What are Fungi?

  • T. Cavalier-Smith
Part of the The Mycota book series (MYCOTA, volume 7A)

Abstract

The idea that Fungi form a kingdom distinct from 5 plants and animals (Necker 1783) became widely accepted only recently (Whittaker 1969). Progress in defining a monophyletic kingdom Fungi has been even slower, because the two most obvious features of typical fungi, a trophic state consisting of walled hyphae and dispersion by aerial spores, have arisen polyphyletically and been lost or modified several times. Thus, the organisms traditionally studied by mycologists, and grouped in Whittaker’s kingdom, are polyphyletic. Some, notably Mycetozoa and Plasmodiophorida, are related to certain Protozoa more closely than to true fungi; others are evolutionarily closer to certain algae. Conversely, organisms often thought to be very distinct from fungi (notably lichens) or previously outside the domain of mycology and botany (namely Microsporidia, formerly regarded as Protozoa) turn out to be true fungi, whereas oomycete moulds and “white rusts” are not!

Keywords

Lysine Photosynthesis Sponge Aspergillus Cambrian 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexopoulos CJ (1952) Introductory mycology. Wiley, New YorkGoogle Scholar
  2. Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology, 4th edn. Wiley, New YorkGoogle Scholar
  3. Atkinson GF (1909) Some problems in the evolution of the lower fungi. Ann Mycol 7: 441–472Google Scholar
  4. Baker MD, Vossbrinck CR, Becnel JJ, Maddox JV (1997) Phylogenetic position of Amblyospora Hazard and Oldacre (Microspora: Amblyosporidae) based on small subunit rRNA data and its implication for the evolution of the Microsporidia. J Eukaryot Microbiol 44: 220–225Google Scholar
  5. Balbiani G (1882) Sur les microsporidies ou psorospermies des articulés. C R Acad Sci 95: 1168–1171Google Scholar
  6. Baldauf SL, Doolittle WF (1997) Origin and evolution of the slime molds. Proc Natl Acad Sci USA 94: 12007–12012PubMedGoogle Scholar
  7. Baldauf SL, Palmer JD (1993) Animals and fungi are each other’s closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci USA 90: 11558–11562PubMedGoogle Scholar
  8. Barr DJ (1992) Evolution and kingdoms of organisms from the perspective of a mycologist. Mycologia 84: 1–11Google Scholar
  9. Bartnicki-Garcia S (1996) The hypha: unifying thread of the fungal kingdom. In: Sutton B (ed) A century of mycology. Cambridge University Press, Cambridge, pp 105–133Google Scholar
  10. Berbee ML, Taylor JW (1992) Two ascomycete classes based on fruiting-body characters and ribosomal DNA sequence. Mol Biol Evol 9: 278–284PubMedGoogle Scholar
  11. Berbee ML, Taylor JW (1993) Dating the evolutionary origins of the true fungi. Can J Bot 71: 1114–1127Google Scholar
  12. Berbee ML, Taylor JW (1994) 18S ribosomal RNA sequence data and dating, classifying, and ranking the fungi. In: Hawksworth DL (ed) Ascomycete systematics: problems and perspectives in the nineties. Plenum, New York, pp 213–223Google Scholar
  13. Bessey EA (1942) Some problems in fungus phylogeny. Mycologia 34: 355–379Google Scholar
  14. Blackwell M (1994) Minute mycological mysteries: the influence of arthropods on the lives of fungi. Mycologia 86: 1–17Google Scholar
  15. Blackwell M, Malloch D (1989) Pyxidiophora (Pyxidiophoraceae): a link between Laboulbeniales and hyphal ascomycetes. Mem N Y Bot Gard 49: 23–32Google Scholar
  16. Bouck GB (1972) Architecture and assembly of mastigonemes. In: Dupraw EJ (ed) Advances in cell and molecular biology, vol 2. Academic Press, New York, pp 237–271Google Scholar
  17. Bowman BH, Taylor JW, Brownlee AG, Lee I, Lu S-D, White TJ (1992) Molecular evolution of the fungi: relationships of the basidiomycetes, ascomycetes and chytridiomycetes. Mol Biol Evol 9: 285–296PubMedGoogle Scholar
  18. Brefeld 0 (1872–1883) Botanische Untersuchungen über Schimmelpilze. Felix, LeipzigGoogle Scholar
  19. Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Annu Rev Ecol 22: 525–564Google Scholar
  20. Canning EU (1990) Phylum Microspora. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 53–72Google Scholar
  21. Carlile MJ (1995) The success of the hypha and mycelium. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 3–19Google Scholar
  22. Cavalier-Smith T (1981) Eukaryote kingdoms, seven or nine? BioSystems 14: 461–481PubMedGoogle Scholar
  23. Cavalier-Smith T (1982) The evolutionary origin and phylogeny of eukaryote flagella. In: Amos WB, Duckett JG (eds) Prokaryotic and eukaryotic flagella. 35th Symp Soc Experimental Biology. Cambridge University Press, Cambridge, pp 465–493Google Scholar
  24. Cavalier-Smith T (1983a) A 6-kingdom classification and a unified phylogeny. In: Endocytobiology II. de Gruyter, Berlin, pp 1027–1034Google Scholar
  25. Cavalier-Smith T (1983b) Endosymbiotic origin of the mitochondrial envelope. In: Schwemmler W, Schenk HEA (eds) Endocytobiology II. de Gruyter, Berlin, pp 265–279Google Scholar
  26. Cavalier-Smith T (1986a) The kingdom Chromista, origin and systematics. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 4. Biopress, Bristol, pp 309–347Google Scholar
  27. Cavalier-Smith T (1986b) Cilia versus undulipodia. Bioscience 36: 293–294Google Scholar
  28. Cavalier-Smith T (1987) The origin of Fungi and pseudo-fungi. In: Rayner ADM, Brasier CM, Moore DM (eds) Evolutionary biology of the fungi (Symp Br Mycol Soc 13 ). Cambridge University Press, Cambridge, pp 339–353Google Scholar
  29. Cavalier-Smith T (1989) The kingdom Chromista. In: Green JC, Leadbeater BSC, Diver WC (eds) The chromophyte algae, problems and perspectives. Clarendon Press, Oxford, pp 381–407Google Scholar
  30. Cavalier-Smith T (1992) Origin of the cytoskeleton. In: Hartman H, Matsuno K (eds) The origin and evolution of the cell. World Scientific Publishers, Singapore, pp 79–106Google Scholar
  31. Cavalier-Smith T (1993a) Kingdom Protozoa and its 18 phyla. Microbiol Rev 57: 953–994PubMedGoogle Scholar
  32. Cavalier-Smith T (1993b) Percolozoa and the symbiotic origin of the metakaryote cell. In: Ishikawa H, Ishida M, Sato S (eds) Endocytobiology V. University Press, Tübingen, pp 399–406Google Scholar
  33. Cavalier-Smith T (1993c) The protozoan phylum Opalozoa. J Eukaryot Microbiol 40: 609–615Google Scholar
  34. Cavalier-Smith T (1993d) The origin, losses and gains of chloroplasts. In: Lewin RA (ed) Origin of plastids: Symbiogenesis, prochlorophytes and the origins of chloroplasts. Chapman and Hall, New York, pp 291–348Google Scholar
  35. Cavalier-Smith T (1995a) Cell cycles, diplokaryosis, and the archezoan origin of sex. Arch Protistenkd 145: 189–207Google Scholar
  36. Cavalier-Smith T (1995b) Membrane heredity, symbiogenesis, and the multiple origins of algae. In: Arai R, Kato M, Doi Y (eds) Biodiversity and evolution. The National Science Museum Foundation, Tokyo, pp 75–114Google Scholar
  37. Cavalier-Smith T (1997a) Sagenista and Bigyra, two phyla of heterotrophic heterokont chromists. Arch Protistenkd 148: 253–267Google Scholar
  38. Cavalier-Smith T (1997b) Amoeboflagellates and mitochondrial cristae in eukaryote evolution: megasystematics of the new protozoan subkingdoms Eozoa and Neozoa. Arch Protistenkd 147: 237–258Google Scholar
  39. Cavalier-Smith T (1998a) A revised 6-kingdom system of life. Biol Rev 73: 203–266PubMedGoogle Scholar
  40. Cavalier-Smith T (1998b) Neomonada and the origin of animals and fungi. In: Coombs GH, Vickerman K, Sleigh MA, Warren A (eds) Evolutionary relationships among Protozoa. Kluwer, London, pp 375–407Google Scholar
  41. Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan chloroplast origins and the eukaryote family tree. J Eukaryot Microbiol 46: 347–366PubMedGoogle Scholar
  42. Cavalier-Smith T, Allsopp MTEP (1996) Corallochytrium, an enigmatic non-flagellate protozoan related to choanoflagellates. Eur J Protistol 32: 306–310Google Scholar
  43. Cavalier-Smith T, Chao EE (1996a) 18S rRNA sequence of Heterosigma carterae (Raphidophyceae), and the phylogeny of heterokont algae ( Ochrophyta ). Phycologia 35: 500–510Google Scholar
  44. Cavalier-Smith T, Chao EE (1996b) Molecular phylogeny of the free-living archezoan Trepomonas agilis and the nature of the first eukaryote. J Mol Evol 43: 551–562PubMedGoogle Scholar
  45. Cavalier-Smith T, Chao EE (1997) Sarcomonad ribosomal RNA sequences, rhizopod phylogeny, and the origin of euglyphid amoebae. Arch Protistenkd 147: 227–236Google Scholar
  46. Cavalier Smith T, Allsopp MTEP, Chao EE (1994) Thraustochytrids are chromists, not Fungi: 18s rRNA signatures of Heterokonta. Philos Trans R Soc Lond B 339: 139–146Google Scholar
  47. Cavalier-Smith T, Chao EE, Allsopp MTEP (1995) Ribosomal RNA evidence for chloroplast loss within Heterokonta, pedinellid relationships and a revised classification of ochristan algae. Arch Protistenkd 145: 209–220Google Scholar
  48. Cavalier-Smith T, Allsopp MTEP, Chao EE, Boury-Esnault N, Vacelet J (1996a) Sponge phylogeny, animal monophyly and the origin of the nervous system: 18S rRNA evidence. Can J Zool 74: 2031–2045Google Scholar
  49. Cavalier-Smith T, Chao EE, Thompson C, Hourihane S (1996b) Oikomonas, a distinctive zooflagellate related to chrysomonads. Arch Protistenkd 146: 273–279Google Scholar
  50. Cavalier-Smith T, Couch JA, Thorsteinsen KE, Gilson P, Deane J, Hill DA, McFadden GI (1996c) Cryptomonad nuclear and nucleomorph 18S rRNA phylogeny. Eur J Phycol 31: 315–328Google Scholar
  51. Cavalier-Smith T, Allsopp MTEP, Häuber MM, Rensing SA, Gothe G, Chao EE, Couch JA, Maier U-G (1996d) Chromobiote phylogeny: the enigmatic alga Reticulosphaera japonensis is an aberrant haptophyte, not a heterokont. Eur J Phycol 31: 255–263Google Scholar
  52. Chatton E (1913) Coccidiascus legeri n. g., n. sp., levure escosporée parasite des cellules intestinales de Drosophila funebris Fabr. C R Soc Biol 75: 117–120Google Scholar
  53. Copeland HF (1956) The classification of lower organisms. Pacific Books, Palo AltoGoogle Scholar
  54. Corliss JO (1994) An interim utilitarian (“user friendly”) hierarchical classification and characterization of the protists. Acta Protozool 33: 1–51Google Scholar
  55. Corner EJH (1964) The life of plants. Weidenfeld and Nicolson, LondonGoogle Scholar
  56. Couch JN (1938) Observations on cilia of aquatic Phycomycetes. Science 88: 476Google Scholar
  57. Dangeard PA (1886) Recherches sur les organismes inférieurs. Ann Sci Nat Bot 7, Ser 4: 241–341Google Scholar
  58. Dangeard PA (1903) Recherches sur la développement du périthèce chez les Ascomycètes. Botaniste 9:157 —303Google Scholar
  59. de Bary A (1864) Die Mycetozoen (Schleimpilze). Ein Beitrag zur Kenntnis der niedersten Organismen. Engelmann, LeipzigGoogle Scholar
  60. de Bary A (1866) Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. In: Hofmeister W (ed) Handbuch der physiologischen Botanik, I I. Engelmann, LeipzigGoogle Scholar
  61. de Bary A (1881) Untersuchungen über die Peronosporeeen und Saprolegnieen und die Grundlagen eines natürlichen Systems der Pilze. Beitr Morphol Physiol Pilze IV, p 85Google Scholar
  62. de Bary A (1887) Comparative morphology and biology of the Fungi, Mycetozoa and Bacteria. Clarendon Press, OxfordGoogle Scholar
  63. Desportes I, Nashed NN (1983) Ultrastucture of sporulation in Minchinia dentali (Arvy), an haplosporean parasite of Dentalium entale (Scaphopoda, Mollusca): taxonomic implications. Protistologica 19: 453–460Google Scholar
  64. Dick MW (1976) The ecology of aquatic Phycomycetes. In: Jones EBG (ed) Recent advances in aquatic mycology. Elek Science, London, pp 513–542Google Scholar
  65. Dick MW (1990) Phylum Oomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 661–685Google Scholar
  66. Edlind TD, Li J, Visvesvara GS, Vodkin MH, McLaughlin GL, Katiya SK (1996) Phylogenetic analysis of beta tubulin sequences from amitochondrial protozoa. Mol Phyl Evol 5: 359–367Google Scholar
  67. Felsenstein J (1992) Phylip manual (Version 3. 5 ), University of Washington, SeattleGoogle Scholar
  68. Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University Press, OxfordGoogle Scholar
  69. Förster H, Coffey MD, Elwood H, Sogin ML (1990) Sequence analysis of the small subunit ribosomal RNAs of three zoosporic fungi and implications for fungal evolution. Mycologia 82: 306–312Google Scholar
  70. Gehrig H, Schüssler A, Kluge M (1996) Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (Cyanobacteria), is an ancestral member of the Glomales: evidence by SSU rRNA analysis. J Mol Evol 43: 71–81PubMedGoogle Scholar
  71. Germot A, Philippe H, Le Guyader H (1997) Evidence for loss of mitochondria in Microsporidia from a mitochondrial type Hsp70 in Nosema locustae. Mol Biochem Parasitol 87: 159–168PubMedGoogle Scholar
  72. Gow NAR (1995a) Yeast-hyphal dimorphism. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 403–422Google Scholar
  73. Gow NAR (1995b) Tip growth and polarity. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 277–299Google Scholar
  74. Gunderson JH, Elwood HJ, Ingold A, Kindle K, Sogin ML (1987) Phylogenetic relationships between chlorophytes, chrysophytes and oomycetes. Proc Natl Acad Sci USA 84: 5823–5827PubMedGoogle Scholar
  75. Gwynne-Vaughan HCI, Barnes B (1927) The structure and development of the fungi. Cambridge University Press, CambridgeGoogle Scholar
  76. Hawker LE (1974) Fungi, 2nd edn. Hutchinson, LondonGoogle Scholar
  77. Hawksworth DE (1995) Steps along the way to a harmonised bionomenclature. Taxon 44: 447–456Google Scholar
  78. Hawksworth DE, Kirk PM, Smith BC, Pegler DN (1995) Ainsworth and Bisby’s Dictionary of the Fungi, 8th edn. CAB International, WallingfordGoogle Scholar
  79. Hennig W (1966) Phylogenetic systematics. University of Illinois Press, UrbanaGoogle Scholar
  80. Hirt RP, Logsdon JM, Healy B, Dorey MW, Doolittle WF, Embley TM (1999) Microsporidia are related to Fungi: evidence from the largest subunit of RNA poly-Google Scholar
  81. merase II and other proteins. Proc Natl Acad Sci USA 96:580–585Google Scholar
  82. Holwill MEJ (1982) Dynamics of eukaryotic flagellar movement. In: Amos WB, Duckett JG (eds) Prokaryotic and eukaryotic flagella. Cambridge University Press, Cambridge, pp 289–312Google Scholar
  83. Horn BW (1989) Requirement for potassium and pH shift in host-mediated sporangiospore extrusion from trichospores of Smittium culisetae and other Smittium species. Mycol Res 93: 303–313Google Scholar
  84. Kamaishi T, Hashimoto T, Nakamura Y, Nakamura F, Murata S, Okada N, Okamoto K, Shimizu M, Hasegawa M (1996) Protein phylogeny of translation elongation factor EF-1 alpha suggests micosporidians are extremely ancient eukaryotes. J Mol Evol 42: 257–263PubMedGoogle Scholar
  85. Karling JS (1943) The life history of Anisolpidium ectocarpii gen. nov. et sp. nov., and a synopsis of the classification of other fungi with anteriorly uniflagellate zoospores. Am J Bot 30: 637–648Google Scholar
  86. Karling JS (1944) Phagomyxa algarum n. gen., n. sp., an unusual protist with plasmodiophoralean and proteomyxean characteristics. Am J Bot 31: 38–52Google Scholar
  87. Keeling P, Doolittle WF (1996) a-Tubulins from early diverging eukaryotic lineages: divergence and evolution of the tubulin family. Mol Biol Evol 13: 1297–1305Google Scholar
  88. Kuma K, Nikoh N, Iwabe N, Miyata T (1995) Phylogenetic position of Dictyostelium inferred from multiple protein data sets. Mol Biol Evol 41: 238–246Google Scholar
  89. Labbé A (1899) Sporozoa. In: Bütschli O (ed) Das Tierreich 5 Lief. Friedlander, BerlinGoogle Scholar
  90. Lamarck JB (1802) Recherches sur l’organisation des corps vivans. L’auteur… Maillard, ParisGoogle Scholar
  91. Lang F, Seif E, Gray MW, O’Kelly C, Burger G (1999) A comparative genomics approach to the evolution of eukaryotes and their mitochondria. J Euk Microbiol 46: 320–326PubMedGoogle Scholar
  92. Leadbeater BSC (1977) Observations on the life-history and ultrastructure of the marine choanoflagellate Choanoeca perplexa Ellis. J Mar Biol Assoc UK 57: 285–301Google Scholar
  93. Leadbeater BSC (1983) Life history and ultrastructure of a new marine species of Proterospongia (Choanoflagellida). J Mar Biol Assoc UK 63: 135–160Google Scholar
  94. Leadbeater BSC, Manton I (1974) Preliminary observations on the chemistry and biology of a collared flagellate ( Stephanoeca diplocostata Ellis ). J Mar Biol Assoc UK 54: 269–276Google Scholar
  95. Leedale GF (1974) How many are the kingdoms of organisms? Taxon 32: 261–270Google Scholar
  96. Leipe DL, Wainright PO, Gunderson JH, Porter D, Patterson DJ, Valoise F, Himmerich S, Sogin ML (1994) The stramenopiles from a molecular perspective: 16S-like rRNA sequences from Labyrinthuloides minuta and Cafeteria roenbergensis. Phycologia 33: 369–377Google Scholar
  97. Leipe DL, Tong SM, Goggin CL, Slemenda SB, Pieniazek NJ, Sogin ML (1997) 16S-like rRNA sequences from Developayella elegans, Labyrinthuloides haliotidis, and Proteromonas lacertae confirm that stramenopiles are a primarily heterotrophic group. Eur J Protistol 32: 403–546Google Scholar
  98. Li J, Katiyar SK, Hamelin A, Visvesvara GS, Edlind TD (1996) Tubulin genes from AIDS-associated microsporidia and implications for phylogeny and benzimidazole sensitvity. Mol Biochem Parasitol 78: 289–295PubMedGoogle Scholar
  99. Loomis WF, Smith DW (1990) Molecular phylogeny of Dictyostelium discoideum using protein sequences. Proc Natl Acad Sci USA 87: 9093–9097PubMedGoogle Scholar
  100. Lundquist N (1980) On the genus Pyxidiophora sensu lato (Pyrenomycetes). Bot Not 133: 121–144Google Scholar
  101. Luther A (1899) Ueber Chlorosaccus, eine neue Gattung der Süsswasseralgen.Bihang K Sven Vetenskaps-akad Handl 24, III, 13: 1–22Google Scholar
  102. Manton I, Clarke B, Greenwood AD (1951) Observations with the elctron microscope on a species of Saprolegnia. J Exp Bot 2: 321–331Google Scholar
  103. Margulis L (1974) Five-kingdom classification and the origin and evolution of cells. Evol Biol 7: 45–78Google Scholar
  104. Markham P (1995) Organelles of filamentous fungi. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 75–98Google Scholar
  105. McFadden GI, Gilson PR, Hoffman CJB, Adcock GJ, Maier U-G (1994) Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga. Proc Natl Acad Sci USA 91: 3690–3694PubMedGoogle Scholar
  106. Moore D (1995) Tissure formation. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 423–465Google Scholar
  107. Moore RT (1996) Evolutionary trends in the fungi. In: Roberts DM, Sharp P, Alderson G, Collins M (eds) Evolution of microbial life (SGM Symp 54 ). Cambridge University Press, Cambridge, pp 205–224Google Scholar
  108. Moss ST, Lichtwardt RW (1976) Development of trichospores and their appendages in Genistellospora homothallica and other Harpellales and fine-structural evidence for the sporangial nature of trichospores. Can J Bot 54: 2346–2364Google Scholar
  109. Naegeli K (1857) Ueber die neue Krankheit der Seidenraupe und verwandte Organismen. Bot Z 15: 760–761Google Scholar
  110. Nagahama T, Sato H, Shimazu M, Sugiyama J (1995) Phylogenetic divergence of the entomophthoralean fungi: evidence from nuclear 18S ribosomal RNA gene sequences. Mycologia 87: 203–209Google Scholar
  111. Necker NJ de (1783) Traité sur la mycitologie ou discours historique sur les champignons en général, dans lequel on démontre leur véritable origine et leur génération; d’ou dependent les effects pernicieux et funestes de ceux que l’on mange avec les moyens de les éviter. Matthias Fontaine, MannheimGoogle Scholar
  112. Nikoh N, Nayase N, Iwabe N, Kuma K, Miyata T (1994) Phylogenetic relationship of the kingdoms Animalia, Plantae, and Fungi, inferred from 23 different protein species. Mol Biol Evol 11: 762–768PubMedGoogle Scholar
  113. Oliver LS (1975) The mycetozoans. Academic Press, New YorkGoogle Scholar
  114. Olsen GL, Matsuda H, Hagstrom R, Overbeek R (1994) FastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comp Appl Biosci 10: 41–48PubMedGoogle Scholar
  115. Patterson DJ (1989) Stramenopiles, chromophytes from a protistan perspective. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae, problems and perspectives. Clarendon Press, Oxford, pp 357–379Google Scholar
  116. Pawlowski J, Bolivar I, Fahrni JF, de Vargas C, Gouy M, Zaninetti L (1997) Extreme differences in rates of molecular evolution of Foraminifera revealed by comparison of ribosomal DNA sequences and the fossil record. Mol Biol Evol 14: 498–505PubMedGoogle Scholar
  117. Perkins FO (1990) Phylum Haplosporidia. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Hand-book of Protoctista. Jones and Bartlett, Boston, pp 19–29Google Scholar
  118. Philippe H, Adoutte A (1998) The molecular phylogeny of Eukaryota: solid facts and uncertainties. In: Coombs GH, Vickerman K, Sleigh MA, Warren A (eds) Evolutionary relationships among Protozoa. Chapman and Hall, London, pp 25–56Google Scholar
  119. Pitelka D (1963) Electron-microscopic structure of Protozoa. Pergamon, OxfordGoogle Scholar
  120. Porter D (1990) Labyrinthulomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 388–398Google Scholar
  121. Ragan MA, Goggin CL, Cawthorn RJ, Cerenius L, Jamieson AVC, Plourde SM, Rand TG, Söderhall K, Gutell RR (1996) A novel clade of protistan parasites near the animal fungal divergence. Proc Natl Acad Sci USA 93: 11907–11912PubMedGoogle Scholar
  122. Raghu-Kumar S (1987) Occurrence of the thraustochytrid, Corallochytrium limacisporum gen. et sp. nov. in the coral reef lagoons of the Lakshadweep Islands in the Arabian Sea. Bot Mar 30: 83–89Google Scholar
  123. Rayner ADM (1996) Interconnectedness and individualism in fungal mycelia. In: Sutton B (ed) A century of mycology. Cambridge University Press, Cambridge, pp 193–232Google Scholar
  124. Rayner ADM, Griffith GS, Ainsworth AM (1995) Mycelial interconnectedness. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 21–40Google Scholar
  125. Roger AJ (1996) Studies on the phylogeny and gene structure of early branching eukaryotes. PhD Thesis, Dalhousie University, Halifax, N.S.Google Scholar
  126. Roger AJ, Smith MW, Doolittle RF, Doolittle WF (1996) Evidence for the Heterolobosea from phylogenetic analysis of genes encoding glyceraldehyde-3 phosphate dehydrogenase. J Euk Microbiol 43: 475–485PubMedGoogle Scholar
  127. Rusk S, Spiegel F, Lee S (1994) Phylogenetic relationships of slime moulds inferred from ribosomal DNA. Abstr 5th Int Mycol Congr, Vancouver, p 184Google Scholar
  128. Savile DBO (1955) A phylogeny of the basidiomycetes. Can J Bot 33: 60–104Google Scholar
  129. Silberman JD, Sogin ML, Leipe DD, Clark CG (1996) Human parasite finds taxonomic home. Nature 380: 398PubMedGoogle Scholar
  130. Simpson AGB, Bernard C, Fenchel T, Patterson DJ (1997) The organization of Mastigamoeba schizophrenia n. sp.: more evidence of ultrastructural idiosyncrasy and simplicity in pelobiont protists. Eur J Protistol 33: 87–98Google Scholar
  131. Sogin ML, Silberman JD, Hinkle G, Morrison HG (1996) Problems with molecular diversity in the Eurkarya. In: Roberts DM, Sharp P, Alderson G, Collins M (eds) Evolution of microbial life (SGM Symp 54 ). Cambridge University Press, Cambridge, pp 167–184Google Scholar
  132. Sprague V (1969) Need for a drastic revision of the classification of subphylum Amoebogena. Proc Protozool Proc Int Congr Protozool 3: 372Google Scholar
  133. Sprague V (1977) Classification and phylogeny of the microsporidia. In: Bulla LA, Cheng TC (eds) Comparative pathobiology, vol 2. In: Sprague V, Vâvra J (eds) Systematics of the Microsporidia. Plenum, New York, pp 1–446Google Scholar
  134. Streett DA (1994) Analysis of Nosema locustae (Microsporida: Nosematidae) chromosomal DNA with pulse field gel electrophoresis. J Invert Pathol 63: 301–303Google Scholar
  135. Stubblefield JW (1955) The morphology and life history of Amphiacantha ovalis and A. attenuata, two new haplosporidian parasites of gregarines. J Parasitol 41: 443–459PubMedGoogle Scholar
  136. Swann EC, Taylor JW (1993) Higher taxa of basidiomycetes: an 18S rRNA gene perspective. Mycologia 85: 923–936Google Scholar
  137. Swann EC, Taylor JW (1995a) Phylogenetic diversity of yeast producing basidiomycetes. Mycol Res99: 1205–1210Google Scholar
  138. Swann EC, Taylor JW (1995b) Phylogenetic perspectives on basidiomycete systematics: evidence from the 18S rRNA gene. Can J Bot 73 (Suppl 1): S862 - S868Google Scholar
  139. Taylor FJR (1976) Flagellate phylogeny: a study in conflicts. J Protozool 23: 28–40Google Scholar
  140. Taylor FJR (1978) Problems in the development of an explicit hypothetical phylogeny of the lower eukaryotes. BioSystems 10: 67–89PubMedGoogle Scholar
  141. Taylor FJR, Blackbourn DJ, Blackbourn J (1969) Ultra-structure of the chloroplasts and associated structures within the marine ciliate Mesodinium rubrum ( Lohmann ). Nature 224: 819–821Google Scholar
  142. Tehler A (1988) A cladistic outline of the Eumycota. Cladistics 4: 227–277Google Scholar
  143. Tong SM (1995) Developayella elegans, nov. gen., nov. spec., a new type of heterotrophic flagellate from marine plankton. Eur J Protistol 31: 24–31Google Scholar
  144. Treviranus G (1802) Biologie, vol 1. Röwer, GöttingenGoogle Scholar
  145. Van der Auwera G, De Baere R, Van Der Peer Y, De Rijk P, Van Den Broek I, De Wachter R (1995) The phylogeny of the Hyphochytriomycota as deduced from ribosomal RNA sequences of Hyphochytrium catenoides. Mol Biol Evol 12: 671–678PubMedGoogle Scholar
  146. Van der Auwera G, De Wachter R (1996) Large-subunit rRNA sequence of the chytridiomycete Blastocladiella emersonü, and implications for the evolution of zoosporic fungi. J Mol Evol 43: 476–483PubMedGoogle Scholar
  147. Vâvra J (1977) Structure of Microsporidia. In: Bulla LA, Cheng TC (eds) Comparative pathobiology, vol 1. Vâvra J, Sprague V (eds) Biology of the Microsporidia. Plenum Press, New York, pp 1–85Google Scholar
  148. Vivier E (1965) Étude, au microscope électronique, de la spore de Metchnikovella hovassei n. sp.; appartenance des Metchnikovellidae aux Microsporidies. C R Acad Sci Paris 260: 6982–6984Google Scholar
  149. Vivier E, Schrevel J (1973) Étude en microscopie photonique et électronique de differents stades du cycle de Metchnikovella hovassei et observations sur la position systématique des Metchnikovellidae. Protistologica 9: 95–118Google Scholar
  150. Vlk W (1938) Über den Bau der Geissel. Arch Protistenkd 90: 156–160Google Scholar
  151. Vogel HJ (1960) Two modes of lysine synthesis among the lower fungi: evolutionary significance. Biochim Biophys Acta 41: 172–173Google Scholar
  152. Vogel HJ (1964) Distribution of lysine biosynthetic pathways among fungi: evolutionary implications. Am Nat 98: 435–446Google Scholar
  153. Vogel HJ (1965) Lysine biosynthesis and evolution. In: Bryson V, Vogel HJ (eds) Academic Press, New York, pp 25–40Google Scholar
  154. Vossbrinck CR, Maddox JR, Friedman S, DebrunnerVossbrinck BA, Woese CR (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326: 411–414PubMedGoogle Scholar
  155. Vossbrinck CR, Woese CR (1986) Eukaryotic ribosomes that lack a 5.8s rRNA. Nature 320: 287–288PubMedGoogle Scholar
  156. Wainright PO, Hinkle G, Sogin ML, Stickel SK (1993) Monophyletic origins of the Metazoa, an evolutionary link with Fungi. Science 260: 340–342PubMedGoogle Scholar
  157. Webster J (1980) Introduction to fungi, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  158. Weidner E (1982) The microsporidian spore invasion tube III. Tube extrusion and assembly. J Cell Biol 93: 976–979PubMedGoogle Scholar
  159. Weiser J (1977) Contribution to the classification of Microsporidia. Vestn Cesk Spol Zool 41: 308–320Google Scholar
  160. Whisler HC (1990) Incertae sedis: Ellobiopsida. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 715–719Google Scholar
  161. Whittaker RH (1969) New concepts of kingdoms of organisms. Science 163: 150–160PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • T. Cavalier-Smith
    • 1
  1. 1.Department of BotanyUniversity of British ColumbiaVancouverCanada

Personalised recommendations