Skip to main content

Pathogenesis-Related Proteins and Plant Defense

  • Chapter
Plant Relationships

Part of the book series: The Mycota ((MYCOTA,volume 5))

Abstract

Plants represent the largest and most important group of autotrophic organisms. Their abundant organic material serves as nutritional source for all heterotrophic organisms, including animals, insects, and microorganisms, and, as a consequence, they have developed effective mechanisms to protect themselves against herbivores and pathogens. Despite the large number of fungi and bacteria that are actively involved in the decomposition of dead plant material, very few of these potentially pathogenic microorganisms have acquired the ability to colonize living plants. Thus, plants exhibit natural resistance to microbial attack (non-host resistance, incompatible interaction), and disease is the exception rather than the rule (Chap. 16, Vol. V, Part B).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahl Goy P, Felix G, Métraux JP, Meins F Jr (1992) Resistance to disease in the hybrid Nicotiana glutinosa x Nicotiana debneyi is associated with high constitutive levels of ß-1,3-glucanase, chitinase, peroxidase and polyphenoloxidase. Physiol Mol Plant Pathol 41: 1121

    Google Scholar 

  • Ahl Goy P, Signer H, Reist R, Aichholz R, Blum W, Schmidt E, Kessmann H (1993) Accumulation of scopoletin is associated with the high disease resistance of the hybrid Nicotiana glutinosa x Nicotiana debneyi. Planta 191: 200–206

    Google Scholar 

  • Alexander D, Goodman RM, Gut-Rella M, Glascock C, KW, Friedrich L, Maddox D, Ahl-Goy P, Luntz T, Ward E, Ryals J (1993) Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein la. Proc Natl Acad Sci USA 90: 7327–7331

    Article  PubMed  CAS  Google Scholar 

  • Arlorio M, Ludwig A, Boller T, Bonfante P (1992) Inhibition of fungal growth by plant chitinases and ß-1,3glucanases. A morphological study. Protoplasma 171: 34–43

    Google Scholar 

  • Atkinson MM (1993) Molecular mechanisms of pathogen recognition by plants. Adv Plant Pathol 10: 35–64

    Google Scholar 

  • Barber MS, Bertram RE, Ride JP (1989) Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol Mol Plant 34: 3–12

    Article  CAS  Google Scholar 

  • Beerhues L, Kombrink E (1994) Primary structure and expression of mRNAs encoding basic chitinase and 1,3ß-glucanase in potato. Plant Mol Biol 24: 353–367

    Article  PubMed  CAS  Google Scholar 

  • Bell JN, Ryder TB, Wingate VPM, Bailey JA, Lamb CJ (1986) Differential accumulation of plant defense gene transcripts in a compatible and an incompatible plant-pathogen interaction. Mol Cell Biol 6: 1615–1623

    PubMed  CAS  Google Scholar 

  • Benhamou N (1993) Spatio-temporal regulation of defence genes: immunohistochemistry. In: Fritig B, Legrand M (eds) Mechanisms of plant defense responses. Kluwer, Dordrecht, pp 221–235

    Chapter  Google Scholar 

  • Bernasconi P, Locher R, Pilet PE, Jollès J, Jollès P (1987) Purification and N-terminal amino-acid sequence of a basic lysozyme from Parthenocissus quinquifolia cultured in vitro. Biochim Biophys Acta 915: 254–260

    Article  CAS  Google Scholar 

  • Bohlmann H (1994) The role of thionins in plant protection. Crit Rev Plant Sci 13: 1–16

    CAS  Google Scholar 

  • Bohlmann H, Clausen S, Behnke S, Giese H, Hiller C, Reimann-Philipp U, Schrader G, Barkholt V, Apel K (1988) Leaf-specific thionins of barley — a novel class of cell wall proteins toxic to plant pathogenic fungi and possibly involved in the defense mechanism of plants. EMBO J 7: 1559–1565

    PubMed  CAS  Google Scholar 

  • Boller T (1988) Ethylene and the regulation of antifungal hydrolases in plants. In: Miflin BJ (ed) Oxford surveys of plant molecular and cell biology, vol 5. Oxford University Press, Oxford, pp 145–174

    Google Scholar 

  • Brederode FT, Linthorst HJM, Bol JF (1991) Differential induction of acquired resistance and PR gene expression in tobacco by virus infection, ethephon treatment, UV light and wounding. Plant Mol Biol 17: 1117–1125

    Google Scholar 

  • Breiteneder H, Pettenburger K, Bito A, Valenta R, Kraft D, Rumpold H, Schreiner O, Breitenbach M (1989) The gene coding for the major birch pollen allergen Betvl, is highly homologous to a pea disease resistance response gene. EMBO J 8: 1935–1938

    PubMed  CAS  Google Scholar 

  • Broekaert W, Lee H-I, Kush A, Chua N-H, Raikhel N (1990) Wound-induced accumulation of mRNA containing a hevein sequence in laticifers of rubber tree (Hevea brasiliensis). Proc Natl Acad Sci USA 87: 76337637

    Google Scholar 

  • Broekaert WF, van Parijs J, Allen AK, Peumans WJ (1988) Comparison of some molecular, enzymatic and antifungal properties of chitinases from thorn-apple, tobacco and wheat. Physiol Mol Plant Pathol 33: 319–331

    Article  CAS  Google Scholar 

  • Broekaert WF, van Parijs J, Leyns F, Joos H, Peumans WJ (1989) A chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science 245: 1100–1102

    Article  PubMed  CAS  Google Scholar 

  • Broekaert WF, Terras FRG, Cammue BPA, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108: 1353–1358

    Article  PubMed  CAS  Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254: 1194–1197

    Article  PubMed  CAS  Google Scholar 

  • Bryngelsson T, Gréen B (1989) Characterization of a pathogenesis-related, thaumatin-like protein isolated from barley challenged with an incompatible race of mildew. Physiol Mol Plant Pathol 35: 45–52

    Article  CAS  Google Scholar 

  • Bryngelsson T, Sommer-Knudsen J, Gregersen PL, Collinge DB, Ek B, Thordal-Christensen H (1994) Purification, characterization, and molecular cloning of basic PR-1-type pathogenesis-related proteins from barley. Mol Plant-Microbe Interact 7: 265–275

    Article  Google Scholar 

  • Cammue BPA, de Bolle MFC, Terras FRG, Proost P, van Damme J, Rees SB, JV, Broekaert WF (1992) Isolation and characterization of a novel class of plant antimicrobial peptides from Mirabilis jalapa L. seeds. J Biol Chem 267: 2228–2233

    PubMed  CAS  Google Scholar 

  • Carmona MJ, Molina A, Fernandez JA, López-Fando JJ, Garcia-Olmedo F (1993) Expression of the a-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant J 3: 457–462

    Article  PubMed  CAS  Google Scholar 

  • Casacuberta JM, Puigdomènech P, San Segundo B (1991) A gene coding for a basic pathogenesis-related (PR-like) protein from Zea mays. Molecular cloning and induction by a fungus (Fusarium moniliforme) in germinating maize seeds. Plant Mol Biol 16: 527–536

    Article  PubMed  CAS  Google Scholar 

  • Castresana C, de Carvalho F, Gheysen G, Habets M, Inzé D, van Montagu M (1990) Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia ß-1,3-glucanase gene. Plant Cell 2: 1131–1143

    PubMed  CAS  Google Scholar 

  • Chen Z, Malamy J, Henning, J, Conrath U, Sanchez-Casas P, Silva H, Ricigliano J, Klessig DF (1995) Induction, modification, and transduction of the salicylic acid signal in plant defense responses. Proc Natl Acad Sci USA 92: 4134–4137

    Article  PubMed  CAS  Google Scholar 

  • Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3: 3140

    Article  Google Scholar 

  • Constabel CP, Bertrand C, Brisson N (1993) Transgenic potato plants overexpressing the pathogenesis-related STH-2 gene show unaltered susceptibility to Phytophthora infestans and potato virus X. Plant Mol Biol 22: 775–782

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen BJC, Hooft van Huijsduijnen RAM, Bol JF (1986) A tobacco mosaic virus-induced tobacco protein is homologous to the sweet-tasting protein thaumatin. Nature 321: 531–532

    Article  PubMed  CAS  Google Scholar 

  • Cutt JR, Klessig DF (1992) Pathogenesis-related proteins. In: Boller T, Meins F Jr (eds) Genes involved in plant defense. Springer, Vienna New York, pp 209–243

    Chapter  Google Scholar 

  • Cutt JR, Harpster MH, Dixon DC, Carr JP, Dunsmuir P, Klessig DF (1989) Disease response to tobacco mosaic virus in transgenic tobacco plants that constitutively express the pathogenesis-related PR1b gene. Virology 173: 89–97

    Article  PubMed  CAS  Google Scholar 

  • Danhash N, Wagemakers CAM, van Kan JAL, de Wit PJGM (1993) Molecular characterization of four chitinase cDNAs obtained from Cladosporium fulvuminfected tomato. Plant Mol Biol 22: 1017–1029

    Article  PubMed  CAS  Google Scholar 

  • Daugrois JH, Lafitte C, Barthe JP, Touze A (1990) Induction of ß-1,3-glucanase and chitinase activity in compatible and incompatible interactions between Colletotrichum lindemuthianum and bean cultivars. J Phytopathol 130: 225–234

    Article  CAS  Google Scholar 

  • Dixon RA, Harrison MJ (1990) Activation, structure, and organization of genes involved in microbial defense in plants. Adv Genet 28: 165–234

    Article  PubMed  CAS  Google Scholar 

  • Domingo C, Conejero V, Vera P (1994) Genes encoding acidic and basic class III ß-1,3-glucanases are expressed in tomato plants upon viroid infection. Plant Mol Biol 24: 725–732

    Article  PubMed  CAS  Google Scholar 

  • During K, Porsch P, Fladung M, Lörz H (1993) Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. Plant J 3: 587–598

    Article  Google Scholar 

  • Enyedi AJ, Yalpani N, Silverman P, Raskin I (1992) Signal molecules in systemic plant resistance to pathogens and pests. Cell 70: 879–886

    Article  PubMed  CAS  Google Scholar 

  • Eyal Y, Sagee O, Fluhr R (1992) Dark-induced accumulation of a basic pathogenesis-related (PR-1) transcript and a light requirement for its induction by ethylene. Plant Mol Biol 19: 589–599

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4: 129–134

    PubMed  CAS  Google Scholar 

  • Farmer EE, Johnson RR, Ryan CA (1992) Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol 98: 9951002

    Google Scholar 

  • Felix G, Regenass M, Boller T (1993) Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. Plant J 4: 307–316

    Article  CAS  Google Scholar 

  • Fischer W, Christ U, Baumgartner M, Erismann KH, Mösinger E (1989) Pathogenesis-related proteins of tomato: Il. Biochemical and immunological characterization. Physiol Mol Plant Pathol 35: 67–83

    Google Scholar 

  • Freytag S, Arabatzis N, Hahlbrock K, Schmelzer E (1994) Reversible cytoplasmic rearrangements precede wall apposition, hypersensitive cell death and defense-related gene activation in potatolPhytophthora infestans interactions. Planta 194: 123–135

    Article  CAS  Google Scholar 

  • Friedrich L, Moyer M, Ward E, Ryals J (1991) Pathogenesis-related protein 4 is structurally homologous to the carboxy-terminal domains of hevein, Win-1 and Win-2. Mol Gen Genet 230: 113–119

    Article  PubMed  CAS  Google Scholar 

  • Fristensky B, Horovitz D, Hadwiger LA (1988) cDNA sequences for pea disease resistance response genes. Plant Mol Biol 11: 713–715

    Google Scholar 

  • Fry SC, Aldington S, Hetherington PR, Aitken J (1993) Oligosaccharides as signals and substrates in the plant cell wall. Plant Physiol 103: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Fukuda Y, Shinshi H (1994) Characterization of a novel cis-acting element that is responsive to a fungal elicitor in the promoter of a tobacco class I chitinase gene. Plant Mol Biol 24: 485–493

    Article  PubMed  CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754–756

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Olmedo F, Carmona MJ, Lopez-Fando JJ, Fernandez JA, Castagnaro A, Molina A, Hernandez-Lucas C, Carbonero P (1992) Characterization and analysis of thionin genes. In: Boller T, Meins F Jr (eds) Genes involved in plant defense. Springer, Vienna New York, pp 283–302

    Chapter  Google Scholar 

  • Geoffroy P, Legrand M, Fritig B (1990) Isolation and characterization of a proteinaceous inhibitor of microbial proteinases induced during the hypersensitive reaction of tobacco to tobacco mosaic virus. Mol Plant-Microbe Interact 3: 327–333

    Article  PubMed  CAS  Google Scholar 

  • Gianinazzi S (1984) Genetic and molecular aspects of resistance induced by infections or chemicals. In: Kosuge T, Nester EW (eds) Plant-microbe interactions. Molecular and genetic berspectives, vol 1. Macmillan, New York, pp 321–342

    Google Scholar 

  • Grenier J, Asselin A (1990) Some pathogenesis-related proteins are chitosanases with lytic activity against fungal spores. Mol Plant-Microbe Interact 3: 401–407

    Article  CAS  Google Scholar 

  • Hagiwara H, Matsuoka M, Ohshima M, Watanabe M, Hosokawa D, Ohashi Y (1993) Sequence-specific binding of factors to two independent promoter regions of the acidic tobacco pathogenesis-related-1 protein (PR-1). Mol Gen Genet 240: 197–205

    Article  PubMed  CAS  Google Scholar 

  • Hahn K, Strittmatter G (1994) Pathogen-defence gene prpl-1 from potato encodes an auxin-responsive glutathion S-transferease. Eur J Biochem 226: 619–626

    Article  PubMed  CAS  Google Scholar 

  • Hahn M, Jüngling S, Knogge W (1993) Cultivar-specific elicitation of barley defense reactions by the phytotoxic peptide NIP1 from Rhynchosporium secalis. Mol Plant-Microbe Interact 6: 745–754

    Article  PubMed  CAS  Google Scholar 

  • Ham K-S, Kauffmann S, Albersheim P, Darvill AG (1991) Host-pathogen interactions XXXIX. A soybean pathogenesis-related protein with ß-1,3-glucanase activity releases phytoalexin elicitor-active heat-stable fragments from fungal walls. Mol Plant-Microbe Interact 4: 545552

    Google Scholar 

  • Hammerschmidt R (1993) The nature and generation of systemic signals induced by pathogens, arthropod herbivores, and wounds. Adv Plant Pathol 10: 307–337

    Google Scholar 

  • Hart CM, Nagy F, Meins F Jr (1993) A 61 by enhancer element of the tobacco ß-1,3-glucanase B gene interacts with a regulated nuclear protein(s). Plant Mol Biol 21: 121–131

    Article  PubMed  CAS  Google Scholar 

  • Hedrick SA, Bell JN, Boller T, Lamb CJ (1988) Chitinase cDNA cloning and mRNA induction by fungal elicitor, wounding, and infection. Plant Physiol 86: 182186

    Google Scholar 

  • Hejgaard J, Jacobsen S, Svendsen I (1991) Two antifungal thaumatin-like proteins from barley grain. FEBS Lett 291: 127–131

    Article  PubMed  CAS  Google Scholar 

  • Hejgaard J, Jacobsen S, Bjorn SE, Kragh KM (1992) Anti-fungal activity of chitin-binding PR-4 type proteins from barley grain and stressed leaf. FEBS Lett 307: 389392

    Google Scholar 

  • Hennig J, Dewey RE, Cutt JR, Klessig DF (1993) Pathogen, salicylic acid and developmental dependent expression of a ß-1,3-glucanase/GUS gene fusion in transgenic tobacco plants. Plant J 4: 481–493

    Article  PubMed  CAS  Google Scholar 

  • Huynh QK, Borgmeyer JR, Zobel JF (1992a) Isolation and characterization of a 22 kDa protein with antifungal properties from maize seeds. Biochem Biophys Res Commun 182: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Huynh QK, Hironaka CM, Lemine DB, Smith CE, Borgmeyer IR, Shah DM (1992b) Antifungal proteins from plants. Purification, molecular cloning and antifungal properties of chitinases from maize seeds. J Biol Chem 267: 6635–6640

    Google Scholar 

  • Iseli B, Boller T, Neuhaus J-M (1993) The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiol 103: 221–226

    Article  PubMed  CAS  Google Scholar 

  • Jach G, Görnhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in trans-genic tobacco. Plant J 8: 97–109

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen S, Mikkelsen JD, Hejgaard J (1990) Characterization of two antifungal endochitinases from barley grain. Physiol Plant 79: 554–562

    Article  CAS  Google Scholar 

  • Jeckel PA, Hartmann BH, Beintema JJ (1991) The primary structure of hevamine, an enzyme with lysozyme/chitinase activity from Hevea basiliensis latex. Eur J Biochem 200: 123–130

    Article  Google Scholar 

  • Joosten MHAJ, de Wit PJGM (1989) Identification of several pathogenesis-related proteins in tomato leaves inoculated with Cladosporium fulvum (syn. Fulvia fulva) as 1,3-ß-glucanases and chitinases. Plant Physiol 89: 945–951

    Article  PubMed  CAS  Google Scholar 

  • Joosten MHAJ, Bergmans CJB, Meulenhoff EJS, Cornelissen BJC, de Wit PJGM (1990) Purification and serological characterization of three basic 15-kilodalton pathogenesis-related proteins from tomato. Plant Physiol 94: 585–591

    Article  PubMed  CAS  Google Scholar 

  • Kauffmann S, Legrand M, Geoffroy P, Fritig B (1987) Biological function of “pathogenesis-related” proteins: four PR proteins of tobacco have 1,3-ß-glucanase activity. EMBO J 6: 3209–3212

    PubMed  CAS  Google Scholar 

  • Kauss H (1987) Some aspects of calcium-dependent regulation in plant metabolism. Annu Rev Plant Physiol 38: 47–72

    Article  CAS  Google Scholar 

  • Keefe D, Hinz U, Meins F Jr (1990) The effect of ethylene on the cell-type-specific and intracellular localization of ß-1,3-glucanase and chitinase in tobacco leaves. Planta 182: 43–51

    Article  CAS  Google Scholar 

  • Kessmann H, Staub T, Hofmann C, Maetzke T, Herzog J, Ward E, Uknes S, Ryals J (1994) Induction of systemic acquired resistance in plants by chemicals. Annu Rev Phytopathol 32: 439–459

    Article  PubMed  CAS  Google Scholar 

  • Kirsch C, Hahlbrock K, Kombrink E (1993) Purification and characterization of extracellular, acidic chitinase isoenzymes from elicitor-stimulated parsley cells. Eur J Biochem 213: 419–425

    Article  PubMed  CAS  Google Scholar 

  • Kombrink E, Somssich IE (1995) Defense responses of plants to pathogens. In: Andrews JH, Tommerup IC (eds) Advances in botanical research, vol 21. Academic Press, London, pp 1–34

    Google Scholar 

  • Kombrink E, Schröder M, Hahlbrock K (1988) Several “pathogenesis-related” proteins in potato are 1,3-ßglucanases and chitinases. Proc Natl Acad Sci USA 85: 782–786

    Article  PubMed  CAS  Google Scholar 

  • Kombrink E, Beerhues L, Garcia-Garcia F, Hahlbrock K, Müller M, Schröder M, Witte B, Schmelzer E (1993a) Expression patterns of defense-related genes in infected and uninfected plants. In: Fritig B, Legrand M (eds) Mechanisms of plant defense responses, vol 2. Kluwer, Dordrecht, pp 236–249

    Chapter  Google Scholar 

  • Kombrink E, Hahlbrock K, Kirsch C, Meyer R, Witte B (1993b) Properties and expression patterns of chitinases in potato and parsley. In: Muzzarelli RAA (ed) Chitin enzymology. European Chitin Society, Lyon, pp 245–256

    Google Scholar 

  • Korfhage U, Trezzini GF, Meier I, Hahlbrock K, Somssich fE (1994) Plant homeodomain protein involved in transcriptional regulation of a pathogen defense-related gene. Plant Cell 6: 695–708

    PubMed  CAS  Google Scholar 

  • Kragh KM, Jacobsen S, Mikkelsen JD, Nielsen KA (1993) Tissue specificity and induction of class I, class II and class III chitinases in barley (Hordeum volgare). Physiol Plant 89: 490–498

    Article  CAS  Google Scholar 

  • Kurosaki F, Tashiro N, Nishi A (1988) Role of chitinase and chitin oligosaccharides in lignification response of cultured carrot cells treated with mycelial walls. Plant Cell Physiol 29: 527–531

    CAS  Google Scholar 

  • Kurosaki F, Tashiro N, Gamou R, Nishi A (1989) Chitinase isoenzymes induced in carrot cell culture by treatment with ethylene. Phytochemistry 28: 2989–2992

    Article  CAS  Google Scholar 

  • Lamb CJ, Ryals JA, Ward ER, Dixon RA (1992) Emerging strategies for enhancing crop resistance to microbial pathogens. Bio/Technology 10: 1436–1445

    Article  PubMed  CAS  Google Scholar 

  • Lawton K, Ward E, Payne G, Moyer M, Ryals J (1992) Acidic and basic class III chitinase mRNA accumulation in response to TMV infection of tobacco. Plant Mol Biol 19: 735–743

    Article  PubMed  CAS  Google Scholar 

  • Lawton K, Uknes S, Friedrich L, Gaffney T, Alexander D, Goodman R, Metraux JP, Kessmann H, Ahl Goy P, Gut Rella M, Ward E, Ryals J (1993) The molecular biology of systemic acquired resistance. In: Fritig B, Legrand M (eds) Mechanisms of plant defense responses. Kluwer, Dordrecht, pp 422–432

    Chapter  Google Scholar 

  • Lawton KA, Beck J, Potter S, Ward E, Ryals J (1994a) Regulation of cucumber class III chitinase gene expression. Mol Plant-Microbe Interact 7: 48–57

    Article  PubMed  CAS  Google Scholar 

  • Lawton KA, Potter SL, Uknes S, Ryals J (1994b) Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell 6: 581–588

    PubMed  CAS  Google Scholar 

  • Leah R, Tommerup H, Svendsen I, Mundy J (1991) Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem 266: 1564–1573

    PubMed  CAS  Google Scholar 

  • Legrand M, Kauffmann S, Geoffroy P, Fritig B (1987) Biological function of pathogenesis-related proteins: four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci USA 84: 6750–6754

    Article  PubMed  CAS  Google Scholar 

  • Linthorst HJM (1991) Pathogenesis-related proteins of plants. Crit Rev Plant Sci 10: 123–150

    Article  CAS  Google Scholar 

  • Linthorst HJM, Meuwissen RLJ, Kauffmann S, Bol JF (1989) Constitutive Expression of pathogenesis-related proteins PR-1, GRP, and PR-S in tobacco has no effect on virus infection. Plant Cell 1: 285–291

    Google Scholar 

  • Linthorst HJM, Danhash N, Brederode FT, van Kan JAL, de Wit PJGM, Bol JF (1991) Tobacco and tomato PR proteins homologous to win and pro-hevein lack the “hevein” domain. Mol Plant-Microbe Interact 4: 586–592

    Article  PubMed  CAS  Google Scholar 

  • Linthorst HJM, Brederode FT, van der Does C, Bol JF (1993) Tobacco proteinase inhibitor I genes are locally, but not systemically induced by stress. Plant Mol Biol 21: 985–992

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Raghothama KG, Hasegawa PM, Bressan RA (1994) Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci USA 91: 1888–1892

    Article  PubMed  CAS  Google Scholar 

  • Logemann J, Jach G, Logemann S, Leah R, Wolf G, Mundy J, Oppenheim A, Chet I, Schell J (1993) Expression of a ribosome-inhibiting protein (RIP) or a bacterial chitinase leads to fungal resistance in transgenic plants. In: Fritig B. Legrand M (eds) Mechanisms of plant defense responses. Kluwer, Dordrecht, pp 446448

    Google Scholar 

  • Lucas J, Camacho Henriquez A, Lottspeich F, Henschen A, Sänger HL (1985) Amino acid sequence of the “pathogenesis-related” leaf protein p14 from viroidinfected tomato reveals a new type of structurally unfamiliar proteins. EMBO J 4: 2745–2749

    PubMed  CAS  Google Scholar 

  • Margis-Pinheiro M, Metz-Boutigue MH, Awade A, de Tapia M, le Ret M, Burkard G (1991) Isolation of a complementary DNA encoding the bean PR4 chitinase: an acidic enzyme with an amino-terminus cysteine-rich domain. Plant Mol Biol 17: 243–253

    Article  PubMed  CAS  Google Scholar 

  • Margis-Pinheiro M, Martin C, Didierjean L, Burkard G (1993) Differential expression of bean chitinase genes by virus infection, chemical treatment and UV light. Plant Mol Biol 22: 659–668

    Article  PubMed  CAS  Google Scholar 

  • Martini N, Egen M, Mintz I, Strittmatter G (1993) Promoter sequences of a potato pathogenesis-related gene mediate transcriptional activation selectively upon fungal infection. Mol Gen Genet 236: 179–186

    Article  PubMed  CAS  Google Scholar 

  • Matton DP, Brisson N (1989) Cloning, expression, and sequence conservation of pathogenesis-related gene transcripts of potato. Mol Plant-Microbe Interact 2: 325–331

    Article  PubMed  CAS  Google Scholar 

  • Matton DP, Prescott G, Bertrand C, Camirand A, Brisson N (1993) Identification of cis-acting elements involved in the regulation of the 17 kDa pathogenesis-related gene STH-2 in potato. Plant Mol Biol 22: 279–291

    Article  PubMed  CAS  Google Scholar 

  • Mauch F, Hadwiger LA, Boller T (1984) Ethylene: symptom, not signal for the induction of chitinase and ß-1,3glucanase in pea pods by pathogens and elicitors. Plant Physiol 76: 607–611

    Article  PubMed  CAS  Google Scholar 

  • Mauch F, Hadwiger LA, Boller T (1988a) Antifungal hydrolases in pea tissue. I. Purification and characterization of two chitinases and two 1,3-ß-glucanases differentially regulated during development and in response to fungal infection. Plant Physiol 87: 325–333

    Article  PubMed  CAS  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988b) Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and 1,3-ß-glucanase. Plant Physiol 88: 936–942

    Article  PubMed  CAS  Google Scholar 

  • Mauch F, Meehl JB, Staehelin LA (1992) Ethylene-induced chitinase and ß-1,3-glucanase accumulate specifically in the lower epidermis and along vascular strands of bean leaves. Planta 186: 367–375

    Article  CAS  Google Scholar 

  • Mehdy MC (1994) Active oxygen species in plant defense against pathogens. Plant Physiol 105: 467–472

    PubMed  CAS  Google Scholar 

  • Meier BM, Shaw N, Slusarenko AJ (1993) Spatial and temporal accumulation of defense gene transcripts in bean (Phaseolus vulgaris) leaves in relation to bacteria-induced hypersensitive cell death. Mol Plant-Microbe Interact 6: 453–466

    Article  PubMed  CAS  Google Scholar 

  • Meier I, Hahibrock K, Somssich IE (1991) Elicitor-inducible and constitutive in vivo DNA footprints indicate novel cis-acting elements in the promoter of a parsley gene encoding pathogenesis-related protein 1. Plant Cell 3: 309–315

    PubMed  CAS  Google Scholar 

  • Meins F Jr, Neuhaus J-M, Sperisen C, Ryals J (1992) The primary structure of plant pathogenesis-related glucanohydrolases and their genes. In: Boller T, Meins F Jr (eds) Genes involved in plant defense. Springer, Vienna New York, pp 245–282

    Chapter  Google Scholar 

  • Melchers LS, Sela-Buurlage MB, Vloemans SA, Woloshuk CP, van Roekel JSC, Pen J, van den Elzen PJM, Cornelissen BJC (1993) Extracellular targeting of the vacuolar tobacco proteins AP24, chitinase and ß-1,3glucanase in transgenic tobacco. Plant Mol Biol 21: 583593

    Google Scholar 

  • Melchers LS, Apotheker-de Groot M, van der Knaap JA, Ponstein AS, Sela-Buurlage MB, Bol JF, Cornelissen BJC, van den Elzen PJM, Linthorst HJM (1994) A new class of tobacco chitinase homologous to bacterial exochitinases displays antifungal activity. Plant J 5: 469–480

    Article  PubMed  CAS  Google Scholar 

  • Meller Y, Sessa G, Eyal Y, Fluhr R (1993) DNA-protein interactions on a cis-DNA element essential for ethylene regulation. Plant Mol Biol 23: 453–463

    Article  PubMed  CAS  Google Scholar 

  • Metraux JP, Burkhart W, Moyer M, Dincher S, Middlesteadt W, Williams S, Payne G, Carnes M, Ryals J (1989) Isolation of a complementary DNA encoding a chitinase with structural homology to a bifunctional lysozyme/chitinase. Proc Natl Acad Sci USA 86: 896900

    Google Scholar 

  • Mikkelsen JD, Berglund L, Nielsen KK, Christiansen H, Bojsen K (1992) Structure of endochitinase genes from sugar beets. In: Brine CJ, Sandford PA, Zikakis JP (eds) Advances in chitin and chitosan. Elsevier, New York, pp 344–352

    Chapter  Google Scholar 

  • Moiseyev GP, Beintema JJ, Fedoreyeva LI, Yakovlev GI (1994) High sequence similarity between a ribonuclease from ginseng calluses and fungus-elicited proteins from parsley indicates that intracellular pathogenesis-related proteins are ribonucleases. Planta 193: 470472

    Google Scholar 

  • Neuhaus J-M, Ahl-Goy P, Hinz U, Flores S, Meins F Jr (1991a) High-level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Mol Biol 16: 141–151

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus J-M, Sticher L, Meins F Jr, Boller T (1991b) A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci USA 88: 10362–10366

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus J-M, Flores S, Keefe D, Ahl-Goy P, Meins F Jr (1992) The function of vacuolar ß-1,3-glucanase investigated by antisense transformation. Susceptibility of transgenic Nicotiana sylvestris plants to Cercospora nicotianae infection. Plant Mol Biol 19: 803–813

    Article  PubMed  CAS  Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30: 369–389

    Article  CAS  Google Scholar 

  • Nielsen KK, Mikkelsen JD, Kragh KM, Bojsen K (1993) An acidic class III chitinase in sugar beet: induction by Cercospora beticola, characterization, and expression in transgenic tobacco plants. Mol Plant-Microbe Interact 6: 495–506

    Article  PubMed  CAS  Google Scholar 

  • Nielsen KK, Bojsen K, Roepstorff P, Mikkelsen JD (1994) A hydroxyproline-containing class IV chitinase of sugar beet is glycosylated with xylose. Plant Mol Biol 25: 241257

    Google Scholar 

  • Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78: 449–460

    Article  PubMed  Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78: 84–87

    CAS  Google Scholar 

  • Osswald WF, Shapiro JP, McDonald RE, Niedz RP, Mayer RT (1993) Some citrus chitinases also possess chitosanase activities. Experientia 49: 888–892

    Article  CAS  Google Scholar 

  • Pautot V, Holzer FM, Walling LL (1991) Differential expression of tomato proteinase inhibitor I and II genes during bacterial pathogen invasion and wounding. Mol Plant-Microbe Interact 4: 284–292

    Article  PubMed  CAS  Google Scholar 

  • Payne G, Ward E, Gaffney T, Ahl Goy P, Moyer M, Harper A, Meins F Jr, Ryals J (1990) Evidence for a third structural class of ß-1,3-glucanase in tobacco. Plant Mol Biol 15: 797–808

    Article  PubMed  CAS  Google Scholar 

  • Peumans WJ, van Damme EJM (1995) Lectins as plant defense proteins. Plant Physiol 109: 347–352

    Article  PubMed  CAS  Google Scholar 

  • Pierpoint WS, Jackson PJ, Evans RM (1990) The presence of a thaumatin-like protein, a chitinase and a glucanase among the pathogenesis-related proteins of potato (Solanum tuberosum). Physiol Mol Plant Pathol 36: 325–338

    Article  CAS  Google Scholar 

  • Ponstein AS, Bres-Vloemans SA, Sela-Buurlage MB, van den Elzen PJM, Melchers LS, Cornelissen BJC (1994) A novel pathogen-and wound-inducible tobacco (Nicotiana tabacum) protein with antifungal activity. Plant Physiol 104: 109–118

    Article  PubMed  CAS  Google Scholar 

  • Potter S, Uknes S, Lawton K, Winter AM, Chandler D, DiMaio J, Novitzki R, Ward E, Ryals J (1993) Regulation of a hevein-like gene in Arabidopsis. Mol Plant-Microbe Interact 6: 680–685

    Article  PubMed  CAS  Google Scholar 

  • Raikhel NV, Lee H-I, Broekaert WF (1993) Structure and function of chitin-binding proteins. Annu Rev Plant Physiol Plant Mol Biol 44: 591–615

    Article  CAS  Google Scholar 

  • Raskin 1 (1992) Salicylate, a new plant hormone. Plant Physiol 99: 799–803

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen U, Bojsen K, Collinge DB (1992a) Cloning and characterization of a pathogen-induced chitinase in Brassica napus. Plant Mol Biol 20: 277–287

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen U, Giese H, Mikkelsen JD (1992b) Induction and purification of chitinase in Brassica napus L. ssp. oleifera infected with Phoma lingam. Planta 187: 328334

    Google Scholar 

  • Raz V, Fluhr R (1992) Calcium requirement for ethylene-dependent responses. Plant Cell 4: 1123–1130

    PubMed  CAS  Google Scholar 

  • Ren Y-Y, West CA (1992) Elicitation of diterpene biosynthesis in rice (Oryza sativa L.) by chitin. Plant Physiol 99: 1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Richardson M (1991) Seed storage proteins: the enzyme inhibitors. In: Rogers LJ (ed) Methods in plant biochemistry, vol 5: Amino Acids, Proteins and Nucleic Acids. Academic Press, London, pp 259–305

    Google Scholar 

  • Roberts WK, Selitrennikoff CP (1988) Plant and bacterial chitinases differ in antifungal activity. J Gen Microbiol 134: 169–176

    CAS  Google Scholar 

  • Roby D, Esquerre-Tugaye M-T (1987) Purification and some properties of chitinases from melon plants infected by Colletotrichum lagenarium. Carbohydr Res 165: 93–104

    Article  CAS  Google Scholar 

  • Roby D, Gadelle A, Toppan A (1987a) Chitin oligosaccharides as elicitors of chitinase activity in melon plants. Biochem Biophys Res Commun 143: 885–892

    Article  PubMed  CAS  Google Scholar 

  • Roby D, Toppan A, Esquerré-Tugayé M-T (1987b) Cell surfaces in plant micro-organism interactions. VIII. Increased proteinase inhibitor activity in melon plants in response to infection by Colletotrichum lagenarium or to treatment with an elicitor fraction from this fungus. Physiol Mol Plant Pathol 30: 453–460

    Article  CAS  Google Scholar 

  • Roby D, Broglie C, Cressman R, Biddle P, Chet I, Broglie R (1990) Activation of a bean chitinase promoter in transgenic tobacco plants by phytopathogenic fungi. Plant Cell 2: 999–1007

    PubMed  Google Scholar 

  • Rodrigo I, Vera P, Tornero P, Hernandez-Yago J, Conejero V (1993) cDNA cloning of viroid-induced tomato pathogenesis-related protein P23. Characterization as a vacuolar antifungal factor. Plant Physiol 102: 939–945

    Google Scholar 

  • Ryals J, Uknes S, Ward E (1994) Systemic acquired resistance. Plant Physiol 104: 1109–1112

    PubMed  CAS  Google Scholar 

  • Ryals J, Lawton KA, Delaney TP, Friedrich L, Kessmann H, Neuenschwander U, Uknes S, Vernooij B, Weymann K (1995) Signal transduction in systemic acquired resistance. Proc Natl Acad Sci USA 92: 4202–4205

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants: genes for improving defense against insects and pathogens. Annu Rev Phytopathol 28: 425–449

    Article  CAS  Google Scholar 

  • Samac DA, Shah DM (1991) Developmental and pathogen-induced activation of the Arabidopsis acidic chitinase promoter. Plant Cell 3: 1063–1072

    PubMed  CAS  Google Scholar 

  • Samac DA, Hironaka CM, Yallaly PE, Shah DM (1990) Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiol 93: 907–914

    Article  PubMed  CAS  Google Scholar 

  • Schlumbaum A, Mauch F, Vögeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365–367

    Article  CAS  Google Scholar 

  • Schmelzer E, Krüger-Lebus S, Hahlbrock K (1989) Temporal and spatial patterns of gene expression around sites of attempted fungal infection in parsley leaves. Plant Cell 1: 993–1001

    PubMed  CAS  Google Scholar 

  • Schröder M, Hahlbrock K, Kombrink E (1992) Temporal and spatial patterns of 1,3-ß-glucanase and chitinase induction in potato leaves infected by Phytophthora infestans. Plant J 2: 161–172

    Article  Google Scholar 

  • Segura A, Moreno M, Garcia-Olmedo F (1993) Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach. FEBS Lett 332: 243–246

    Article  PubMed  CAS  Google Scholar 

  • Sela-Buurlage MB, Ponstein AS, Bres-Vloemans SA, Melchers LS, van den Elzen PJM, Cornelissen BJC (1993) Only specific tobacco (Nicotiana tabacum) chitinases and ß-1,3-glucanases exhibit antifungal activity. Plant Physiol 101: 857–863

    PubMed  CAS  Google Scholar 

  • Sharma YK, Hinojos CM, Mehdy MC (1992) eDNA cloning, structure, and expression of a novel pathogenesis-related protein in bean. Mol Plant-Microbe Interact 5: 89–95

    Google Scholar 

  • Shulaev V, León J, Raskin I (1995) Is salicylic acid a trans-located signal of systemic acquired resistance in tobacco? Plant Cell 7: 1691–1701

    PubMed  CAS  Google Scholar 

  • Silverman P, Nuckles E, Ye YS, Kuc J, Raskin I (1993) Salicylic acid, ethylene, and pathogen resistance in tobacco. Mol Plant-Microbe Interact 6: 775–781

    Article  CAS  Google Scholar 

  • Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA, Pfankoch E, Regnier FE, Bressan RA (1987) Characterization of osmotin. A thaumatinlike protein associated with osmotic adaptation in plant cells. Plant Physiol 85: 529–536

    Google Scholar 

  • Somssich IE (1994) Regulatory elements governing pathogenesis-related (PR) gene expression. In: Nover L (ed) Results and problems in cell differentiation, vol 20. Springer, Berlin Heidelberg New York, pp 163–179

    Google Scholar 

  • Somssich IE, Schmelzer E, Kawalleck P, Hahlbrock K (1988) Gene structure and in situ transcript localization of pathogenesis-related protein 1 in parsley. Mol Gen Genet 213: 93–98

    Article  PubMed  CAS  Google Scholar 

  • Somssich IE, Bollmann J, Hahlbrock K, Kombrink E, Schulz W (1989) Differential early activation of defense-related genes in elicitor-treated parsley cells. Plant Mol Biol 12: 227–234

    Article  CAS  Google Scholar 

  • Stanford A, Bevan M, Northcote D (1989) Differential expression within a family of novel wound-induced genes in potato. Mol Gen Genet 215: 200–208

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE (1992) Jasmonate, genes, and fragrant signals. Plant Physiol 99: 804–807

    Article  PubMed  CAS  Google Scholar 

  • Sticher L, Hinz U, Meyer AD, Meins F Jr (1992a) Intracellular transport and processing of a tobacco vacuolar ß1,3-glucanase. Planta 188: 559–565

    Article  CAS  Google Scholar 

  • Sticher L, Hofsteenge J, Milani A, Neuhaus J-M, Meins F Jr (1992b) Vacuolar chitinases of tobacco: a new class of hydroxyproline-containing proteins. Science 257: 655657

    Google Scholar 

  • Stintzi A, heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, Legrand M, Fritig B (1993) Plant “pathogenesis-related” proteins and their role in defense against pathogens. Biochimie 75: 687706

    Google Scholar 

  • Stirpe F, Barbieri L, Battelli MG, Soria M, Lappi DA (1992) Ribosome-inactivating proteins from plants: present status and future prospects. Bio/Technology 10: 405–412

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi Y, Yoshikawa M, Takeba G, Tanaka K, Shibata D, Horino 0 (1990) Molecular cloning and ethylene induction of mRNA encoding a phytoalexin elicitor-releasing factor, ß-1,3-endoglucanase, in soybean. Plant Physiol 93: 673–682

    CAS  Google Scholar 

  • Taylor JL, Fritzemeier K-H, Häuser I, Kombrink E, Rohwer F, Schröder M, Strittmatter G, Hahlbrock K (1990) Structural analysis and activation by fungal infection of a gene encoding a pathogenesis-related protein in potato. Mol Plant-Microbe Interact 3: 72–77

    PubMed  CAS  Google Scholar 

  • Tenhaken R, Levine A, Brisson LF, Dixon RA, Lamb C (1995) Function of the oxidative burst in hypersensitive disease resistance. Proc Natl Acad Sci USA 92: 41584163

    Google Scholar 

  • Tornero P, Conejero V, Vera P (1994) A gene encoding a novel isoform of the PR-1 protein family from tomato is induced upon viroid infection. Mol Gen Genet 243: 4753

    Article  Google Scholar 

  • Tyson H (1992) Relationships among amino acid sequences of animal, microbial and plant peroxidases. Theor Appl Genet 84: 643–655

    Article  CAS  Google Scholar 

  • Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4: 645–656

    PubMed  CAS  Google Scholar 

  • Uknes S, Winter AM, Delaney T, Vernooij B, Morse A. Friedrich L, Nye G, Potter S, Ward E, Ryals J (1993) Biological induction of systemic acquired resistance in Arabidopsis. Mol Plant-Microbe Interact 6: 692–698

    Article  Google Scholar 

  • van de Löcht U, Meier I, hahlbrock K, Somssich IE (1990) A 125 bp promoter fragment is sufficient for strong elicitor-mediated gene activation in parsley. EMBO J 9: 2945–2950

    PubMed  Google Scholar 

  • van den Elzen PJM, Jongedijk E, Melchers LS, Cornelissen BJC (1993) Virus and fungal resistance: from laboratory to field. Philos Trans R Soc Lond B 342: 271278

    Google Scholar 

  • van Kan JAL, Joosten MHAJ, Wagemakers CAM, van den Berg-Velthuis GCM, de Wit PJGM (1992) Differential accumulation of mRNAs encoding extracellular and intracellular PR proteins in tomato induced by virulent and avirulent races of Cladosporium fulvum. Plant Mol Biol 20: 513–527

    Google Scholar 

  • van Loon LC, Pierpoint WS, Boller T, Conejero V (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Mol Biol Rep 12: 245–264

    Article  Google Scholar 

  • Vera P, Hernändez Yago J, Conejero V (1989) Immunogold localization of the citrus exocortis viroidinduced pathogenesis-related proteinase P69 in tomato leaves. Plant Physiol 91: 119–123

    Article  PubMed  CAS  Google Scholar 

  • Verburg JG, Huynh QK (1991) Purification and characterization of an antifungal chitinase from Arabidopsis thaliana. Plant Physiol 95: 450–455

    Article  PubMed  CAS  Google Scholar 

  • Vernooij B, Friedrich L, Morse A, Reist R, Kolditz-Jawhar R, Ward E, Uknes S, Kessmann H, Ryals J (1994) Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6: 959965

    Google Scholar 

  • Vigers AJ, Roberts WK, Selitrennikoff CP (1991) A new family of plant antifungal proteins. Mol Plant-Microbe Interact 4: 315–323

    Article  PubMed  CAS  Google Scholar 

  • Vigers AJ, Wiedemann S, Roberts WK, Legrand M, Selitrennikoff CP, Fritig B (1992) Thaumatin-like pathogenesis-related proteins are antifungal. Plant Sci 83: 155–161

    Article  CAS  Google Scholar 

  • Vogelsang R, Barz W (1993) Purification, characterization and differential hormonal regulation of a,(3–1,3glucanase and two chitinases from chickpea (Citer arietinum L.). Planta 189: 60–69

    Article  PubMed  CAS  Google Scholar 

  • Voisey CR, Slusarenko AJ (1989) Chitinase mRNA and enzyme activity in Phaseolus vulgaris (L.) increase more rapidly in response to avirulent than to virulent cells of Pseudomonas syringae pv. phaseolicola. Physiol Mol Plant Pathol 35: 403–412

    Article  CAS  Google Scholar 

  • Walter MH, Liu J-W, Grand C, Lamb CJ, Hess D (1990) Bean pathogenesis-related ( PR) proteins deduced from elicitor-induced transcripts are members of a ubiquitous new class of conserved PR proteins including pollen allergens. Mol Gen Genet 222: 353–360

    Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Métraux J-P, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3: 1085–1094

    PubMed  CAS  Google Scholar 

  • Warner SAJ, Scott R, Draper J (1992) Characterization of a wound-induced transcript from the monocot asparagus that shares similarity with a class of intracellular pathogenesis-related ( PR) proteins. Plant Mol Biol 19: 555–561

    Google Scholar 

  • Warner SAJ, Scott R, Draper J (1993) Isolation of an asparagus intracellular PR gene (AoPRI) wound-responsive promoter by the inverse polymerase chain reaction and its characterization in transgenic tobacco. Plant J 3: 191–201

    Article  PubMed  CAS  Google Scholar 

  • White RF (1979) Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99: 410–412

    Article  PubMed  CAS  Google Scholar 

  • Woloshuk CP, Meulenhoff JS, Sela-Buurlage M, van den Elzen PJM, Cornelissen BJC (1991) Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell 3: 619–628

    PubMed  CAS  Google Scholar 

  • Yalpani N, Shulaev V, Raskin I (1993) Endogenous salicylic acid levels correlate with accumulation of pathogenesis-related proteins and virus resistance in tobacco. Phytopathology 83: 702–708

    Article  CAS  Google Scholar 

  • Zhu Y, Maher EA, Masoud S, Dixon RA, Lamb CJ (1994) Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technology 12: 807812

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kombrink, E., Somssich, I.E. (1997). Pathogenesis-Related Proteins and Plant Defense. In: Carroll, G.C., Tudzynski, P. (eds) Plant Relationships. The Mycota, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10370-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10370-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10372-2

  • Online ISBN: 978-3-662-10370-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics