar
  56. Kester HCM, Magaud D, Roy C, Anker D, Doutheau A, Shevchik V, Hugouvieux-Cotte-Pattat N, Benen JAE, Visser J (1999b) Performance of selected microbial pectinases on synthetic monomethyl-esterified di-and trigalacturonates. J Biol Chem 274: 3705. 3–37059Google Scholar
  57. Kester HCM, Esteban Warren M, Orlando R, Benen JAE, Bergmann C, Visser J (2000) Tandem mass spectrometric analysis of Aspergillus niger pectin methylesterase; mode of action on fully methylesterified oligogalacturonates. Biochem J 346: 469–474CrossRefGoogle Scholar
  58. Khanh NQ, Ruttkowski E, Leidinger K, Albrecht H, Gottschalk M (1991) Characterization and expression of a genomic pectin methyl esterase-encoding gene in Aspergillus niger. Gene 106: 71–77CrossRefGoogle Scholar
  59. Kitamoto N, Yoshino S, Ito M, Kimura T. Ohmiya K, Tsukagoshi N (1998) Repression of the expression of genes encoding xylanolytic enzymes in Aspergillus oryzae by introduction of multiple copies of the xvnFl promoter. Appt Microbiol Biotechnol 50: 558–563Google Scholar
  60. Kofod LV, Kauppinen S, Christgau S, Andersen LN, HeldtHansen HP, Dorreich K, Dalboge H (1994) Cloning and characterization of two structurally and functionally divergent rhamnogalacturonases from Aspergillus aculeatus. J Biol Chem 269: 29182–29189Google Scholar
  61. Kohn R, Dongowski G, Bock W (1985) The distribution of free and esterified carboxyl groups within the pectin molecule after the action of pectin esterase from Aspergillus niger and oranges. Nahrung 29: 75–85CrossRefGoogle Scholar
  62. Kolpack FJ, Blackwell J (1976) Determination of the struc- ture of cellulose II. Macromolecules 9: 273–278CrossRefGoogle Scholar
  63. Kormelink FJM, Searle-van Leeuwen MJF, Wood TM, Voragen AGJ (1991) Purification and characterization of a (1.4)-ß-D-arabinoxylan arabinofuranohydrolaseGoogle Scholar
  64. from Aspergillus awamori. Appl Microbiol Biotechnol 35:753–758Google Scholar
  65. Kormelink FJM, Searle-van Leeuwen MJF, Wood TM, Voragen AGJ (1993a) Purification and characterization of three endo-(1,4)-ß-xylanases and one ßxylosidase from Aspergillus awamori. J Biotechnol 27: 249–265CrossRefGoogle Scholar
  66. Kormelink FJM, Gruppen H, Vietor RJ, Voragen AGJ (1993b) Mode of action of the xylan-degrading enzymes from Aspergillus awamori on alkali-extractable cereal arabinoxylans. Carbohydr Res 249: 355–367CrossRefGoogle Scholar
  67. Kormelink FJM, Lefevre B, Strozyk F, Voragen AGJ (1993c) The purification and characterisation of an acetyl xylan esterase from Aspergillus piger. J Biotechnol 27: 267–282CrossRefGoogle Scholar
  68. Koseki T, Furuse S, Iwano K, Sakai H, Matsuzawa H (1997) An Aspergillus awamori acetyl esterase: purification of the enzyme, and cloning and sequencing of the gene. Biochem J 326: 485–490Google Scholar
  69. Koseki T, Furuse S, Iwano K, Matsuzawa H (1998) Purification and characterization of a feruloylesterase from Aspergillus awamori. Biosci Biotechnol Biochem 62: 2032–2034CrossRefGoogle Scholar
  70. Kroon PA, Williamson G (1996) Release of ferulic acid from sugar-beet pulp by using arabinase, arabinofuranosidase and an esterase from Aspergillus niger. Biotechnol Appl Biochem 23: 263–267Google Scholar
  71. Kroon PA, Faulds CB, Williamson G (1996) Purification and characterization of a novel esterase induced by growth of Aspergillus niger on sugar-beet pulp. Biotechnol Appl Biochem 23: 255–262Google Scholar
  72. Kulmburg P, Mathieu M, Dowzer C, Kelly J, Felenbok B (1993) Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CreA repressor mediating carbon catabolite repression in Aspergillus nidulans. Mol Microbiol 7: 847–857CrossRefGoogle Scholar
  73. Kusters-van Someren MA, Samson RA, Visser J (1991) The use of RFLP analysis in classification of the black Aspergilli - reinterpretation of the Aspergillus niger aggregate. Curr Genet 19: 21–26CrossRefGoogle Scholar
  74. Kusters-van Someren, M, Flipphi M, de Graaff L, van den Broeck H, Kester H, Hinnen A, Visser J (1992) Characterisation of the Aspergillus niger pelB gene: structure and regulation of expression. Mol Gen Genet 234: 113–120Google Scholar
  75. Lahaye M,Thibault J-F (1990) Poster presented at 3rd international workshop on plant polysaccharides, structure and function, 19–21 Sept 1990, La Croisie, FranceGoogle Scholar
  76. Lin JS,Tang M-Y, Fellers JF (1987) Fractal analysis of cotton cellulose as characterized by small-angle X-ray scattering. In: Atalla RH (ed) The structures of cellulose. ACS Symposium Series 340, Washington, pp 233–254Google Scholar
  77. Maat J, Roza M, Verbakel J. Slam H, Santos da Silva M, Borrel M, Egmond MR, Hagemans MLD, van Gorcom RFM, Hessing JGM, van den Hondel CAMJJ, van Rotterdam C (1992) Xylanases and their applications in bakery. In: Visser J, Beldman G, Kusters-van Someren MA, Voragen AGJ (eds) Xylans and xylanases. Progress in biotechnology, vol 7. Elsevier, Amsterdam, pp 349–360Google Scholar
  78. Madrid SM. Rasmussen P, Baruch A(1996) New endo-ß1,4-glucanase from Aspergillus sp. Patent number: WO 9629415; 26. 09. 96Google Scholar
  79. Marmorstein R, Harrison SC (1994) DNA recognition by GAL4: structure of the protein-DNA complex. Nature 356: 408–414.CrossRefGoogle Scholar
  80. Mayans O, Scott M, Connerton, I, Gravesen, T, Benen J, Visser J, Pickersgill R, Jenkins J (1997) Two crystal structures of pectin lyase A from Aspergillus reveal a pH driven conformational change and striking divergence in the substrate-binding clefts of pectin and pectate lyases. Structure 5: 677–689CrossRefGoogle Scholar
  81. McCann MC, Roberts K (1991) Architecture of the primary cell wall. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, New York, pp 109–129Google Scholar
  82. McCrae SI, Leith KM, Gordon AH, Wood TM (1994) Xylan degrading enzyme system produced by the fungus Aspergillus awamori: isolation and characterization of a feruloyl esterase and a p-coumaroyl esterase. Enzyme Microbiol Technol 16: 826–834CrossRefGoogle Scholar
  83. McNeill M, Darvill AG, Fry SC, Albersheim P (1984) Structure and function of the primary cell walls of plants. Annu Rev Biochem 53: 625–663CrossRefGoogle Scholar
  84. Micheli PA (1729) Nova plantarum genera. FlorentiaeGoogle Scholar
  85. Mutter M, Beldman G, Schols HA, Voragen AGJ (1994) Rhamnogalacturonan alpha-L-rhamnopyranohydrolase: a novel enzyme specific for the terminal nonreducing rhamnosyl unit in rhamnogalacturonan regions of pectin. Plant Physiol 106: 241–250CrossRefGoogle Scholar
  86. Mutter M, Colquhoun IJ, Schols HA, Beldman G, Voragen AGJ (1996) Rhamnogalacturonase B from Aspergillus aculeatus is a rhamnogalacturonan a-L-rhamnopyranosyl-(1,4)-a-D-galactopyranosyluronide lyase. Plant Physiol 110: 73–77CrossRefGoogle Scholar
  87. Mutter M, Beldman G, Pitson SM, Schols HA, Voragen AGI (1998a) Rhamnogalacturonan alpha-D-galactopyranosyluronohydrolase: an enzyme that specifically removes the terminal nonreducing galacturonosyl residue in rhamnogalacturonan regions of pectin. Plant Physiol 117: 153–163CrossRefGoogle Scholar
  88. Mutter M, Renard CMGC, Beldman G. Schols HA, Voragen AGI (1998b) Mode of action of RG-hydrolase and RG-lyase toward rhamnogalacturonan oligomers: characterization of degradation products using RG-rhamnohydrolase and RG-galacturonohydrolase. Carbohydr Res 31: 155–164CrossRefGoogle Scholar
  89. Nikkuni S, Kosaka N, Suzuki C, Mori K (1996) Comparative sequence analysis on the I8S rRNA gene of Apergillus oryzae, A. sojae, A. flavus, A. parasiticus, A. niger, A. awamori and A. tamari. J Gen Appl Microbiol 42: 181–187CrossRefGoogle Scholar
  90. O’Neill M, Albersheim„ Darvill, A (1990) The pectic polysaccharides of primary cell walls. Methods Plant Biochem 2: 415–441Google Scholar
  91. Parenicovâ L, Benen JAE, Samson RA, Visser J (1997) Evaluation of RFLP analysis of the classification of selected black Aspergilli. Mycol Res 101: 810–814CrossRefGoogle Scholar
  92. Parenicovâ L, Benen JAE, Kester HCM, Visser J (1998) pgaE encodes a fourth member of the endopolygalacturonase gene family from Aspergillus niger. Eur J Biochem 251: 72–80Google Scholar
  93. Parenicovâ L, Benen JAE, Kester HCM, Visser J (2000a) pgaA and pgaB encode two constitutively expressed endopolygalacturonases of Aspergillus niger. Biochem J 345: 637–644Google Scholar
  94. Parenicovâ L, Kester HCM, Benen JAE, Visser J (2000b) Characterization of a novel endopolygalacturonase from Aspergillus niger with unique kinetic properties. FEBS Lett 467: 333–336CrossRefGoogle Scholar
  95. Pellerin P, Gosselin M, Lepoutre J-P, Samain E, Debeire P (1991) Enzymic production of oligosaccharides from corncob xylan. Enzyme Microb Technol 13: 617–621CrossRefGoogle Scholar
  96. Petersen TN, Kauppinen S, Larsen S (1997) The crystal structure of rhamnogalacturonase A from Aspergillus aculeatus: a right-handed parallel beta helix. Structure 5: 533–544CrossRefGoogle Scholar
  97. Petit-Benvegnen M-D, Saulnier L, Rouau X (1998) Solubilization of arabinoxylans from isolated water-unextractable pentosans and wheat flour doughs by cell wall degrading enzymes. Cereal Chem 75: 551–556CrossRefGoogle Scholar
  98. Pickersgill R, Jenkins J. Harris G. Nasser W, RobertBaudouy J (1994) The structure of Bacillus subtilis pectate lyase in complex with calcium. Nat Struct Biol 1: 717–723Google Scholar
  99. Pickersgill R, Smith D. Worboys K, Jenkins J (1998) Crystal structure of polygalacturonase from Erwinia earntovora ssp. carotovora. J Biol Chem 273: 2466024664Google Scholar
  100. Pilnik W, Voragen AGJ (1993) Pectic enzymes in fruit and vegetable juice manufacture. In: Nagodawithana T, Reeds G (eds) Enzymes in food processing. Academic Press, London, pp 363–399Google Scholar
  101. Poutanen K (1997) Enzymes. An important tool in the improvement of the quality of cereal foods. Trends Food Sci Technol 8: 300–306CrossRefGoogle Scholar
  102. Puls J, Borneman A, Gottschalk D, Wiegel J (1988) Xylobiose and xylooligomers. Methods Enzymol 160: 528–536CrossRefGoogle Scholar
  103. Ratet M-C, Faulds CB, Williamson G, Thibault J-F (1994) Degradation of feruloylated oligosaccharides from sugar beet pulp and wheat bran by ferulic acid csterases from Aspergillus niger. Carbohydr Res 263: 257–269CrossRefGoogle Scholar
  104. Rättö M, Viikari L (1996) Pectinases in wood debarking. In: Visser J, Voragen AGJ (eds) Pectins and pectinases. Progress in biotechnology, vol 14. Elsevier, Amsterdam, pp 979–982CrossRefGoogle Scholar
  105. Ruijter GJG, Visser J (1997) Carbon repression in Aspergilli. FEMS Microbiol Lett 151: 103–114CrossRefGoogle Scholar
  106. Scavetta RD, Herron SR, Hotchkiss AT, Kita N, Keen NT, Benen JAE, Kester HCM, Visser J, Jurnak F (1999) Structure of a plant cell wall fragment complexed to pectate lyase C. Plant Cell 11: 1081–1092Google Scholar
  107. Schols HA, Voragen AGJ (1994) Occurrence of pectic hairy regions in various plant cell wall materials and their degradability by rhamnogalacturonase. Carbohydr Res 256: 83–95CrossRefGoogle Scholar
  108. Schols HA, Voragen AGJ (1996) Complex pectins: structure elucidation using enzymes. In: Visser J, Voragen AGJ (eds) Progress in biotechnology, vol 14. Pectins and pectinases. Elsevier. Amsterdam, pp 3–19Google Scholar
  109. Schols HA, Geraeds CCJM, Searle-van Leeuwen MF, Kormelink FJM, Voragen AGJ (1990) Rhamnogalacturonase: a novel enzyme that degrades the hairy regions of pectins. Carbohydr Res 206: 105–115CrossRefGoogle Scholar
  110. Searle-van Leeuwen MJF, Vincken J-P, Schipper D, Voragen AGJ, Beldman G (1996) Acetyl esterases of Aspergillus niger: purification and mode of action on pectins. In: Visser J, Voragen AGJ (eds) Progress in biotechnology, vol 14. Pectins and pectinases. Elsevier, Amsterdam, pp 793–798Google Scholar
  111. Sundberg M, Poutanen K, Markkanen P, Linko M (1990) An extracellular esterase of Aspergillus awamori. Biotechnol Appl Biochem 12: 670–680Google Scholar
  112. Suykerbuyk MEG, Schaap PJ, Stam H, Musters W, Visser J (1995) Cloning, sequence and expression of the gene for rhamnogalacturonan hydrolase of Aspergillus aculeatus; a novel pectinolytic enzyme. Appt Microbiol Biotechnol 43: 861–870CrossRefGoogle Scholar
  113. Suykerbuyk MEG, Kester HCM, Schaap PJ, Stam H, Musters W, Visser J (1997) Cloning and characterization of two rhamnogalacturonan hydrolase genes from Aspergillus niger. Appl Environ Microbiol 63: 2507–2515Google Scholar
  114. Swarén. P, Sanchez-Torres P, Pérez S, Visser J, Benen JAE (2000) A molecular modelling and kinetic study of pectin-enzyme interactions: implications for catalysis by pectin lyases biochemistry (submitted)Google Scholar
  115. Tenkanen M, Schuseil J, Puls J, Poutanen K (1991) Production, purification and characterization of an esterase liberating phenolic acids from lignocellulosics. J Biotcchnol 18: 69–84CrossRefGoogle Scholar
  116. Thom C, Church MB (1926) The Aspergilli. Williams and Wilkins, BaltimoreGoogle Scholar
  117. Thom C, Raper KB (1945) A manual of the Aspergilli. Williams and Wilkins, BaltimoreGoogle Scholar
  118. Time11.
    TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1: 45–70CrossRefGoogle Scholar
  119. Uchida H, Nanri T, Kawabata Y, Kusakabe I, Murakami K (1992) Purification and characterization of intracellular a-glucuronidase from Aspergillus niger 5–16. Biosci Biotech Biochem 56: 1608–1615CrossRefGoogle Scholar
  120. Van der Veen P, Flipphi MJA, Voragen AGJ, Visser J (1991) Induction, purification and characterisation of arabinases produced by Aspergillus niger. Arch Microbiol 157: 23–28CrossRefGoogle Scholar
  121. Van de Vis JW (1994) Characterization and mode of action of enzymes degrading galactan structures of arabinogalactans. Thesis, Wageningen Univ. Wageningen, pp 125–144Google Scholar
  122. Van de Vis JW, Searle-van Leeuwen MJF, Siliha HA, Kormelink FJM, Voragen AGJ (1991) Purification and characterization of endo-1.4-/3-D-galactanases from Aspergillus niger and Aspergillus aculeatus: use in combination with arabinases from Aspergillus niger in enzymic conversion of potato arabinogalactan. Carbohydr Polymers 16: 167–187CrossRefGoogle Scholar
  123. Van der Vlugt-Bergmans CJB, Meeuwsen PJA, Voragen AGJ, van Ooyen AJJ (2000) Endo-xylogalacturonan hydrolase, a novel pectinolytic enzyme. Appl Environ Microbiol 66: 36–41CrossRefGoogle Scholar
  124. Van Houdenhoven FEA (1975) Studies on pectin lyase. Thesis, Wageningen Univ, WageningenGoogle Scholar
  125. Van Paridon PA, Boonman JCP, Selten GCM, Geerse C, Barug D, de Bot PHM, Hemke G (1992) The application of fungal endoxylanase in poultry diets. In: Visser J, Beldman G, Kusters-van Someren MA, Voragen AGJ (eds) Xylans and xylanases. Progress in biotechnology, vol 7. Elsevier, Amsterdam, pp 371–378Google Scholar
  126. Van Peij NNME (1999) Transcriptional regulation of the xylanolytic enzyme system of Aspergillus. PhD Thesis, Wageningen Univ. WageningenGoogle Scholar
  127. Van Peij NNME, Visser J, de Graaff LH (1998a) Isolation and analysis of xlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Mol Microbiol 27: 131–142CrossRefGoogle Scholar
  128. Van Peij NNME, Gielkens MMC, de Vries RP, Visser J, de Graaff LH (1998b) The transcriptional activator X1nR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl Environ Microbiol 64: 3615–3619Google Scholar
  129. Van Santen Y, Benen JAE, Schröter K-H, Kalk KH, Armand S, Visser J, Dijkstra BW (1999) 1.68-A crystal structure of endopolygalacturonase ii from Aspergillus niger and identification of active site residues by site-directed mutagenesis. J Biol Chem 274: 30474–30480Google Scholar
  130. Varga J, Kevei F, Vriesema A, Debets F, Kozakiewicz Z, Croft JH (1994) Mitochondrial DNA restriction fragment length polymorphisms in field isolates of the Aspergillus niger aggregate. Can J Microbiol 40: 612–621CrossRefGoogle Scholar
  131. Vidmar S, Turk V, Kregar 1 (1984) Cellulolytic complex of Aspergillus niger under conditions for citric acid production. Isolation and characterization of two ß-(1 -s 4)-glucan hydrolases. Appl Microbiol Biotechnol 20: 326–330Google Scholar
  132. Viikari L, Kantelinen A, Sundquist J, Linko M (1994) Xylanases in bleaching–from an idea to the industry. FEMS Microbiol Rev 13: 335–350CrossRefGoogle Scholar
  133. Visser J, Bussink H-J, Witteveen C (1994) Gene expression in filamentous fungi. In: Smith A (ed) Gene expression in recombinant microorganisms. Dekker, New York, pp 241–308Google Scholar
  134. Vitali J, Schick B, Kester HCM, Visser J, Jurnak F (1998) The three-dimensional structure of Aspergillus niger pectin lyase B at 1.7-A resolution. Plant Physiol 116: 69–80CrossRefGoogle Scholar
  135. Voragen AGJ, Schols HA, Beldman G (1992) Tailor-made enzymes in fruit juice processing. Fluss Obst 59: 98–102Google Scholar
  136. Voragen AGJ, Pilnik W, Thibault J-F, Axelos MAV, Renard CMGC (1995) Pectins. In: Stephen AM (ed) Food polysaccharides and their applications. Dekker, New York, pp 287–339Google Scholar
  137. Whitcombe AJ, O’Neill MA, Steffan W, Albersheim, Darvill AG (1995) Structural characterization of the pectic polysaccharide, rhamnogalacturonan II. Carbohydr Res 271: 15–29CrossRefGoogle Scholar
  138. Wilkie KCB (1979) The hemicelluloses of grasses and cereals. Adv Carbohydr Chem Biochem 36: 215–262CrossRefGoogle Scholar
  139. Wilkie KCB, Woo S-L (1977) A heteroxylan and hemicellulosic materials from bamboo leaves, and a reconsideration of the general nature of commonly occurring xylans and other hemicelluloses. Carbohydr Res 57: 145–162CrossRefGoogle Scholar
  140. Witte K, Wartenberg A (1989) Purification and properties of two ß-glucosidases isolated from Aspergillus niger. Acta Biotechnol 9: 179–190CrossRefGoogle Scholar
  141. Zeikus JG. Lee C, Lee YE, Saha BC (1991) Thermostable saccharidases. New sources, uses and biodesign. ACS Symp Ser 460:36–51Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • R. P. de Vries
    • 1
  • J. A. E. Benen
    • 1
  • L. H. de Graaff
    • 1
  • J. Visser
    • 1
  1. 1.Molecular Genetics of Industrial Micro-organismsWageningen UniversityWageningenThe Netherlands

Personalised recommendations