Ascomycetous Yeasts and Yeastlike Taxa

Part of the The Mycota book series (MYCOTA, volume 7A)


Breadmaking and brewing are so common that mention of these processes immediately brings Saccharomyces cerevisiae to mind. The importance of this particular yeast is further underscored by its use as a model eukaryote in many areas of molecular biology. However, the ascomycetous yeasts are a phylogenetically diverse group and numerous other species also markedly impact human activities.


Ascomycetous Yeast Syst Bacteriol Heterothallic Species Ascogenous Hypha Portuguese Yeast Culture Collection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahearn DG (1988) Candidiasis. In: Ballows A (ed) The laboratory diagnosis of infectious disease: principles, practice. Springer, Berlin Heidelberg New York, pp 583–588Google Scholar
  2. Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology, 4th edn. John Wiley, New YorkGoogle Scholar
  3. Avise J (1989) Gene trees and organismal histories: a phylogenetic approach to population biology. Evolution 43: 1192–1208Google Scholar
  4. Barns SM, Lane DJ, Sogin ML, Bibeau C, Weisburg G (1991) Evolutionary relationships among pathogenic Candida species and relatives. J Bacteriol 173: 22502255Google Scholar
  5. Batra LR (1973) Nematosporaceae (Hemiascomycetidae): taxonomy, pathogenicity, distribution, and vector relations. US Dep Agric Tech Bull 1469: 1–71Google Scholar
  6. Berbee ML, Taylor JW (1993) Dating the evolutionary radiations of the true fungi. Can J Bot 71: 1114–1127Google Scholar
  7. Berbee ML, Taylor JW (1995) From 18S ribosomal sequence data to evolution of morphology among the fungi. Can J Bot 73 (Suppl 1): S677 — S683Google Scholar
  8. Blanz PA, Unseld M (1987) Ribosomal RNA as a taxonomic tool in mycology. In: de Hoog GS, Smith MTh, Weijman ACM (eds) The expanding realm of yeast-like fungi. Elsevier, Amsterdam, pp 247–258Google Scholar
  9. Boekhout T, Kurtzman CP, O’Donnell K, Smith MTh (1994) Phylogeny of the yeast genera Hanseniaspora (anamorph Kloeckera), Dekkera (anamorph Brettanomyces), and Eeniella as inferred from partial 26S ribosomal DNA nucleotide sequences. Int J Syst Bacteriol 44: 781–786PubMedGoogle Scholar
  10. Bowen AR, Chen-Wu JL, Momany M. Young R, Szaniszlo PJ, Robbins PW (1992) Classification of fungal chitin synthases. Proc Natl Acad Sci USA 89: 519–523Google Scholar
  11. Brake AJ, Merryweather JP, Coit DG, Heberlein UA, Masiarz FR, Mullenbach GT, Urdea MS, Valenzuela P, Barr PJ (1984) a-Factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 81: 4642–4646Google Scholar
  12. Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Annu Rev Ecol Syst 22: 525–564Google Scholar
  13. Bruns TD, Vilgalys R, Barns SM, Gonzalez D, Hibbett DS, Lane DJ, Simon L, Stickel S, Szaro TM, Weisburg WG, Sogin ML (1992) Evolutionary relationships within the fungi: analyses of nuclear small subunit rRNA sequences. Mol Phylog Evol 1: 231–241Google Scholar
  14. Byers B, Goetsch L (1974) Duplication of spindle plaques and integration of the yeast cell cycle. Cold Spring Harbor Symp Quant Biol 38: 123–131PubMedGoogle Scholar
  15. Cain RF (1972) Evolution of the fungi. Mycologia 64: 1–14Google Scholar
  16. Cavalier-Smith T (1987) The origin of fungi and pseudo-fungi. In: Rayner ADM, Brasier CM, Moore D (eds) Evolutionary biology of the fungi. Cambridge University Press, Cambridge, pp 339–353Google Scholar
  17. Chalutz E, Wilson CL (1990) Postharvest biocontrol of green and blue mold and sour rot of citrus fruit by Debaryomyces hansenii. Plant Dis 74: 134–137Google Scholar
  18. Cole GT, Sampson RA (1979) Patterns of development in conidial fungi. Pitman, LondonGoogle Scholar
  19. Cregg JM, Vedvick TS, Raschke WC (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technology 11: 905–910PubMedGoogle Scholar
  20. Demain AL (1972) Riboflavin oversynthesis. Annu Rev Microbiol 26: 369–388PubMedGoogle Scholar
  21. di Menna ME (1959) Yeasts from the leaves of pasture plants. N Z J Agric Res 2: 394–405Google Scholar
  22. Droby S, Chalutz E, Wilson CL,Wisniewski M (1989) Characterization of the biocontrol activity of Debaryomyces hansenii in the control of Penicillium digitatum on grapefruit. Can J Microbiol 35: 794–800Google Scholar
  23. Edman JC, Kovacs JA, Masur H, Santi DV, Elwood HJ, Sogin ML (1988) Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the fungi. Nature 334: 519–522PubMedGoogle Scholar
  24. Eriksson OE (1994) Pneumocystis carinii,a parasite in lungs of mammals, referred to a new family and order (Pneumocystidaceae, Pneumocystidales, Ascomycota). Syst Ascomyc 13:165–180Google Scholar
  25. Eriksson OE, Hawksworth DL (1995) Notes on ascomycete systematics — nos. 1885–2023. Syst Ascomyc 14: 41–77Google Scholar
  26. Eriksson OE, Svedskog A, Landvik S (1993) Molecular evidence for the evolutionary hiatus between Saccharomyces cerevisiae and Schizosaccharomyces pombe. Syst Ascomyc 11: 119–162Google Scholar
  27. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791Google Scholar
  28. Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22: 521–565PubMedGoogle Scholar
  29. Fleet GH (1990) Food spoilage yeasts. In: Spencer JFT, Spencer DM (eds) Yeast technology. Springer, Berlin Heidelberg New York, pp 124–166Google Scholar
  30. Frieders EM, McLaughlin DJ (1996) Mitosis in the yeast phase of Agaricostilbum pulcherrimum and its evolutionary significance. Can J Bot 74: 1392–1406Google Scholar
  31. Fuson GB, Price CW, Phaff HJ (1979) Deoxyribonucleic acid sequence relatedness among some members of the yeast genus Hansenula. Int J Syst Bacteriol 29: 64–69Google Scholar
  32. Gams W, von Arx JA (1980) Validation of Symbiotaphrina (imperfect yeasts). Persoonia 10: 542–543Google Scholar
  33. Gams W, van der Aa HA, Plaats-Niterink AJ, Samson RA, Stalpers JA (1987) CBS course of mycology, 3rd edn. Centraalbureau voor Schimmelcultures, Baarn, DelftGoogle Scholar
  34. Garner R, Walker AN, Horst MN (1991) Morphologic and biochemical studies of chitin expression in Pneumocystis carinii. J Protozool 38: 12S - 14SPubMedGoogle Scholar
  35. Gimeno CJ, Fink GR (1992) The logic of cell division in the life cycle of yeasts. Science 257: 626PubMedGoogle Scholar
  36. Girbardt M (1979) A microfilamentous septal belt (FSB) during induction of cytokinesis in Trametes versicolor (L. ex Fr.). Exp Mycol 3: 215–228Google Scholar
  37. Goto S, Sugiyama J (1970) Studies on Himalayan yeasts and moulds. IV. Several asporogenous yeasts including two new taxa of Cryptococcus. Can J Bot 48: 2097–2101Google Scholar
  38. Goto S, Sugiyama J, Hamamoto M, Komagata K (1987) Saitoella, a new anamorphic genus in the Cryptococcaceae to accommodate two Himalayan yeast isolates formerly identified as Rhodotorula glutinis. J Gen Appl Microbiol 33: 75–85Google Scholar
  39. Hardrys H, Balick M, Schierwater B (1992) Applications of random amplified polymorphic DNA ( RAPD) in molecular ecology. Mol Ecol 1: 55–63Google Scholar
  40. Hagler AN, Abeam DG (1981) Rapid diazonium blue B test to detect basidiomycetous yeasts. Int J Syst Bacteriol 31: 204–208Google Scholar
  41. Hagler AN, Ahearn DG (1987) Ecology of aquatic yeasts. In: Rose AH, Harrison JS (eds) The yeasts, vol 1. Biology of yeasts. Academic Press, London, pp 181–205Google Scholar
  42. Hausner G, Reid J, Klassen GR (1992) Do galeateascospore members of the Cephaloascaceae, Endomycetaceae and Ophiostomataceae share a common phylogeny? Mycologia 84: 870–881Google Scholar
  43. Hawksworth DL, Kirk PM, Sutton BC, Pegler DN (1995) Ainsworth & Bisby’s dictionary of the fungi, 7th edn. CAB International, WallingfordGoogle Scholar
  44. Heath IB, Ashton ML, Rethoret K, Heath MC (1982) Mitosis and the phylogeny of Taphrina. Can J Bot 60: 1696–1725Google Scholar
  45. Heath IB, Ashton ML, Kaminskyi SGW (1987) Mitosis as a phylogenetic marker among the yeasts: review and observations on novel mitotic systems in freeze substituted cells of the Taphrinales. In: de Hoog GS, Smith MTh, Weijman ACM (eds) The expanding realm of yeast-like fungi. Elsevier, Amsterdam, pp 279–297Google Scholar
  46. Heefner DL, Weaver CA, Yarus MJ, Burdzinski LA (1992) Method for producing riboflavin with Candida famata. US Patent 5 164 303Google Scholar
  47. Hendriks L, Goris A, Van de Peer Y, Neefs J-M, Vancanneyt M, Kersters K, Berny J-F, Hennebert GL, De Wachter R (1992) Phylogenetic relationships among ascomycetes and ascomycete-like yeasts as deduced from small ribosomal subunit RNA sequences. Syst Appl Microbiol 15: 98–104Google Scholar
  48. Hitzeman RA, Leung DW, Perry LJ, Kohr WJ, Hagi FE, Chen CY, Lugovoy JM, Singh A, Levine HL, Wetzel R, Goeddel DV (1982) Expressions, processing, and secretion of heterologous gene products by yeast. Proc Berkeley Worksh, Recent Adv Yeast Mol Biol: Recomb DNA, University of California Press, Berkeley, pp 173–190Google Scholar
  49. Hitzeman RA, Leung DW, Perry LJ, Kohr WJ, Levine HL, Goeddel DV (1983) Secretion of human interferons by yeast. Science 219: 620–625PubMedGoogle Scholar
  50. Holley RA, Allan-Wojtas P, Phipps-Todd BE (1984) Nematospora sinecauda sp. nov., a yeast pathogen of mustard seeds. Antonie van Leeuwenhoek 50: 305–320Google Scholar
  51. Holmquist R, Miyamoto MM, Goodman M (1988) Analysis of higher-primate phylogeny from transversion differences in nuclear and mitochondrial DNA by Lake’s method of evolutionary parsimony and operator metrics. Mol Biol Evol 5: 217–236PubMedGoogle Scholar
  52. Jeffries TW, Kurtzman CP (1994) Strain selection, taxonomy, and genetics of xylose-fermenting yeasts. Enzyme Microbiol Technol 16: 922–932Google Scholar
  53. Jones JM (1990) Laboratory diagnosis of invasive candidiasis. Clin Microbiol Rev 3: 32–45PubMedGoogle Scholar
  54. Jones KG, Blackwell M (1996) Ribosomal DNA sequence analysis places the yeast-like genus Symbiotaphrina within filamentous ascomycetes. Mycologia 88: 212–218Google Scholar
  55. Kapoor KK, Chaudhary K, Tauro P (1982) Citric acid. In: Reed G (ed) Prescott & Dunn’s industrial microbiology 4th edn. Avi, Westport, CT, pp 709–747Google Scholar
  56. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120PubMedGoogle Scholar
  57. Kirsop BE, Kurtzman CP (1988) Living resources for biotechnology. Yeasts. Cambridge University Press, CambridgeGoogle Scholar
  58. Korf RP (1973) Discomycetes and Tuberales. In: Ainsworth GC, Sparrow FK, Sussman AS (eds) The Fungi, an advanced treatise, vol IV A. Academic Press, New York, pp 249–319Google Scholar
  59. Kramer CL (1958) A new genus in the Protomycetaceae. Mycologia 50: 916–926Google Scholar
  60. Kramer CL (1960) Morphological development and nuclear behavior in the genus Taphrina. Mycologia 52: 295–320Google Scholar
  61. Kramer CL (1973) Protomycetales and Taphrinales. In: Ainsworth GC, Sparrow FK, Sussman AS (eds) The Fungi, an advanced treatise, vol IV A. Academic Press, New York, pp 33–41Google Scholar
  62. Kramer CL (1987) The Taphrinales. In: de Hoog GS, Smith MTh, Weijman ACM (eds) The expanding realm of yeast-like fungi. Elsevier, Amsterdam, pp 151–166Google Scholar
  63. Kreger-van Rij NJW (1984) The yeasts, a taxonomic study, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  64. Kreger-van Rij NJW, Veenhuis M (1971) A comparative study of the cell wall structure of basidiomycetous and related yeasts. J Gen Microbiol 68: 87–95Google Scholar
  65. Kreger-van Rij NJW, Veenhuis M (1973) Electron microscopy of septa in ascomycetous yeasts. Antonie van Leeuwenhoek 39: 481–490Google Scholar
  66. Kurtzman CP (1984) Synonymy of the yeast genera Hansenula and Pichia demonstrated through comparisons of deoxyribonucleic acid relatedness. Antonie van Leeuwenhoek 50: 209–217PubMedGoogle Scholar
  67. Kurtzman CP (1987) Prediction of biological relatedness among yeasts from comparisons of nuclear DNA cornplementarity. Stud Mycol 30: 459–468Google Scholar
  68. Kurtzman CP (1990) DNA relatedness among species of Sterigmatomyces and Fellomyces. Int J Syst Bacteriol 40: 56–59Google Scholar
  69. Kurtzman CP (1993a) Systematics of the ascomycetous yeasts assessed from ribosomal RNA sequence divergence. Antonie van Leeuwenhoek 63: 165–174PubMedGoogle Scholar
  70. Kurtzman CP (1993b) DNA-DNA hybridization approaches to species identification in small genome organisms. In: Zimmer EA, White TJ, Cann RL, Wilson AC (eds) Methods in enzymology, vol 224. Molecular evolution: producing the biochemical data, Academic Press, San Diego, pp 335–348Google Scholar
  71. Kurtzman CP (1994) Molecular taxonomy of the yeasts. Yeast 10: 1727–1740PubMedGoogle Scholar
  72. Kurtzman CP, Fell JW (1998) The yeasts, a taxonomic study, 4th edn. Elsevier, AmsterdamGoogle Scholar
  73. Kurtzman CP, Liu Z (1990) Evolutionary affinities of species assigned to Lipomyces and Myxozyma estimated from ribosomal RNA sequence divergence. Curr Microbiol 21: 387–393Google Scholar
  74. Kurtzman CP, Phaff HJ (1987) Molecular taxonomy of yeasts. In: Rose AH, Harrison JS (eds) The yeasts, vol 1, 2nd edn, Academic Press, New York, pp 63–94Google Scholar
  75. Kurtzman CP, Robnett CJ (1991) Phylogenetic relationships among species of Saccharomyces, Schizosaccharomyces, Debaryomyces and Schwanniomyces determined from partial ribosomal RNA sequence. Yeast 7: 61–72PubMedGoogle Scholar
  76. Kurtzman CP, Robnett CJ (1994a) Orders and families of ascosporogenous yeasts and yeast-like taxa compared from ribosomal RNA sequence similarities. In: Hawksworth DL (ed) Ascomycete systematics, problems and perspectives in the nineties. Plenum Press, New York, pp 249–258Google Scholar
  77. Kurtzman CP, Robnett CJ (1994b) Synonymy of the yeast genera Wingea and Debaryomyces. Antonie van Leeuwenhoek 66: 337–342PubMedGoogle Scholar
  78. Kurtzman CP, Robnett CJ (1995) Molecular relationships among hyphal ascomycetous yeasts and yeastlike taxa. Can J Bot 73 (Suppl 1): S824 — S830Google Scholar
  79. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73: 331–371PubMedGoogle Scholar
  80. Kurtzman CP, Smiley MJ, Johnson CJ, Wickerham LJ, Fuson GB (1980a) Two new and closely related heterothallic species. Pichia amylophila and P mississippiensis: characterization by hybridization and DNA reassociation. Int J Syst Bacteriol 30: 208–216Google Scholar
  81. Kurtzman CP, Smiley MJ, Johnson CJ (1980b) Emendation of the genus Issatchenkia Kudriavzev and comparison of species by DNA reassociation, mating reaction and ascospore ultrasturcture. Int J Syst Bacteriol 30: 503–513Google Scholar
  82. Lake JA (1987) A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol 4: 167–191PubMedGoogle Scholar
  83. Landvik S (1996) Neolecta,a fruit-body-producing genus of the basal ascomycetes, as shown by SSU and LSU rDNA sequences. Mycol Res 100:199–202Google Scholar
  84. Landvik S, Eriksson OE, Gargas A, Gustafsson P (1993) Relationships of the genus Neolecta (Neolectales ordo nov., Ascomycotina) inferred from 18S rDNA sequences. Syst Ascomyc 11: 107–118Google Scholar
  85. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82: 6955–6959PubMedGoogle Scholar
  86. Lodder J (1970) The yeasts, a taxonomic study. North-Holland, AmsterdamGoogle Scholar
  87. Magee BB, D’Souza TM, Magee PT (1987) Strain and species identification by restriction fragment length polymorphisms in the ribosomal DNA repeat of Candida species. J Bacteriol 169: 1639–1643PubMedGoogle Scholar
  88. Martin EM (1940) The morphology and cytology of Taphrina deformans. Am J Bot 27: 743–751Google Scholar
  89. McCully EK, Robinow CF (1972) Mitosis in heterobasidiomycetous yeasts. I. Leucosporidium scottii (Candida scottii). J Cell Sci 10: 857–881PubMedGoogle Scholar
  90. McLaughlin DJ, Frieders EM, Lii HS (1995) A microscopist’s view of heterobasidiomycete phylogeny. Stud Mycol 38: 91–109Google Scholar
  91. McLaughlin RJ, Wilson CL, Chalutz D, Kurtzman CP, Fett WF, Osman SF (1990) Characterization and reclassification of yeasts used for biological control of postharvest diseases of fruits and vegetables. Appl Environ Microbiol 56: 3583–3586PubMedGoogle Scholar
  92. Mendonça-Hagler LC, Phaff HJ (1975) Deoxyribonucleic acid base composition and deoxyribonucleic acid/deoxyribonucleic acid hybrid formation in psychrophobic and related yeasts. Int J Syst Bacteriol 25: 222–229Google Scholar
  93. Mix AJ (1949) A monograph of the genus Taphrina. Univ Kansas Sci Bull 33: 1–167Google Scholar
  94. Moor H (1967) Endoplasmic reticulum as the initiator of bud formation in yeast (S. cerevisiae). Arch Mikrobiol 57: 135–146PubMedGoogle Scholar
  95. Moore RT (1987) Micromorphology of yeasts and yeast-like fungi and its taxonomic implications. In: de Hoog GS, Smith MTh, Weijman ACM (eds) The expanding realm of yeast-like fungi. Elsevier, Amsterdam, pp 203–226Google Scholar
  96. Moore RT (1990) The genus Lalaria gen. nov.: Taphrinales anamorphosum. Mycotaxon 38: 315–330Google Scholar
  97. Moore RT, Flinn AM (1991) Ubiquinone and urease distribution in Taphrina and Symbiotaphrina. Antonie van Leeuwenhoek 59: 45–47PubMedGoogle Scholar
  98. Moore-Landecker E (1990) Fundamentals of the fungi, 3rd edn. Prentice Hall, Englewood CliffsGoogle Scholar
  99. Naehring J, Kiefer S, Wolf K (1995) Nucleotide sequence of the Schizosaccharomyces japonicus var. versatilis ribosomal RNA gene cluster and its phylogenetic implications. Curr Genet 28: 353–359PubMedGoogle Scholar
  100. Nishida H, Sugiyama J (1993) Phylogenetic relationships among Taphrina, Saitoella, and other fungi. Mol Biol Evol 12: 883–886Google Scholar
  101. Nishida H, Sugiyama J (1994a) Phylogeny and molecular evolution among higher fungi. Nippon Nogeikagaku kaishi 68: 54–57 (in Japanese)Google Scholar
  102. Nishida H, Sugiyama J (1994b) Archiascomycetes: detection of a major new lineage within the Ascomycota. Mycoscience 35: 361–366Google Scholar
  103. Nishida H, Sugiyama J (1995) A common group I intron between a plant parasitic fungus and its host. Mol Biol Evol 12: 883–886PubMedGoogle Scholar
  104. Nishida H, Blanz PA, Sugiyama J (1993) The higher fungus Protomyces inouyei has group I introns in the 18S rRNA gene. J Mol Evol 37: 25–28PubMedGoogle Scholar
  105. Nishida H, Ando K, Ando Y, Hirata A, Sugiyama J (1995) Mixia osmundae: transfer from the Ascomycota to the Basidiomycota based on evidence from molecules and morphology. Can J Bot 73 (Suppl 1 ): S660 — S666Google Scholar
  106. Nishida H, Tajiri Y, Sugiyama J (1998) Multiple origins of fungal group I introns located in the same position of nuclear SSU rRNA gene. J Mol Evol 46: 442–448PubMedGoogle Scholar
  107. Nishida T (1911) A contribution to the monograph of the parasitic Exoascaceae of Japan. In: Collection of botanical papers presented to Prof. Dr. Kingo Miyabe on the occasion of the 25th anniversary of his academic service. Rokumeikwan, Tokyo, pp 157–204 (in Japanese), pp 205–212 (English summary)Google Scholar
  108. Noda H, Kodama K (1996) Phylogenetic position of yeast-like endosymbionts of anobiid beetles. Appl Environ Microbiol 62: 162–167PubMedGoogle Scholar
  109. Parkinson D, Gray TRG, Williams ST (1971) Methods for studying the ecology of soil micro-organisms. IBP Handbook No 19. Blackwell, OxfordGoogle Scholar
  110. Peterson SW, Kurtzman CP (1991) Ribosomal RNA sequence divergence among sibling species of yeasts. Syst Appl Microbiol 14: 124–129Google Scholar
  111. Petit M, Schneider A (1983) Chemical analysis of the wall of the yeast form of Taphrina deformans. Arch Microbiol 135: 141–146Google Scholar
  112. Phaff HJ, Starmer WT (1987) Yeasts associated with plants, insects and soil. In: Rose AH, Harrison JS (eds) The yeasts, vol 1, Biology of yeasts. Academic Press, London, pp 123–180Google Scholar
  113. Phelan JA, Saltzman BR, Friedland GH, Klein RS (1987) Oral findings in patients with acquired immunodeficiency syndrome. Oral Surg Oral Med Oral Pathol 64f: 50–56PubMedGoogle Scholar
  114. Pitt JI, Hocking AD (1985) Fungi and food spoilage. Academic Press Australia, Sydney, pp 335–364Google Scholar
  115. Price CW, Fuson GB, Phaff HJ (1978) Genome comparison in yeast systematics: delimitation of species within the genera Schwanniomyces, Saccharomyces, Debaryomyces and Pichia. Microbiol Rev 42: 161–193PubMedGoogle Scholar
  116. Prillinger H, Dörfler Ch, Laaser G, Eckerlein B, Lehle L (1990) Ein Betrag zur Systematik und Entwicklungsbiologie Hoherer Pilze: Hefe-Typen der Basidiomyceten, Teil I: Schizosaccharomycetales, Protomyces-Typ. Z Mykol 56: 219–250Google Scholar
  117. Radford A (1993) A fungal phylogeny based upon orotidine 5’-monophosphate decarboxylase. J Mol Evol 36: 389–395PubMedGoogle Scholar
  118. Reddy MS, Kramer CL (1975) A taxonomic revision of the Protomycetales. Mycotaxon 3: 1–50Google Scholar
  119. Redhead SA (1977) The genus Neolecta (Neolectaceae fam. nov., Lecanorales, Ascomycetes) in Canada. Can J Bot 55: 301–306Google Scholar
  120. Redhead SA, Malloch DW (1977) The Endomycetaceae: new concepts, new taxa. Can J Bot 55: 1701–1711Google Scholar
  121. Roberts RG (1990) Postharvest biological control of gray mold of apple by Cryptococcus laurentii. Phytopathology 80: 526–530Google Scholar
  122. Roelofsen PA, Hoette I (1951) Chitin in the cell walls of yeasts. Antonie van Leeuwenhoek 17: 297–313PubMedGoogle Scholar
  123. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425PubMedGoogle Scholar
  124. Savile DBO (1955) A phylogeny of the Basidiomycetes. Can J Bot 33: 60–104Google Scholar
  125. Savile DBO (1968) Possible interrelationships between fungal groups. In: Ainsworth GC, Sussman AS (eds) The fungi, an advanced treatise, vol III. Academic Press, New York, pp 649–675Google Scholar
  126. Sietsma JH, Wessels JGH (1990) Occurrence of glucosaminoglycan in the wall of Schizosaccharomyces pombe. J Gen Microbiol 136: 2261–2265PubMedGoogle Scholar
  127. Sjamsuridzal W, Tajiri Y, Nishida H, Thuan TB, Kawasaki H, Hirata A, Yokota A, Sugiyama J (1997) Evolutionary relationships of members of the genera Taphrina, Protomyces, Schizosaccharomyces, and related taxa within the archiascomyctes: integrated analysis of genotypic and phenotypic characters. Mycoscience 38: 267–280Google Scholar
  128. Skerman BVD (1968) A new type of micromanipulator and microforge. J Gen Microbiol 54: 287–297PubMedGoogle Scholar
  129. Steele SD, Fraser TW (1973) The ultrastructure of Geotrichum candidum hyphae. Can J Microbiol 19: 1507–1512PubMedGoogle Scholar
  130. Sugiyama J (1998) Relatedness, phylogeny, and evolution of the fungi. Mycoscience 39: 487–511Google Scholar
  131. Sugiyama J, Nishida H (1994) Phylogenetic divergence of taphrinalean fungi: Evidence from molecules and morphology. Abstr, Fifth International Mycological Congress, August 14–21, 1994, Vancouver, Canada, p 213Google Scholar
  132. Sugiyama J, Nishida H (1995) The higher fungi: their evolutionary relationships and implications for fungal systematics. In: Arai R, Kato M, Doi Y (eds) Biodiversity and evolution. The National Science Museum, Tokyo, pp 177–195Google Scholar
  133. Sugiyama J, Fukagawa M, Chiu S-W, Komagata K (1985) Cellular carbohydrate composition, ubiquinone systems, and Diazonium Blue B color test in the genera Rhodosporidium, Leucosporidium, Rhodotorula and related basidiomycetous yeasts. J Gen Appl Microbiol 31: 519–550Google Scholar
  134. Sugiyama J, Nishida H, Suh S-O (1993) The paradigm of fungal diagnoses and descriptions in the era of molecular systematics: Saitoella complicata as an example. In: Reynolds DR, Taylor, JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 261–269Google Scholar
  135. Sugiyama J, Tajiri Y, Sjamsuridzal W, Nishida H (1996) Phylogeny and evolution of archiascomycetes as yeasts. Abstr 9th Int Symp on Yeasts, August 25–30, 1996, Sydney, Australia, p 9Google Scholar
  136. Swofford DL (1993) PAUP: Phylogenetic analysis using parsimony, ver. 3.1. 1. Illinois Nat Hist Surv, Champaign, ILGoogle Scholar
  137. Syrop M, Beckett A (1976) Leaf curl disease of almond caused by Taphrina deformans. III. Ultrastructural cytology of the pathogen. Can J Bot 54: 293–305Google Scholar
  138. Taylor JW, Bowman BH (1993) Pneumocystis carinii and the ustomycetous red yeast fungi. Mol Microbiol 8: 425–426Google Scholar
  139. Taylor JW, Swann EC, Berbee ML (1994) Molecular evolution of ascomycete fungi: Phylogeny and conflict. In: Hawksworth DL (ed) Ascomycete systematics: problems and perspectives in the nineties. Plenum Press, New York, pp 201–212Google Scholar
  140. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680PubMedGoogle Scholar
  141. Tsai H-F, Liu J-S, Staben C, Christensen MJ, Latch GCM, Siegel MR, Schardl CL (1994) Evolutionary diversification of fungal endophytes of tall fescue grass by hybridization with Epichloë species. Proc Natl Acad Sci USA 91: 2542–2546PubMedGoogle Scholar
  142. Tubaki K (1957) Biological and cultural studies of three species of Protomyces. Mycologia 49: 44–54Google Scholar
  143. Tubaki K (1978a) Taphrina wiesneri (Rathay) Mix. In: Udagawa S, Tubaki K, Horie Y, Miura K, Minoura K, Yamazaki M, Yokoyama T, Watanabe S (eds) Kinruizukan (Compendium of fungi), part 1. Kodansha, Tokyo, pp 329–330 (In Japanese)Google Scholar
  144. Tubaki K (1978b) On Skerman’s micromanipulator and microforge. Trans Mycol Soc Japan 19: 237–239 (In Japanese)Google Scholar
  145. van der Walt JP, Hopsu-Havu VK (1976) A colour reaction for the differentiation of ascomycetous and herniascomycetous yeasts. Antonie van Leeuwenhoek 42: 157–163Google Scholar
  146. van der Walt JP, Yarrow D (1984) Methods for isolation, maintenance, classification and identification of yeasts. In: Kreger-van NJW (ed) The yeasts, a taxonomic study, 3rd end. Elsevier, Amsterdam, pp 45–103Google Scholar
  147. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172: 4238–4246PubMedGoogle Scholar
  148. von Arx JA (1972) On Endomyces, Endomycopsis and related yeast-like fungi. Antonie van Leeuwenhoek 38: 289–309Google Scholar
  149. von Arx JA, van der Walt JP (1987) Ophiostomatales and Endomycetales. Stud Mycol 30: 167–176Google Scholar
  150. von Arx JA, van der Walt JP, Liebenberg NVDM (1982) The classification of Taphrina and other fungi with yeast-like cultural states. Mycologia 74: 287–296Google Scholar
  151. Wakefield AE, Peters SE, Banerji S, Bridge PD, Hall GS, Hawksworth DL, Guiver LA, Allen AG, Hopkin JM (1992) Pneumocystis carinii shows DNA homology with the ustomycetous red yeast fungi. Mol Microbiol 6: 1903–1911Google Scholar
  152. Wakefield AE, Hopkin JM, Bridge PD, Hawksworth DL (1993) Pneumocystis carinii and the ustomycetous red yeast fungi. Mol Microbiol 8: 426–427Google Scholar
  153. Walker WF (1985) 5S ribosomal RNA sequences from ascomycetes and evolutionary implications. Syst Appl Microbiol 6:48–53Google Scholar
  154. Watanabe J, Hori H, Tanabe K, Nakamura Y (1989) Phylogenetic association of Pneumocystis carinii with the “Rhizopoda/Myxomycota/Zygomycota group” indicated by comparison of 5S ribosomal RNA sequences. Mol Biochem Parasitol 32: 163–168PubMedGoogle Scholar
  155. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis N, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  156. Wickerham LJ, Burton KA (1954) A simple technique for obtaining mating types in heterothallic diploid yeasts, with special reference to their uses in the genus Hansenula. J Bacteriol 67: 303–308PubMedGoogle Scholar
  157. Wilmotte A, Van de Peer Y, Goris A, Chapelle S, De Baere R, Nelissen B, Neefs J-M, Hennebert GL, De Wachter R (1993) Evolutionary relationships among higher fungi inferred from small ribosomal subunit RNA sequence analysis. Syst Appl Microbiol 16: 436–444Google Scholar
  158. Wilson CL, Wisniewski ME (1989) Biological control of postharvest diseases of fruits and vegetables: an emerging technology. Annu Rev Phytopathol 27: 425–441Google Scholar
  159. Yamada Y, Banno I (1987) Hasegawaea gen. nov. an ascosporogenous yeast genus for the organisms whose asexual reproduction by fission and whose ascospores have smooth surfaces without papillae and which are characterized by the absence of coenzyme Q and by the presence of linoleic acid in cellular fatty acid composition. J Gen Appl Microbiol 33: 295–298Google Scholar
  160. Yamada Y, Ohishi T, Kondo K (1983) The coenzyme Q system in strains of some yeasts and yeast-like fungi. J Gen Appl Microbiol 29: 51–57Google Scholar
  161. Yamada Y, Banno I, von Arx JA, van der Walt JP (1987) Taxonomic significance of the coenzyme Q system in yeasts and yeast-like fungi. In: de Hoog GS, Smith MTh, Weijman ACM (eds) The expanding realm of yeast-like fungi. Elsevier, Amsterdam, pp 299–308Google Scholar
  162. Yamada Y, Asahi T, Maeda K, Mikata K (1993) The phylogenetic relationships of fission yeasts based on the partial sequences of 18S and 26S ribosomal RNAs: the recognition of Hasegawaea Yamada et Banno along with Schizossacharomyces Lindner. Bull Fac Agric Shuzuoka Univ 43: 29–38Google Scholar
  163. Yamazaki M, Kurtzman CP, Sugiyama J (1998) Electrophoretic comparisons of enzymes. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study, 4th end. Elsevier, Amsterdam, pp 49–53Google Scholar
  164. Yarrow D (1998) Methods for isolation, maintenance, and identification of yeasts. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam, pp 77–105Google Scholar
  165. Yoshida Y (1989) Ultrastructural studies of Pneumocystis carinii. J Protozool 36: 53–60PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  1. 1.U.S. Dept. of AgricultureMicrobial Properties Research Unit, National Center for Agricultural Utilization Research, Agricultural Research ServicePeoriaUSA
  2. 2.Department of BotanyThe University Museum, The University of TokyoBunkyo-ku, TokyoJapan

Personalised recommendations