Skip to main content

Signals in Host-Parasite Interactions

  • Chapter
Plant Relationships

Part of the book series: The Mycota ((MYCOTA,volume 5))

Abstract

Plants are resistant to most potential pathogens in their environment; in fact, relatively few true host-pathogen pairs exist in which the plant is susceptible and the pathogen virulent. Within a susceptible plant species, specific cultivars carry genes which give them resistance to specific pathogen races harboring the corresponding avirulence genes (Chaps. 15, 16, Vol. V, Part B). Several models have been proposed to explain the biochemical basis for gene-for-gene complementarity in such plant-pathogen interactions. One model envisions a ligand-receptor-like interaction between the products of a fungal avirulence gene (elicitor) and the corresponding plant resistance gene (receptor) that triggers the initiation of a multicomponent defense response in the plant. The same response can also be activated by other types of elicitors that are not encoded by avirulence genes, including compounds released from fungal or plant cell walls during early phases of pathogen attack or substances secreted by the pathogen. Exogenous elicitors are derived from the pathogen, whereas endogenous elicitors are released from the plant cell wall during pathogen attack. Whatever the source of the elicitor, the mechanism of signal perception appears to rely on the presence of specific receptors on the plant cell surface (Fig. 1) which initiate signaling processes that activate plant defenses. Typical elements of the multicomponent defense response include the hypersensitive reaction (HR), the production of reactive oxygen species (oxidative burst), the activation of defense-related genes, structural changes of the cell wall, and the synthesis of phytoalexins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andresen I, Becker W, Schlüter K, Burges J, Parthier B, Apel K (1992) The identification of leaf thionin as one of the main jasmonate-induced proteins of barley (Hordeum vulgare). Plant Mol Biol 19: 193–204

    Article  PubMed  CAS  Google Scholar 

  • Apostol I, Heinstein PF, Low PS (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiol 90: 109–116

    Article  PubMed  CAS  Google Scholar 

  • Atkinson MM (1993) Molecular mechanisms of pathogen recognition by plants. Adv Plant Pathol 10: 35–64

    Google Scholar 

  • Ayers AR, Ebel J, Finelli F, Berger N, Albersheim P (1976) Host-pathogen interactions. IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extracellular medium of Phytophthora megasperma var. sojae. Plant Physiol 57: 751–754

    Article  PubMed  CAS  Google Scholar 

  • Babior BM (1992) The respiratory burst oxidase. Adv Enzymol Relat Areas Mol Biol 65: 49–95

    PubMed  CAS  Google Scholar 

  • Bach M, Schnitzler J-P, Seitz HU (1993) Elicitor-induced changes in Ca2+ influx, K+ efflux, and 4-hydroxybenzoic acid synthesis in protoplasts of Daucus carota L. Plant Physiol 103: 407–412

    PubMed  CAS  Google Scholar 

  • Baillieul F, Genetet I, Kopp M, Saindrenan P, Fritig B, Kauffmann S (1995) A new elicitor of the hypersensitive response in tobacco: a fungal glycoprotein elicits cell death, expression of defence genes, production of salicylic acid, and induction of systemic acquired resistance. Plant J 8: 551–560

    Article  PubMed  CAS  Google Scholar 

  • Barber MS, Bertram RE, Ride JP (1989) Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol Mol Plant Pathol 34: 3–12

    Article  CAS  Google Scholar 

  • Basse CW, Bock K, Boller T (1992) Elicitors and suppressors of the defense response in tomato cells. Purification and characterization of glycopeptide elicitors and glycan suppressors generated by enzymatic cleavage of yeast invertase. J Biol Chem 267: 10258–10265

    Google Scholar 

  • Basse CW, Fath A, Boller T (1993) High affinity binding of a glycopeptide elicitor to tomato cells and microsomal membranes and displacement by specific glycan suppressors. J Biol Chem 268: 14724–14731

    PubMed  CAS  Google Scholar 

  • Baureithel K, Felix G, Boller T (1994) Specific, high affinity binding of chitin fragments to tomato cells and membranes. J Biol Chem 269: 17931–17938

    PubMed  CAS  Google Scholar 

  • Berger S, Bell E, Sadka A, Mullet JE (1995) Arabidopsis thaliana Atvsp is homologous to soybean VspA and VspB, genes encoding vegetative storage protein acid phosphatases, and is regulated similarly by methyl jasmonate, wounding, sugars, light and phosphate. Plant Mol Biol 27: 933–942

    Google Scholar 

  • Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341: 197–205

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1989) Neural and developmental actions of lithium: a unifying hypothesis. Cell 59: 411–419

    Article  PubMed  CAS  Google Scholar 

  • Bi Y-M, Kenton P, Mur L, Darby R, Draper J (1995) Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J 8: 235–245

    Article  PubMed  CAS  Google Scholar 

  • Blein J-P, Milat M-L, Ricci P (1991) Responses of cultured tobacco cells to cryptogein, a proteinaceous elicitor from Phytophthora cryptogea. Plant Physiol 95: 486–491

    Article  PubMed  CAS  Google Scholar 

  • Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70: 21–30

    Article  PubMed  CAS  Google Scholar 

  • Brisson LF, Tenhaken R, Lamb C (1994) Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6: 1703–1712

    PubMed  CAS  Google Scholar 

  • Bruce RJ, West CA (1989) Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol 91: 889–897

    Article  PubMed  CAS  Google Scholar 

  • Budde RJA, Chollet R (1988) Regulation of enzyme activity in plants by reversible phosphorylation. Physiol Plant 72: 435–439

    Article  CAS  Google Scholar 

  • Bush DS (1993) Regulation of cytosolic calcium in plants. Plant Physiol 103: 7–13

    PubMed  CAS  Google Scholar 

  • Cervone F, De Lorenzo G, Degrâ L, Salvi G (1987) Elicitation of necrosis in Vigna unguiculata Walp. by homogenous Aspergillus niger endopolygalacturonase and by a-D-galacturonate oligomers. Plant Physiol 85: 626–630

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Klessig DF (1991) Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease-resistance response. Proc Natl Acad Sci USA 88: 8179–8183

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Ricigliano JW, Klessig DF (1993a) Purification and characterization of a soluble salicylic-binding protein from tobacco. Proc Natl Acad Sci USA 90: 95339537

    Google Scholar 

  • Chen Z, Silva H, Klessig DF (1993b) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262: 1883–1886

    Article  PubMed  CAS  Google Scholar 

  • Cheong J-J, Hahn MG (1991) A specific, high affinity binding site for the hepta-ß-glucoside elicitor exists in soybean membranes. Plant Cell 3: 137–147

    PubMed  CAS  Google Scholar 

  • Cheong J-J, Birberg W, Fügedi P, Pilotti A, Garegg PJ, Hong N, Ogawa T, Hahn MG (1991) Structure-activity relationships of oligo-ß-glucoside elicitors of phytoalexin accumulation in soybean. Plant Cell 3: 127–136

    PubMed  CAS  Google Scholar 

  • Cheong J-J, Alba R, Côté F, Enkerli J, Hahn MG (1993) Solubilization of functional plasma membrane-localized hepta-ß-glucoside elicitor-binding proteins from soybean. Plant Physiol 103: 1173–1182

    Article  PubMed  CAS  Google Scholar 

  • Choi D, Bostock RM, Avdiushko, Hildebrand DF (1994) Lipid-derived signals that discriminate wound-and pathogen-responsive isoprenoid pathways in plants: methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutarylcoenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum. Proc Natl Acad Sci USA 91: 2329–2333

    Article  PubMed  CAS  Google Scholar 

  • Coleman MJ, Mainzer J, Dickerson AG (1992) Characterization of a fungal glycoprotein that elicits a defence response in French bean. Physiol Mol Plant Pathol 40: 333–351

    Article  CAS  Google Scholar 

  • Conrath U, Jeblick W, Kauss H (1991) The protein kinase inhibitor, K-252a, decreases elicitor-induced Cat+ uptake and K+ release, and increases coumarin synthesis in parsley cells. FEBS Lett 279: 141–144

    Article  PubMed  CAS  Google Scholar 

  • Cosio EG, Pöpperl H, Schmidt WE, Ebel J (1988) High-affinity binding of fungal 0-glucan fragments to soybean (Glycine max L.) microsomal fractions and protoplasts. Eur J Biochem 175: 309–315

    Article  PubMed  CAS  Google Scholar 

  • Cosio EG, Frey T, Ebel J (1990a) Solubilization of soybean membrane binding sites for fungal ß-glucans that elicit phytoalexin accumulation. FEBS Lett 264: 235–238

    Article  PubMed  CAS  Google Scholar 

  • Cosio EG, Frey T, Verduyn R, van Boom J, Ebel J (1990b) High-affinity binding of a synthetic heptaglucoside and fungal glucan phytoalexin elicitors to soybean membranes. FEBS Lett 271: 223–226

    Article  PubMed  CAS  Google Scholar 

  • Cosio EG, Frey T, Ebel J (1992) Identification of a high-affinity binding protein for a hepta-ß-glucoside phytoalexin elicitor in soybean. Eur J Biochem 204: 1115–1123

    Article  PubMed  CAS  Google Scholar 

  • Cosio EG, Feger M, Miller CJ, Antelo L, Ebel J (1996) High-affinity binding of fungal ß-glucan elicitors to cell membranes of species of the plant family Fabaceae. Planta 200: 92–99

    Article  CAS  Google Scholar 

  • Côté F, Hahn MG (1994) Oligosaccharins: structures and signal transduction. Plant Mol Biol 26: 1379–1411

    Article  PubMed  Google Scholar 

  • Creelmann RA, Tierney ML, Mullet JE (1992) Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci USA 89: 4938–4941

    Article  Google Scholar 

  • Cruickshank IAM, Perrin DR (1968) The isolation and partial characterization of monilicolin A, a polypeptide with phaseollin-inducing activity from Monilinia fructicola. Life Sci 7: 449–458

    Article  CAS  Google Scholar 

  • Davis KR, Darvill AG, Albersheim P, Dell A (1986) Host-pathogen interactions. XXX. Characterization of elicitors of phytoalexin accumulation in soybean released from soybean cell walls by endopolygalacturonide acid lyase. Z Naturforsch 41: 39–48

    Google Scholar 

  • De Wit PJGM (1992) Molecular characterization of genefor-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu Rev Phytopathol 30: 391–418

    Article  PubMed  Google Scholar 

  • De Wit PJGM, Spikman G (1982) Evidence for the occurrence of race-and cultivar-specific elicitors of necrosis in intercellular fluids of compatible interactions between Cladosporium fulvum and tomato. Physiol Plant Pathol 21: 1–11

    Article  Google Scholar 

  • Desikan R, Hancock JT, Coffey MJ, Neill SJ (1996) Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a NADPH oxidase-like enzyme. FEBS Lett 382: 213–217

    Article  PubMed  CAS  Google Scholar 

  • Diekmann W, Kerkt B, Low PS, Nürnberger T, Scheel D, Terschüren C, Robinson DG (1994) Visualization of elicitor-binding loci at the plant cell surface. Planta 195: 126–137

    Article  CAS  Google Scholar 

  • Dietrich A, Mayer JE, Hahlbrock K (1990) Fungal elicitor triggers rapid, transient and specific protein phosphorylation in parsley cell suspension cultures. J Biol Chem 265: 6360–6368

    PubMed  CAS  Google Scholar 

  • Dittrich H, Kutchan TM, Zenk MH (1992) The jasmonate precursor, 12-oxo-phytodienoic acid, induces phytoalexin synthesis in Petroselinum crispum cell cultures. FEBS Lett 309: 33–36

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Harrison MJ, Lamb CJ (1994) Early events in the activation of plant defense responses. Annu Rev Phytopathol 32: 479–501

    Article  CAS  Google Scholar 

  • Drobak BK (1993) Plant phosphoinositides and intracellular signalling. Plant Physiol 102: 705–709

    PubMed  CAS  Google Scholar 

  • Dwyer SC, Legendre L, Low PS, Leto TL (1996) Plant and human neutrophil oxidative burst complexes contain immunologically related proteins. Biochim Biophys Acta 1289: 231–237

    Article  PubMed  Google Scholar 

  • Ebel J, Cosio EG (1994) Elicitors of plant defense responses. Int Rev Cytol 148: 1–36

    Article  CAS  Google Scholar 

  • Ebel J, Scheel D (1992) Elicitor recognition and signal transduction. In: Boller T, Meins F (eds) Plant gene research. Genes involved in plant defense, vol 8. Springer, Berlin Heidelberg New York, pp 183–205

    Chapter  Google Scholar 

  • Ebel J, Cosio EG, Feger M, Frey T, Kissel U, Reinold S, Waldmüller T (1993) Glucan elicitor-binding proteins and signal transduction in the activation of plant defence. In: Nester EW, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions, vol 2. Kluwer, Dordrecht, pp 477–484

    Google Scholar 

  • Ebel J, Bhagwat AA, Cosio EG, Feger M, Kissel U, Mithöfer A, Waldmüller T (1995) Elicitor-binding proteins and signal transduction in the activation of a phytoalexin defense response. Can J Bot 73: 506–510

    Article  Google Scholar 

  • Enyedi AJ, Yalpani N, Silverman P, Raskin I (1992) Signal molecules in systemic plant resistance to pathogens and pests. Cell 70: 879–886

    Article  PubMed  CAS  Google Scholar 

  • Epple P, Apel K, Bohlmann H (1995) An Arabidopsis thaliana gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol 109: 813–820

    Article  PubMed  CAS  Google Scholar 

  • Esquerré-Tugayé MT, Fournier J, Pouenat ML, Veronesi C, Rickauer M, Bottin A (1993) Lipoxygenases in plant signalling. In: Fritig B, Legrand M (eds) Mechanisms of plant defense responses. Kluwer, Dordrecht, pp 202210

    Google Scholar 

  • Farmer EE, Helgeson JP (1987) An extracellular protein from Phytophthora parasitica var. nicotianae is associated with stress metabolite accumulation in tobacco callus. Plant Physiol 85: 733–740

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1992) Octadecanoic precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4: 129–134

    PubMed  CAS  Google Scholar 

  • Farmer EE, Pearce G, Ryan CA (1989) In vitro phosphorylation of plant plasma membrane proteins in response to the proteinase inhibitor inducing factor. Proc Natl Acad Sci USA 86: 1539–1542

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE, Moloshok TD, Saxton MJ, Ryan CA (1991) Oligosaccharide signaling in plants. Specificity of oligouronide-enhanced plasma membrane protein phosphorylation. J Biol Chem 266: 3140–3145

    Google Scholar 

  • Felix G, Grosskopf DG, Regenass M, Boller T (1991) Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proc Nati Acad Sci USA 88: 8831–8834

    Article  CAS  Google Scholar 

  • Felix G, Regenass M, Boller T (1993) Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. Plant J 4: 307–316

    Article  CAS  Google Scholar 

  • Felix G, Regenass M, Spanu P, Boller T (1994) The protein phosphatase inhibitor calyculin A mimics elicitor action in plant cells and induces rapid hyperphosphorylation of specific proteins as revealed by pulse labeling with [33Plphosphate. Proc Natl Acad Sci USA 91: 952–956

    Article  PubMed  CAS  Google Scholar 

  • Fournier J, Pelissier B, Esquerré-Tugayé MT (1986) Induction d’une activité lipoxygénase dans les cellules de tabac Nicotiana tabacum en culture, par des éliciteurs d’éthylène de Phytophthora parasitica var. nicotianae. CR Acad Sci 303: 651–656

    CAS  Google Scholar 

  • Frey T, Cosio EG, Ebel J (1993) Affinity purification and characterization of a binding protein for a hepta-ßglucoside phytoalexin elicitor in soybean. Phytochemistry 32: 543–550

    Article  CAS  Google Scholar 

  • Gabev E, Kasianovicz J, Abbot T, McLaughlin S (1989) Binding of neomycin to phosphatidylinositol 4,5bisphosphate (PIP2). Biochim Biophys Acta 979: 105–112

    Google Scholar 

  • Galliard T (1978) Lipolytic and lipoxygenase enzymes in plants and their action in wounded tissues. In: Kahl G (ed) Biochemistry of wounded plant tissues. Walter de Gruyter, Berlin, pp 155–201

    Google Scholar 

  • Gillaspy GE, Keddie JS, Oda K, Gruissem W (1995) Plant inositol monophosphatase is a lithium-sensitive enzyme encoded by a multigene family. Plant Cell 7: 2175–2185

    PubMed  CAS  Google Scholar 

  • Grab D, Feger M, Ebel J (1989) An endogenous factor from soybean (Glycine max L.) cell cultures activates phosphorylation of a protein which is dephosphorylated in vivo in elicitor-challenged cells. Planta 179: 340–348

    Article  CAS  Google Scholar 

  • Groom QJ, Torres MA, Fordham-Skelton AP, HammondKosack KE, Robinson NJ, Jones JDG (1996) rbohA, a rice homologue of the mammalian gp91 phox respiratory burst oxidase gene. Plant J 10: 515–522

    Google Scholar 

  • Grosskopf DG, Felix G, Boller T (1990) K-252a inhibits the response of tomato cells to fungal elicitors in vivo and their microsomal protein kinase in vitro. FEBS Lett 275: 177–180

    Article  PubMed  CAS  Google Scholar 

  • Gundlach H, Müller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89: 2389–2393

    Article  PubMed  CAS  Google Scholar 

  • Hadwiger LA, Beckman JM (1980) Chitosan as a component of pea-Fusarium solani interactions. Plant Physiol 66: 205–211

    Article  PubMed  CAS  Google Scholar 

  • Hahn M, Jüngling S, Knogge W (1993) Cultivar-specific elicitation of barley defense reactions by the phytotoxic peptide NIP1 from Rhynchosporium secalis. Mol Plant-Microbe Interact 6: 745–754

    Article  PubMed  CAS  Google Scholar 

  • Horn MA, Meadows RP, Apostol I, Jones CR, Gorenstein DG, Heinstein PF, Low PS (1992) Effect of elicitation and changes in extracellular pH on the cytoplasmic and vacuolar pH of suspension-cultured soybean cells. Plant Physiol 98: 680–686

    Article  PubMed  CAS  Google Scholar 

  • Jabs T, Tschöpe M, Coiling C, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion fluxes and Oz from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci USA in press

    Google Scholar 

  • Jin DF, West CA (1984) Characteristics of galacturonic acid oligomers as elicitors of casbene synthetase activity in castor bean seedlings. Plant Physiol 74: 989–992

    Article  PubMed  CAS  Google Scholar 

  • Jones AM, Dangl JL (1996) Logjam at the styx: programmed cell death in plants. Trends Plant Sci 1: 114119

    Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, BalintKurti PJ, Jones JDG (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266: 789–793

    Article  PubMed  CAS  Google Scholar 

  • Joosten MHAJ, Cozijnsen TJ, De Wit PJGM (1994) Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature 367: 384–386

    Article  PubMed  CAS  Google Scholar 

  • Kamada Y, Muto S (1994) Stimulation by fungal elicitor of inositol phospholipid turnover in tobacco suspension culture cells. Plant Cell Physiol 35: 397–404

    CAS  Google Scholar 

  • Kamoun S, Klucher KM, Coffey MD, Tyler BM (1993a) A gene encoding a host-specific elicitor protein of Phytophthora parasitica. Mol Plant-Microbe Interact 6: 573–581

    Article  PubMed  CAS  Google Scholar 

  • Kamoun S, Young M, Glascock CB, Tyler BM (1993b) Extracellular protein elicitors from Phytophthora: host-specificity and induction of resistance to bacterial and fungal phyto-pathogens. Mol Plant-Microbe Interact 6: 15–25

    Article  CAS  Google Scholar 

  • Kamoun S, Young M, Förster H, Coffey MD, Tyler BM (1994) Potential role of elicitins in the interaction between Phytophthora species and tobacco. Appl Environ Microbiol 60: 1593–1598

    PubMed  CAS  Google Scholar 

  • Kauss H, Jeblick W (1991) Induced Cat’ uptake and callose synthesis in suspension-cultured cells of Catharanthus roseus are decreased by the protein phosphatase inhibitor okadaic acid. Physiol Plant 81: 309–312

    Article  CAS  Google Scholar 

  • Kauss H, Waldmann T, Jeblick W, Euler G, Ranjeva R, Domard A (1989) Cat is an important but not the only signal in callose synthesis induced by chitosan, saponins and polyene antibiotics. In: Lugtenberg BJJ (ed) Signal molecules in plants and plant-microbe interactions. Springer, Berlin Heidelberg New York, pp 107–116

    Google Scholar 

  • Kauss H, Krause K, Jeblick W (1992) Methyl jasmonate conditions parsley suspension cells for increased elicitation of phenylpropanoid defense responses. Biochem Biophys Res Commun 189: 304–308

    Article  PubMed  CAS  Google Scholar 

  • Kessmann H, Staub T, Oostendorp M, Ryals J (1994) Activation of systemic acquired disease resistance in plants. Eur J Plant Pathol 100: 359–369

    Article  Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352: 524–526

    Article  PubMed  CAS  Google Scholar 

  • Knogge W, Gierlich A, Hermann H, Wernert P, Rohe M (1994) Molecular identification and characterization of the nip] gene, an avirulence gene from the barley pathogen Rhynchosporium secalis. In: Daniels MJ, Downie JA, Osbourn AE (eds) Advances in molecular genetics of plant-microbe interactions, vol 3. Kluwer, Dordrecht, pp 207–214

    Chapter  Google Scholar 

  • Koch E, Meier BM, Eiben H-G, Slusarenko AJ (1992) A lipoxygenase from leaves of tomato (Lycopersicon esculentum Mill.) is induced in response to plant pathogenic pseudomonads. Plant Physiol 99: 571–576

    Article  PubMed  CAS  Google Scholar 

  • Kogel G, Beissmann B, Reisener HJ, Kogel KH (1988) A single glycoprotein from Puccinia graminis f. sp. tritici cell walls elicits the hypersensitive lignification response in wheat. Physiol Mol Plant Pathol 33: 173–185

    Article  CAS  Google Scholar 

  • Kogel G, Beissmann B, Reisener HJ, Kogel KH (1991) Specific binding of a hypersensitive lignification elicitor of Puccinia graminis f. sp. tritici to the plasma membrane from wheat (Triticum aestivum L.). Planta 183: 164–169

    Article  CAS  Google Scholar 

  • Kogel K-H, Ortel B, Jarosch B, Atzorn R, Schiffer R, Wasternack C (1995) Resistance in barley against the powdery mildew fungus (Erysiphe graminis f. sp. hordei) is not associated with enhanced levels of endogenous jasmonates. Eur J Plant Pathol 101: 319–332

    Article  CAS  Google Scholar 

  • Kooman-Gersmann M, Honée G, Bonnema G, De Wit PJGM (1996) A high-affinity binding site for the AVR9 peptide elicitor of Cladosporium fulvum is present on plasma membranes of tomato and other solanaceous plants. Plant Cell 8: 929–938

    PubMed  CAS  Google Scholar 

  • Kuchitsu K, Kikugama M, Shibuya N (1993) N-Acetylchitooligosaccharides, biotic elicitor for phytoalexin production, induce transient membrane depolarization in suspension-cultured rice cells. Protoplasma 174: 79–81

    Article  CAS  Google Scholar 

  • Kurosaki F, Nishi A (1993) Stimulation of calcium influx and calcium cascade by cyclic AMP in cultured carrot cells. Arch Biochem Biophys 302: 144–151

    Article  PubMed  CAS  Google Scholar 

  • Kurosaki F, Tsurusawa Y, Nishi A (1987a) The elicitation of phytoalexins by Cat+ and cyclic AMP in carrot cells. Phytochemistry 26: 1919–1923

    Article  CAS  Google Scholar 

  • Kurosaki F, Tsurusawa Y, Nishi A (19876) Breakdown of phosphatidylinositol during the elicitation of phytoalexin production in cultured carrot cells. Plant Physiol 85: 601–604

    Google Scholar 

  • Lawrence GJ, Ellis JG, Finnegan EJ (1994) Cloning a rust-resistance gene in flax. In: Daniels MJ, Downie JA, Osbourne AE (eds) Advances in molecular genetics of plant-microbe interactions, vol 3. Kluwer, Dordrecht, pp 303–306

    Chapter  Google Scholar 

  • Legendre L, Yueh YG, Crain R, Haddock N, Heinstein PF, Low PS (1993) Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. J Biol Chem 268: 24559–24563

    PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Pennell RI, Alvarez ME, Palmer R, Lamb C (1996) Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol 6: 427437

    Google Scholar 

  • Long SR, Staskawicz BJ (1993) Procaryotic plant parasites. Cell 73: 921–935

    Article  PubMed  CAS  Google Scholar 

  • MacKintosh C, Lyon GD, MacKintosh RW (1994) Protein phosphatase inhibitors activate anti-fungal defence responses of soybean cotyledons and cell cultures. Plant J 5: 137–147

    Article  CAS  Google Scholar 

  • Macrf F, Braidot E, Petrussa E, Vianello A (1994) Lipoxygenase activity associated to isolated soybean plasma membranes. Biochim Biophys Acta 1215: 109–114

    Article  Google Scholar 

  • Malamy J, Klessig DF (1992) Salicylic acid and plant disease resistance. Plant J 2: 643–654

    Article  CAS  Google Scholar 

  • Mason HS, Mullet JE (1990) Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid. Plant Cell 2: 569–579

    PubMed  CAS  Google Scholar 

  • Mathieu Y, Kurkdjian A, Xia H, Guern J, Koller A, Spiro MD, O’Neill M, Albersheim P, Darvill A (1991) Membrane responses induced by oligogalacturonides in suspension cultured tobacco cells. Plant J 1: 333–343

    Google Scholar 

  • Mayer MG, Ziegler E (1988) An elicitor of Phytophthora megasperma f. sp. glycinea influences the membrane potential of soybean cotyledonary cells. Physiol Mol Plant Pathol 33: 397–407

    Article  CAS  Google Scholar 

  • Mehdy MC (1994) Active oxygen species in plant defense against pathogens. Plant Physiol 105: 467–472

    PubMed  CAS  Google Scholar 

  • Meier BM, Shaw N, Slusarenko AJ (1993) Spatial and temporal accumulation of defense gene transcripts in bean (Phaseolus vulgaris L.) leaves in relation to bacteria-induced hypersensitive cell death. Mol Plant-Microbe Interact 6: 453–466

    Article  PubMed  CAS  Google Scholar 

  • Melin P-M, Sommarin M, Sandelius AS, Jergil B (1987) Identification of Cat+-stimulated polyphosphoinositide phospholipase C in isolated plant plasma membranes. FEB Lett 223: 87–91

    Article  CAS  Google Scholar 

  • Messiaen J, Read ND, Van Cutsem P, Trewavas AJ (1993) Cell wall oligogalacturonides increase cytosolic free calcium in carrot protoplasts. J Cell Sci 104: 365–371

    CAS  Google Scholar 

  • Milat M-L, Ducruet J-M, Ricci P, Marty F, Blein J-P (1991) Physiological and structural changes in tobacco leaves treated with crytogein, a proteinaceous elicitor from Phytophthora cryptogea. Phytopathology 81: 1364–1368

    Article  CAS  Google Scholar 

  • Miller KJ, Gore RS, Johnson R, Benesi AJ, Reinhold N (1990) Cell-associated oligosaccharides of Bradyrhizobium spp. J Bacteriol 172: 136–142

    PubMed  CAS  Google Scholar 

  • Mithöfer A, Bhagwat AA, Feger M, Ebel J (1996a) Suppression of fungal ß-glucan-induced plant defence in soybean (Glycine max L.) by cyclic 1,3–1,6-ß-glucans from the symbiont Bradyrhizobium japonicum. Planta 199: 270–275

    Article  Google Scholar 

  • Mithöfer A, Lottspeich F, Ebel J (1996b) One-step purification of the ß-glucan elicitor-binding protein from soybean (Glycine max L.) roots and characterization of an anti-peptide antiserum. FEBS Lett 381: 203–207

    Article  PubMed  Google Scholar 

  • Morris PF, Savard ME, Ward EWB (1991) Identification and accumulation of isoflavonoids and isoflavone glucosides in soybean leaves and hypocotyls in resistance responses to Phytophthora megasperma f. sp. glycinea. Physiol Mol Plant Pathol 39: 229–244

    Article  CAS  Google Scholar 

  • Mueller MJ, Brodschelm W, Spannagl E, Zenk MH (1993) Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc Natl Acad Sci USA 90: 7490–7494

    Article  PubMed  CAS  Google Scholar 

  • Murphy TM, Auh C-K (1996) The superoxide synthases of plasma membrane preparations from cultured rose cells. Plant Physiol 110: 621–629

    PubMed  CAS  Google Scholar 

  • Narvâez-Vasquez J, Pearce G, Orozco-Cardenas ML, Franceschi VR, Ryan CA (1995) Autoradiographic and biochemical evidence for the systemic translocation of systemin in tomato plants. Planta 195: 593–600

    Article  Google Scholar 

  • Nespoulos C, Huet J-C, Pernollet J-C (1992) Structure-function relationships of a and b elicitins, signal proteins involved in the plant-Phytophthora interaction. Planta 186: 551–557

    Google Scholar 

  • Neuenschwander U, Vernooij B, Friedrich L, Uknes S, Kessmann H, Ryals J (1995) Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance? Plant J 8: 227–233

    Article  CAS  Google Scholar 

  • Nojiri H, Sugimori M, Yamane H, Nishimura Y, Yamada A, Shibuya N, Kodama O, Murofushi N, Omori T (1996) Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiol 110: 387–392

    PubMed  CAS  Google Scholar 

  • Nothnagel EA, McNeil M, Albersheim P, Dell A (1983) Host-pathogen interactions. XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins. Plant Physiol 71: 916–926

    Google Scholar 

  • Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D (1994a) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78: 449–460

    Article  PubMed  Google Scholar 

  • Nürnberger T, Coiling C, Hahlbrock K, Jabs T, Renelt A, Sacks WR, Scheel D (1994b) Perception and transduction of an elicitor signal in cultured parsley cells. Biochem Soc Symp 60: 173–182

    PubMed  Google Scholar 

  • Nürnberger T, Nennstiel D, Hahlbrock K, Scheel D (1995) Covalent cross-linking of the Phytophthora megasperma oligopeptide elicitor to its receptor in parsley membranes. Proc Natl Acad Sci USA 92: 2338–2342

    Article  PubMed  Google Scholar 

  • Ojalvo I, Rokem JS, G. Goldberg I (1987) 31P NMR study of elicitor treated Phaseolus vulgaris cell suspension cultures. Plant Physiol 85: 716–719

    Google Scholar 

  • Osswald WF, Zieboll S, Elstner EF (1985) Comparison of pH changes and elicitor induced production of glyceollin isomers in soybean cotyledons. Z Naturforsch 40c: 477–481

    Google Scholar 

  • Parker JE, Schulte W, Hahlbrock K, Scheel D (1991) An extracellular glycoprotein from Phytophthora megasperma f. sp. glycinea elicits phytoalexin synthesis in cultured parsley cells and protoplasts. Mol Plant-Microbe Interact 4: 19–27

    Article  CAS  Google Scholar 

  • Pearce G, Johnson S, Ryan CA (1993) Structure-activity of deleted and substituted systemin, an 18-amino acid polypeptide inducer of plant defensive genes. J Biol Chem 268: 212–216

    PubMed  CAS  Google Scholar 

  • Pelissier B, Thibaud JB, Grignon C, Esquerré-Tugayé M-T (1986) Cell surfaces in plant-microorganism interactions. VII. Elicitor preparations from two fungal pathogens depolarize plant membranes. Plant Sci 46: 103–109

    Google Scholar 

  • Peng M, Kuc J (1992) Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology 82: 696–699

    Article  CAS  Google Scholar 

  • Pernollt J-C, Sallantin M, Sallé-Tourne M, Huet J-C (1993) Elicitin isoforms from seven Phytophthora species: comparison of their physico-chemical properties and toxicity to tobacco and other plant species. Physiol Mol Plant Pathol 42: 53–67

    Article  Google Scholar 

  • Preisig CL, Kuc JA (1985) Arachidonic acid-related elicitors of the hypersensitive response in potato and enhancement of their activities by glucans from Phytophthora infestans ( Mont.) de Bary. Arch Biochem Biophys 236: 379–389

    Google Scholar 

  • Ranjeva R, Boudet AM (1987) Phosphorylation of proteins in plants: regulatory effects and potential involvement in stimulus/response coupling. Annu Rev Plant Physiol 38: 73–93

    Article  CAS  Google Scholar 

  • Raz V, Fluhr R (1993) Ethylene signal is transduced via protein phosphorylation events in plants. Plant Cell 5: 523–530

    PubMed  CAS  Google Scholar 

  • Read ND, Allan WTG, Knight H, Knight MR, Malhó R, Russell A, Shacklock PS, Trewavas AJ (1992) Imaging and measurement of cytosolic free calcium in plant and fungal cells. J Microsc 166: 57–86

    Article  CAS  Google Scholar 

  • Reinbothe S, Mollenhauer B, Reinbothe C (1994) JIPs and RIPs: the regulation of plant gene expression by jasmonate in response to environmental cues and pathogens. Plant Cell 6: 1197–1209

    PubMed  CAS  Google Scholar 

  • Ren Y-Y, West CA (1992) Elicitation of diterpene biosynthesis in rice (Oryza sativa L.) by chitin. Plant Physiol 99: 1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Renelt A, Coiling C, Hahlbrock K, Nürnberger T, Parker JE, Sacks WR, Scheel D (1993) Studies on elicitor recognition and signal transduction in plant defence. J Exp Bot 44: 257–268

    CAS  Google Scholar 

  • Ricci P, Bonnet P, Huet J-C, Sallantin M, Beauvais-Cante F, Bruneteau M, Billard V, Michel G, Pernollet J-C (1989) Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur J Biochem 183: 555–563

    Article  PubMed  CAS  Google Scholar 

  • Ricci P, Trentin F, Bonnet P, Venard P, Mouton-Perronnet F, Bruneteau M (1992) Differential production of parasiticein, an elicitor of necrosis and resistance in tobacco, by isolates of Phytophthora parasitica. Plant Pathol 41: 298–307

    Article  CAS  Google Scholar 

  • Ricci P, Panabieres F, Bonnet P, Maia N, Ponchet M, De-vergne J-C, Marais A, Cardin L, Milat ML, Blein JP (1993) Proteinaceous elicitors of plant defense responses. In: Fritig B, Legrand M (eds) Mechanisms of plant defense responses. Kluwer, Dordrecht, pp 121–135

    Chapter  Google Scholar 

  • Roberts DM, Harmon AC (1992) Calcium-modulated proteins: targets for intracellular calcium signals in higher plants. Annu Rev Plant Physiol Plant Mol Biol 43: 375–414

    Article  CAS  Google Scholar 

  • Rohe M, Gierlich A, Hermann H, Hahn M, Schmidt B, Rosahl S, Knogge W (1995) The race-specific elicitor, NIP1, from the barley pathogen, Rhynchosporium secalis, determines avirulence on host plants of the Rrsl resistance genotype. EMBO J 14: 4168–4177

    PubMed  CAS  Google Scholar 

  • Röhrig H, Schmidt J, Walden R, Czaja I, Miklasevics E, Wieneke U, Schell J, John M (1995) Growth of tobacco protoplasts stimulated by synthetic lipochitooligosaccharides. Science 269: 841–843

    Article  PubMed  Google Scholar 

  • Rolin DB, Pfeffer PE, Osmann SF, Szwergold BS, Kappler F, Benesi AJ (1992) Structural studies of a phosphocholine substituted 0(1,3);(1,6) macrocyclic glucan from Bradyrhizobium japonicum USDA 110. Biochim Biophys Acta 1116: 215–225

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA (1992) The search for the proteinase inhibitor-inducing factor, PIIF. Plant Mol Biol 19: 123–133

    Article  PubMed  CAS  Google Scholar 

  • Sacks W, Nürnberger T, Hahlbrock K, Scheel D (1995) Molecular characterization of nucleotide sequences encoding the extracellular glycoprotein elicitor from Phytophthora megasperma. Mol Gen Genet 246: 45–55

    Article  PubMed  CAS  Google Scholar 

  • Scheel D, Colling C, Keller H, Parker J, Schulte W, Hahlbrock K (1989) Studies on elicitor recognition and signal transduction in host and non-host plant/fungus pathogenic interactions. In: Lugtenberg BJJ (ed) Signal molecules in plants and plant-microbe interactions. Springer, Berlin Heidelberg New York, pp 211–218

    Google Scholar 

  • Scheel D, Coiling C, Hedrich R, Kawalleck P, Parker E, Sacks WR, Somssich IE, Hahlbrock K (1991) Signals in plant defense gene activation. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions, vol 1. Kluwer, Dordrecht, pp 373–380

    Google Scholar 

  • Schmidt WE, Ebel J (1987) Specific binding of a fungal phytoalexin elicitor to membrane fractions from soybean Glycine max. Proc Natl Acad Sci USA 84: 4117–4121

    Article  PubMed  CAS  Google Scholar 

  • Scholtens-Toma IMJ, De Wit PJGM (1988) Purification and primary structure of a necrosis-inducing peptide from the apoplastic fluids of tomato infected with Cladosporium fulvum (syn. Fulvia Fulva). Physiol Mol Plant Pathol 33: 59–67

    Article  Google Scholar 

  • Schwacke R, Hager A (1992) Fungal elicitors induce a transient release of active oxygen species from cultured spruce cells that is dependent on Cat+ and protein-kinase activity. Planta 187: 136–141

    Article  CAS  Google Scholar 

  • Sembdner G, Parthier B (1993) The biochemistry and the physiological and molecular actions of jasmonates. Annu Rev Plant Physiol Plant Mol Biol 44: 569–589

    Article  CAS  Google Scholar 

  • Sharp JK, Valent B, Albersheim P (1984a) Purification and partial characterization of a ß-glucan fragment that elicits phytoalexin accumulation in soybean. J Biol Chem 259: 11312–11320

    PubMed  CAS  Google Scholar 

  • Sharp JK, McNeil M, Albersheim P (1984b) The primary structures of one elicitor-active and seven elicitor-inactive hexa (ß-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea. J Biol Chem 259: 11321–11336

    PubMed  CAS  Google Scholar 

  • Shibuya N, Kaku K, Kuchitsu K, Maliarik MJ (1993) Identification of a novel high-affinity binding site for Nacetylchitooligosaccharide elicitor in the membrane fraction from suspension-cultured rice cells. FEBS Lett 329: 75–78

    Article  PubMed  CAS  Google Scholar 

  • Slusarenko AJ, Meier BM, Croft KPC, Eiben HG (1993) Lipoxygenase in plant disease. In: Fritig B, Legrand M (eds) Mechanisms of plant defense responses. Kluwer, Dordrecht, pp 211–220

    Chapter  Google Scholar 

  • Spaink HP, Lugtenberg BJJ (1994) Role of rhizobial lipochitin oligosaccharide signal molecules in root nodule organogenesis. Plant Mol Biol 26: 1413–1422

    Article  PubMed  CAS  Google Scholar 

  • Stäb MR, Ebel J (1987) Effects of Cat’ on phytoalexin induction by fungal elicitor in soybean cells. Arch Biochem Biophys 257: 416–423

    Article  PubMed  Google Scholar 

  • Staswick PE (1990) Novel regulation of vegetative storage protein genes. Plant Cell 2: 1–6

    PubMed  CAS  Google Scholar 

  • Staswick PE (1992) Jasmonate, genes, and fragrant signals. Plant Physiol 99: 804–807

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Huang J, Rhee Y (1991) Nitrogen and methyl jasmonate induction of soybean vegetative storage protein genes. Plant Physiol 96: 130–136

    Article  PubMed  CAS  Google Scholar 

  • Strasser H, Tietjen KG, Himmelspach K, Matern U (1983) Rapid effect of an elicitor on uptake and intracellular distribution of phosphate in cultured parsley cells. Plant Cell Rep 2: 140–143

    Article  CAS  Google Scholar 

  • Strasser H, Hoffmann C, Grisebach H, Matern U (1986) Are polyphosphoinositides involved in signal transduction of elicitor-induced phytoalexin synthesis in cultured plant cells? Z Naturforsch 41c: 717–724

    CAS  Google Scholar 

  • Sutherland MW (1991) The generation of oxygen radicals during host plant responses to infection. Physiol Mol Plant Pathol 39: 79–93

    Article  CAS  Google Scholar 

  • Suzuki K, Shinshi H (1995) Transient activation and tyrosine phosphorylation of a protein kinase in tobacco cells treated with a fungal elicitor. Plant Cell 7: 639–647

    PubMed  CAS  Google Scholar 

  • Suzuki K, Fukuda Y, Shinshi H (1995) Studies on elicitor-signal transduction leading to differential expression of defense genes in cultured tobacco cells. Plant Cell Physiol 36: 281–289

    CAS  Google Scholar 

  • Tate BF, Schaller GE, Sussman MR, Crain RC (1989) Characterization of a polyphosphoinositide phospholipase C from the plasma membrane of Avena sativa. Plant Physiol 91: 1275–1279

    Article  PubMed  CAS  Google Scholar 

  • Tavernier E, Wendehenne D, Blein J-P, Pugin A (1995) Involvement of free calcium in action of cryptogein, a proteinaceous elicitor of hypersensitive reaction in tobacco cells. Plant Physiol 109: 1025–1031

    PubMed  CAS  Google Scholar 

  • Tenhaken R, Levine A, Brisson LF, Dixon RA, Lamb C (1995) Function of the oxidative burst in hypersensitive disease resistance. Proc Natl Acad Sci USA 92: 4158–4163

    Article  PubMed  CAS  Google Scholar 

  • Thain JF, Doherty HM, Bowles DJ, Wildon DC (1990) Oligosaccharides that induce proteinase inhibitor activity in tomato plants cause depolarization of tomato leaf cells. Plant Cell Environ 13: 569–574

    Article  CAS  Google Scholar 

  • Van den Ackerveken GFJM, Van Kan JAL, De Wit PJGM (1992) Molecular analysis of the avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum fully supports the gene-for-gene hypothesis. Plant J 2: 359–366

    Article  PubMed  Google Scholar 

  • Van den Ackerveken GFJM, Vossen P, De Wit PJGM (1993) The AVR9 race-specific elicitor of Cladospori-um fulvum is processed by endogenous and plant pro-teases. Plant Physiol 103: 91–96

    Article  PubMed  Google Scholar 

  • Van Kan JAL, Van den Ackerveken GFJM, De Wit PJGM (1991) Cloning and characterization of cDNA of avirulence gene Avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold. Mol Plant-Microbe Interact 4: 52–59

    Article  PubMed  Google Scholar 

  • Viard M-P, Martin F, Pugin A, Ricci P, Blein J-P (1994) Protein phosphorylation is induced in tobacco cells by the elicitor cryptogein. Plant Physiol 104: 1245–1249

    PubMed  CAS  Google Scholar 

  • Vick BA, Zimmerman DC (1984) Biosynthesis of jasmonic acid by several plant species. Plant Physiol 75: 458–461

    Article  PubMed  CAS  Google Scholar 

  • Vögeli U, Vögeli-Lange R, Chappel J (1992) Inhibition of phytoalexin biosynthesis in elicitor-treated tobacco cell suspension cultures by calcium/calmodulin antagonists. Plant Physiol 100: 1369–1376

    Article  PubMed  Google Scholar 

  • Waldmüller T, Cosio EG, Grisebach H, Ebel J (1992) Release of highly elicitor-active glucans by germinating zoospores of Phytophthora megasperma f. sp. glycinea. Planta 188: 498–505

    Article  Google Scholar 

  • Waldmüller T, Feger M, Ebel J (1993) Enhancement of ß g lucan and hepta-ß-glucoside elicitor activity in soybean by protein kinase inhibitor K-252a. In: Fritig B, Legrand M (eds) Mechanisms of plant defense responses. Kluwer, Dordrecht, pp 117–120

    Chapter  Google Scholar 

  • Walker-Simmons M, Hadwiger L, Ryan CA (1983) Chitosans and pectic polysaccharides both induce the accumulation of the antifungal phytoalexin pisatin in pea pods and antinutrient proteinase inhibitors in tomato leaves. Biochem Biophys Res Commun 110: 194–199

    Article  PubMed  CAS  Google Scholar 

  • Walker-Simmons M, Jin D, West CA, Hadwiger L, Ryan CA (1984) Comparison of proteinase inhibitor-inducing activities and phytoalexin elicitor activities and phytoalexin elicitor activities of a pure fungal endopolygalacturonase, pectic fragments, and chitosan. Plant Physiol 76: 833–836

    Article  PubMed  CAS  Google Scholar 

  • Webb AAR, McAinsh MR, Taylor JE, Hetherington AM (1996) Calcium ions as intracellular second messengers in higher plants. Adv Bot Res 22: 45–96

    Article  CAS  Google Scholar 

  • Wendehenne D, Binet M-N, Blein J-P, Ricci P, Pugin A (1995) Evidence for specific, high-affinity binding sites for a proteinaceous elicitor in tobacco plasma membrane. FEBS Lett 374: 203–207

    Article  PubMed  CAS  Google Scholar 

  • Wevelsiep L, Kogel KH, Knogge W (1991) Purification and characterization of peptides from Rhynchosporium secalis inducing necrosis in barley. Physiol Mol Plant Pathol 39: 471–482

    Article  CAS  Google Scholar 

  • Wevelsiep L, Rüpping E, Knogge W (1993) Stimulation of barley plasmalemma H+-ATPase by phytotoxic peptides from the fungal pathogen, Rhynchosporium secalis. Plant Physiol 101: 297–301

    PubMed  CAS  Google Scholar 

  • Xu D, McElroy D, Thornburg RW, Wu R (1993) Systemic induction of a potato pin2 promoter by wounding, methyl jasmonate, and abscisic acid in transgenic rice plants. Plant Mol Biol 22: 573–588

    Article  PubMed  CAS  Google Scholar 

  • Yamada A, Shibuya N, Kodama O, Akatsuka T (1993) Induction of phytoalexin formation in suspension-cultured rice cells by N-acetylchitooligosaccharides. Biosci Biotech Biochem 57: 405–409

    Article  CAS  Google Scholar 

  • Yoshikawa M, Sugimoto K (1993) A specific binding site in soybean membranes for a phytoalexin elicitor released from fungal cell walls by ß-1,3-endoglucanase. Plant Cell Physiol 34: 1229–1237

    CAS  Google Scholar 

  • Yoshikawa M, Keen NT, Wang M-C (1983) A receptor on soybean membranes for a fungal elicitor of phytoalexin accumulation. Plant Physiol 73: 497–506

    Article  PubMed  CAS  Google Scholar 

  • Yotsushima K, Mitsui T, Takaoka T, Hayakawa T, Igaue I (1993) Purification and characterization of membrane-bound inositol phospholipid-specific phospholipase C from suspension-cultured rice (Oryza sativa L.) cells. Plant Physiol 102: 165–172

    PubMed  CAS  Google Scholar 

  • Zimmermann S, Nürnberger T, Frachisse J-M, Wirtz W, Guern J, Hedrich R, Scheel D (1997) Receptor-mediated activation of a plant Ca 2+-permeable ion channel involved in pathogen defense. Proc Nate Acad Sci USA in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ebel, J., Scheel, D. (1997). Signals in Host-Parasite Interactions. In: Carroll, G.C., Tudzynski, P. (eds) Plant Relationships. The Mycota, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10370-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10370-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10372-2

  • Online ISBN: 978-3-662-10370-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics