Skip to main content

Mitochondrial Genetics of Yeast

  • Chapter
Book cover Genetics and Biotechnology

Part of the book series: The Mycota ((MYCOTA,volume 2))

Abstract

Biosynthesis of functional mitochondria is a complex affair, where hundreds of proteins are required to build up the organelle and to keep it functional. The main contribution to mitochondrial (mt) structure and function is provided by the nuclear DNA, whereas the contribution of the mt genome is comparatively modest, but nonetheless essential. Mutations in both compartments can lead to mt dysfunction, and in most eukaryotic organisms this represents a lethal event. The great advantage of yeast is the ability to provide the energy by respiration and by fermentation, so that genetic approaches are feasible to unravel mt biogenesis, mt functions and the regulatory mechanisms responsible for balancing both genetic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Attardi G, Schatz G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4: 290–335

    Google Scholar 

  • Aufderheide KJ (1975) Cytoplasmic inheritance in Saccharomyces cerevisiae: comparison of first zygotic budsite to mitochondrial inheritance patterns. Mol Gen Genet 140: 231–236

    PubMed  CAS  Google Scholar 

  • Azpiroz R, Butow RA (1993) Patterns of mitochondrial sorting in yeast zygotes. Mol Biol Cell 4: 21–36

    PubMed  CAS  Google Scholar 

  • Backer JS, Getz GS (1987) Identification of a new promoter within the tRNA gene cluster of the mitochondrial DNA of Saccharomyces cerevisiae. Nucl Acids Res 15: 9309–9324

    PubMed  CAS  Google Scholar 

  • Baldaccci G, Bernardi G (1982) Replication origins are associated with transcription initiation sequences in the mitochondrial genome of yeast. EMBO J 1: 987–994

    Google Scholar 

  • Baldacci G, Zennaro E (1987) Mitochondrial transcripts in glucose-repressed cells of Saccharomyces cerevisiae. Eur J Biochem 127: 411–416

    Google Scholar 

  • Baldacci G, Coli Y, Faugeron-Fonty G, Goursot R, Huyard A, Levankim C, Mangin M, Marotta R, de Zamaroczy M (1983) The origins of replication of the mitochondrial genome of yeast. In: Nagley P, Linnane AW, Peacock WJ, Patemen JA (eds) Manipulation and expression of genes in eukaryotes. Academic Press, Sidney, pp 279–289

    Google Scholar 

  • Banroques J, Delahodde A, Jacq C (1986) A mitochondrial RNA maturase gene transferred to the yeast nucleus can control mitochondrial mRNA splicing. Cell 46: 937–844

    Google Scholar 

  • Banroques J, Perea J, Jacq C (1987) Efficient splicing of two yeast mitochondrial introns controlled by nuclear-encoded maturase. EMBO J 6: 1085–1091

    PubMed  CAS  Google Scholar 

  • Bendich AJ (1987) Problems and paradigms: why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays 6: 279–281

    PubMed  CAS  Google Scholar 

  • Bingham CG, Nagley P (1983) A petite mitochondrial DNA segment arising in exceptionally high frequency in a mit-mutant of Saccharomyces cerevisiae. Biochim Biophys Acta 740: 88–98

    PubMed  CAS  Google Scholar 

  • Birky CW Jr (1973) On the origin of mitochondrial mutants: Evidence for intracellular selection of mitochondria in the origin of antibiotic-resistant cells in yeast. Genetics 74: 421–432

    PubMed  CAS  Google Scholar 

  • Birky CW Jr (1975a) Zygote heterogeneity and uniparental inheritance of mitochondrial genes in yeast. Mol Gen Genet 141: 41–58

    PubMed  Google Scholar 

  • Birky CW Jr (1975b) Effects of glucose repression on the transmission and recombination of mitochondrial genes in yeast (Saccharomyces cerevisiae). Genetics 80: 695–709

    PubMed  CAS  Google Scholar 

  • Birky CW Jr (1978) Transmission genetics of mitochondria and chloroplasts. Annu Rev Genet 12: 471–512

    PubMed  Google Scholar 

  • Birky CW Jr (1983) Relaxed cellular controls and organelle heredity. Science 222: 468–475

    PubMed  Google Scholar 

  • Birky CW Jr, Skavaril RV (1976) Maintenance of genetic homogeneity in systems with multiple genomes. Genet Res 27: 249–265

    PubMed  CAS  Google Scholar 

  • Birky CW Jr, Demko CA, Perlman PS, Strausberg R (1978a) Uniparental inheritance of mitochondrial genes in yeast: dependence on input bias of mitochondrial DNA and preliminary investigations of the mechanisms. Genetics 89: 615–621

    PubMed  CAS  Google Scholar 

  • Birky CW Jr, Strausberg RL, Perlman PS, Forster JL (1978b) Vegetative segregation of mitochondria in yeast: estimating parameters using a random model. Mol Gen Genet 158: 251–261

    Google Scholar 

  • Birky CW Jr, Fuerst P, Maruyama T (1989) Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approaches to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics 121: 613–624

    PubMed  Google Scholar 

  • Biswas TK (1990) Control of mitochondrial gene expression in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 87: 9338–9342

    PubMed  CAS  Google Scholar 

  • Biswas TK, Getz GS (1986a) A critical base in the yeast mitochondrial nonanucleotide promoter. J Biol Chem 261: 3927–3930

    PubMed  CAS  Google Scholar 

  • Biswas TK, Getz GS (1986b) Nucleotides flanking the promoter sequence influence the transcription of the yeast mitochondrial gene coding for ATPase subunit 9. Proc Nat! Acad Sci USA 83: 270–274

    CAS  Google Scholar 

  • Biswas TK, Getz GS (1988) Promoter-promoter interactions influencing transcription of the yeast mitochondrial gene. Olil, coding for ATPase subunit 9: cis and trans effects. J Biol Chem 263: 4844–4851

    PubMed  CAS  Google Scholar 

  • Biswas TK, Edwards JC, Rabinowitz M, Getz GS (1985) Characterization of a yeast mitochondrial promoter by deletion mutagenesis. Proc Natl Acad Sci USA 82: 1954–1958

    PubMed  CAS  Google Scholar 

  • Biswas TK, Ticho B, Getz GS (1987) In vitro characterization of the yeast mitochondrial promoter using single-base substitution mutants. J Biol Chem 262: 13690–13696

    PubMed  CAS  Google Scholar 

  • Blanco L, Bernad A, Salas M (1991) MIP1 DNA polymerase of S. cerevisiae: structural similarity with the E. coli DNA polymerase I-type enzymes. Nucl Acids Res 19: 955

    Google Scholar 

  • Bolden A, Noy GP, Weissback A (1977) DNA polymerase of mitochondria is a y-polymerase. J Biol Chem 252: 3351–3356

    PubMed  CAS  Google Scholar 

  • Bolotin-Fukuhara M, Grivell LA (1992) Genetic approaches to the study of mitochondrial biogenesis in yeast. Antonie Leeuwenhoek 62: 131–153

    PubMed  CAS  Google Scholar 

  • Bonitz SG, Bertani R, Coruzzi G, Li M, Macino G, Nobrega FG, Nobrega MP, Thalenfeld BE, Tzagoloff A (1980) Codon recognition rules in yeast mitochondria. Proc Natl Acad Sci USA 77: 3167–3170

    PubMed  CAS  Google Scholar 

  • Bordonne R, Dirheimer G, Martin RP (1987) Transcription initiation and RNA processing of a yeast mitochondrial tRNA gene cluster. Nucl Acids Res 15: 7381–7394

    PubMed  CAS  Google Scholar 

  • Butow RA, Fox TD (1990) Organelle transformation–shoot first, ask questions later. Trends Biochem Sci 15: 465–472

    PubMed  Google Scholar 

  • Butow RA, Strausberg RL, Vincent RD, Paulson LD, Perlman, PS (1978) Analysis of structural genes on mitochondrial DNA. In: Bacila M, Horecker BL, Stoppani AOM (eds) Biochemistry and genetics of yeast. Academic Press, New York, pp 403–411

    Google Scholar 

  • Butow RA, Docherty R, Parikh VS (1988) A path from mitochondria to the yeast nucleus. Phil Trans R Soc Ser B 319: 127–134

    CAS  Google Scholar 

  • Callen DF (1974) Segregation of mitochondrially inherited antibiotic resistance genes in zygote cell lineages of Saccharomyces cerevisiae. Mol Gen Genet 134: 65–76

    PubMed  CAS  Google Scholar 

  • Cameron VL, Fox TD, Poyton RO (1989) Isolation and characterization of yeast strain carrying a mutation in the mitochondrial promoter for COX2. J Biol Chem 264: 13391–13394

    PubMed  CAS  Google Scholar 

  • Caron F, Jacq C, Rouviere-Yaniv J (1979) Characterization of a histone-like protein isolated from yeast mitochondria. Proc Natl Acad Sci USA 76: 4265–4269

    PubMed  CAS  Google Scholar 

  • Certa U, Colavito-Shepanski M, Grunstein M (1984) Yeast may not contain histone H1: the only known “histone H1-like” protein in Saccharomyces cerevisiae is a mitochondrial protein. Nucl Acids Res 12: 7975–7985

    PubMed  CAS  Google Scholar 

  • Chevillotte-Brivet P, Salon G, Meunier-Lemesle D (1987) Missense exonic mitochondrial mutation in cytochrome b gene of Saccharomyces cerevisiae resulting in core protein deficiency in complex III of respiratory chain. Curr Genet 12: 111–118

    PubMed  CAS  Google Scholar 

  • Chow TYK, Kunz BA (1991) Evidence that an endoexonuclease controlled by the NUC2 gene functions in the induction of petite mutations in Saccharomyces cerevisiae. Curr Genet 20: 39–44

    PubMed  CAS  Google Scholar 

  • Christiansen G, Christiansen C (1976) Comparison of the fine structure of mitochondrial DNA from Saccharomyces cerevisiae and S. carlsbergensis. Electron microscopy of partially denatured molecules. Nucl Acids Res 3: 465–476

    Google Scholar 

  • Christianson T, Rabinowitz M (1983) Identification of multiple transcriptional initiation sites on the yeast mitochondrial genome by in vitro capping with guanylyltransferase. J Biol Chem 258: 14025–14033

    PubMed  CAS  Google Scholar 

  • Colleaux L, d’Auriol L, Galibert F, Dujon B (1988) Recognition and cleavage site of the intron-encoded omega transposase. Proc Natl Acad Sci USA 85: 6022–6026

    PubMed  CAS  Google Scholar 

  • Colson AM, Edderkaoui B, Coppee JY (1992) Structure-function relationships of cytochrome b by the genetic approach–intergenic revertants derived from frameshift mutations in the Saccharomyces cerevisiae apocytochrome b gene. Biochim Biophys Acta 1101: 157–161

    PubMed  CAS  Google Scholar 

  • Costanzo MC, Fox TD (1990) Control of mitochondrial gene expression in Saccharomyces cerevisiae. Annu Rev Genet 24: 91–113

    PubMed  CAS  Google Scholar 

  • Dake E, Hofmann TJ, McIntire S, Hudson A, Zassenhaus HP (1988) Purification and properties of the major nuclease from mitochondria of Saccharomyces cerevisiae. J Biol Chem 263: 7691–7702

    PubMed  CAS  Google Scholar 

  • Del Giudice L, Massardo DR, Manna F, Evidente A, Randazzo G, Wolf K (1984) Differential effect of the alkaloid lycorine on rho +, mir, rho -, and rho ° strains of Saccharomyces cerevisiae. Curr Genet 8: 493–497

    Google Scholar 

  • Delouya D, Nobrega FG (1991) Mapping of the ARS-like activity and transcription initiation sites in the non-canonical yeast mitochondrial on-6 region. Yeast 7: 5160

    Google Scholar 

  • Desai SD, Pasupathy K, Chetty KG, Pradhan DS (1989) Evidence for the presence of DNA primase in mitochondria of Saccharomyces cerevisiae. Biochem Biophys Res Commun 160: 525–534

    PubMed  CAS  Google Scholar 

  • De Zamaroczy M, Bernardi G (1985) Sequence organization of the mitochondrial geneome of yeast–a review. Gene 37: 1–17

    PubMed  Google Scholar 

  • De Zamaroczy M, Bernardi G (1986) The GC clusters of the mitochondrial genome of yeast and their evolutionary origin. Gene 41: 1–22

    PubMed  Google Scholar 

  • Dieckmann CL, Gandy B (1987) Preferential recombination between GC clusters in yeast mitochondrial DNA. EMBO J 6: 4197–4204

    PubMed  CAS  Google Scholar 

  • Diffley JF, Stillman B (1991) A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria. Nature 292: 75–78

    Google Scholar 

  • Di Rago JP, Colson AM (1988) Molecular basis for resistance to antimycin and diuron, Q-cycle inhibitors acting at the Q, site in the mitochondrial ubiquinol-cytochrome c reductase in Saccharomyces cerevisiae. J Biol Chem 263: 12564–12570

    PubMed  Google Scholar 

  • Di Rago JP, Colson AM (1989) Molecular basis for resistance to myxothiazol, mucidin (strobilurin A), and stigmatellin, cytochrome b inhibitors acting at the center o of the mitochondrial ubiquinol-cytochrome c reductase in Saccharomyces cerevisiae. J Biol Chem 264: 1464314548

    Google Scholar 

  • Dujardin G, Dujon B (1979) Mutants in yeast affecting ethidium-bromide induced rho-formation and their effects on transmission and recombination of mitochondrial genes. Mol Gen Genet 171: 205–216

    PubMed  CAS  Google Scholar 

  • Dujardin G, Robert B, Clavilier L (1978) Effect of hydroxyurea treatment on transmission and recombination of mitochondrial genes in Saccharomyces cerevisiae: a new method to modify the input of mitochondrial genes in crosses. Mol Gen Genet 160: 101–115

    PubMed  CAS  Google Scholar 

  • Dujardin G, Pajot P, Groudinsky O, Slonimski PP (1980) Long range control circuits within mitochondria and between nucleus and mitochondria. Mol Gen Genet 179: 469–482

    PubMed  CAS  Google Scholar 

  • Dujardin G, Jacq C, Slonimski PP (1982) Single base substitutions in an intron of oxidase gene compensates splicing defects of the cytochrome b gene. Nature 298: 628–632

    PubMed  CAS  Google Scholar 

  • Dujardin G, Lund P, Slonimski PP (1984) The effect of paromomycin and psi on the suppression of mitochondrial mutations in Saccharomyces cerevisiae. Curr Genet 9: 21–30

    CAS  Google Scholar 

  • Dujon B (1981) Mitochondria] genetics and function. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces. Life cycle and inheritance. Cold Spring Harbor Lab, NY, pp 505–535

    Google Scholar 

  • Edwards JC, Levens D, Rabinowitz M (1982) Analysis of transcriptional initiation of yeast mitochondrial initiation of yeast mitochondrial DNA in a homologous in vitro transcription system. Cell 31: 337–346

    PubMed  CAS  Google Scholar 

  • Ephrussi B, Hottinguer H, Chimenes AM (1949a) Action de l’acriflavine sur les lévures. I. La mutation “petite colonie”. Ann Inst Pasteur 76: 351–367

    Google Scholar 

  • Ephrussi B, Hottinguer H, Tavlitzki J (1949b) Action de l’acriflavine sur les lévures. II. Etude génétique du mutant “petite colonie”. Ann Inst Pasteur 76: 419–450

    Google Scholar 

  • Evans IH (1983) Molecular genetic aspects of yeast mitochondria. In: Spencer JFT, Spencer DM, Smith ARW (eds) Yeast genetics. Fundamental and applied aspects. Springer, Berlin Heidelberg New York Tokyo, pp 269–370

    Google Scholar 

  • Fangman WL, Dujon B (1984) Yeast mitochondrial genomes consisting of only A-T base pairs replicate and exhibit suppressiveness. Proc Natl Acad Sci USA 81: 7156–7160

    PubMed  CAS  Google Scholar 

  • Fangman WL, Henly JW, Churchill G, Brewer BJ (1989) Stable maintenance of a 35-base pair mitochondrial genome. Mol Cell Biol 9: 1917–1921

    PubMed  CAS  Google Scholar 

  • Fangman WL, Henly JW, Brewer BJ (1990) RPO41independent maintenance of rho mitochondrial DNA in Saccharomyces cerevisiae. Mol Cell Biol 10: 10–15

    Google Scholar 

  • Farrell LB, Gearing DP, Nagley P (1988) Reprogrammed expression of subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Expression in vitro from a chemically synthesized gene and import into isolated mitochondria. Eur J Biochem 173: 131–137

    Google Scholar 

  • Ferguson LR, von Borstel RC (1992) Induction of the cytoplasmic petite mutation by chemical and physical agents in Saccharomyces cerevisiae. Mutat Res 265: 103148

    Google Scholar 

  • Forsburg SL, Guarente L (1989) Communication between mitochondria and the nucleus in the regulation of cytochrome oxidase genes in the yeast Saccharomyces cerevisiae. Annu Rev Cell Biol 5: 153–180

    PubMed  CAS  Google Scholar 

  • Forster JL, Kleese RA (1975a) The segregation of mitochondrial genes in yeast. I. Analysis of zygote pedigrees of petite x grande crosses. Mol Gen Genet 139: 329340

    Google Scholar 

  • Forster JL, Kleese RA (1975b) The segregation of mitochondrial genes in yeast. II. Analysis of zygote pedigrees of drug resistant x drug sensitive crosses. Mol Gen Genet 139: 341–350

    Google Scholar 

  • Foury F (1989) Cloning and sequencing of the nuclear gene MIP1 encoding the catalytic subunit of the yeast mitochondrial DNA polymerase. J Biol Chem 264: 20552–20560

    PubMed  CAS  Google Scholar 

  • Foury F, Kolodynski (1983) Pif mutation blocks recombination between mitochondrial r+ and r - genomes having tandemly arrayed repeat units in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 80: 5345–5349

    Google Scholar 

  • Foury F, Lahaye A (1987) Cloning and sequencing of the PIF gene involved in repair and recombination of yeast mitochondrial DNA. EMBO J 6: 1441–1449

    CAS  Google Scholar 

  • Foury F, Vanderstraeten S (1992) Yeast mitochondrial DNA mutators with deficient proofreading exonucleolytic activity. EMBO J 11: 2717–2726

    CAS  Google Scholar 

  • Foury F, van Dyck E (1985) A PIF-dependent recombinogenic signal in the mitochondrial DNA of yeast. EMBO J 4: 3525–3530

    PubMed  CAS  Google Scholar 

  • Fox TD (1979) 5 TGA stop codons occur within the translated sequence of the yeast mitochondrial gene for cytochrome c oxidase. J Mol Biol 130:63–82

    Google Scholar 

  • Fox TD (1987) Natural variation in the genetic code. Annu Rev Genet 21: 67–92

    PubMed  CAS  Google Scholar 

  • Fox TD, Sanford JC, McMullin TW (1988) Plàsmids can stably transform yeast mitochondria lacking endogenous mtDNA. Proc Natl Acad Sci USA 85: 7288–7292

    PubMed  CAS  Google Scholar 

  • Fox TD, Folley LS, Mulero JJ, McMullin TW, Thorsness PE, Hedin LO, Costanzo MC (1991) Analysis and manipulation of yeast mitochondrial genes. In: Guthrie C, Fink GR (eds) Guide to yeast genetics and molecular biology. Methods Enzymol 194: 149–165, Academic Press, New York

    Google Scholar 

  • Geier BM, Schagger H, Brandt U, Colson AM, Von Jagow G (1992) Point mutation in cytochrome b of yeast ubihydroquinone-cytochrome c oxidoreductase causing myxothiazol resistance and facilitated dissociation of the iron-sulfur subunit. Eur J Biochem 208: 375–380

    PubMed  CAS  Google Scholar 

  • Genga A, Bianchi L, Foury F (1986) A nuclear mutant of Saccharomyces cerevisiae deficient in mitochondrial DNA replication and polymerase activity. J Biol Chem 261: 9328–9332

    PubMed  CAS  Google Scholar 

  • Goldthwaite CD, Cryer DR, Marmur J (1974) Effect of carbon source on the replication and transmission of yeast mitochondrial genomes. Mol Gen Genet 133: 87104

    Google Scholar 

  • Greanleaf AL, Kelly JL, Lehman IR (1986) Yeast RPO41 gene product is required for transcription and maintenance of the mitochondrial genome. Proc Natl Acad Sci USA 83: 3391–3394

    Google Scholar 

  • Grimes GW, Mahler HR, Perlman PS (1974) Nuclear gene dosage effects on mitochondrial mass and DNA. J Cell Biol 61: 565–574

    PubMed  CAS  Google Scholar 

  • Grivell LA (1989) Nucleo-mitochondrial interactions in mitochondrial biogenesis. Eur J Biochem 182: 477–493

    PubMed  CAS  Google Scholar 

  • Groudinsky O, Carignani G, Schiavon E, Frezza D, Bergantino E, Slonimski PP (1983) The first intron of the gene oxi3 in yeast mitochondria encodes a mRNA maturase. In: Schweyen RJ, Wolf K, Kaudewitz F (eds) Mitochondria 1983. De Gruyter, Berlin, pp 227–232

    Google Scholar 

  • Haffter P, McMullin TW, Fox TD (1990) A genetic link between and mRNA-specific translational activator and the translation system in yeast mitochondria. Genetics 125: 495–503

    PubMed  CAS  Google Scholar 

  • Hall RM, Mattick JS, Marzuki S, Linnane AW (1975) Evidence for a functional association of DNA synthesis with the membrane in mitochondria of Saccharomyces cerevisiae. Mol Biol Res 2: 101–106

    CAS  Google Scholar 

  • Hall RM, Nagley P, Linnane AW (1976) Biogenesis of mitochondria. XLII. Genetic analysis of the control of cellular mitochondrial DNA levels in Saccharomyces cerevisiae. Mol Gen Genet 145: 169–181

    PubMed  CAS  Google Scholar 

  • Hefta LJF, Lewin AS, Daignan-Fornier B, BolotinFukuhara M (1987) Nuclear and mitochondrial revertants of a mitochondrial mutant with a defect in the ATP synthetase complex. Mol Gen Genet 207: 106–113

    PubMed  CAS  Google Scholar 

  • Hensgens LAM, Grivell LA, Borst P, Bos JL (1979) Nucleotide sequence of the mitochondrial structural gene for subunit I of the yeast ATPase complex. Proc Natl Acad Sci USA 76: 1663–1667

    PubMed  CAS  Google Scholar 

  • Hollenberg CP, Borst P, van Bruggen EFJ (1970) Mitochondria) DNA. 25µm closed circular duplex DNA molecule in wild type yeast mitochondria. Structure and genetic complexity. Biochim Biophys Acta 209: 115

    Google Scholar 

  • Hollingsworth MJ, Martin NC (1986) RNase P activity in the mitochondria of Saccharomyces cerevisiae depends on both mitochondrion and nucleus-encoded components. Mol Cell Biol 6: 1058–1064

    PubMed  CAS  Google Scholar 

  • Howe CJ (1988) Organelle transformation. Trends in genetics 4: 150

    PubMed  CAS  Google Scholar 

  • Hudspeth MES, Ainley WM, Shumard DS, Butow RA, Grossman L (1982) Location and structure of the vari gene on yeast mitochondrial DNA: nucleotide sequence of the 40.0 allele. Cell 30: 617–626

    PubMed  CAS  Google Scholar 

  • Ito J, Braithwaite DK (1990) Yeast mitochondrial DNA polymerase is related to the family A DNA polymerases. Nucl Acids Res 18: 6716

    PubMed  CAS  Google Scholar 

  • Iwashima A, Rabinowitz M (1969) Partial purification of mitochondrial and supernatant DNA polymerase from Saccharomyces cerevisiae. Biochim Biophys Acta 178: 283–293

    PubMed  CAS  Google Scholar 

  • Johnston SA, Anziano PQ, Shark K, Sanford JC, Butow RA (1988) Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 240: 15301540

    Google Scholar 

  • Jones BA, Fangman WL (1992) Mitochondrial DNA maintenance in yeast requires a protein containing a region related to the GTP-binding domain of dynamin. Genes Dev 6: 380–389

    PubMed  CAS  Google Scholar 

  • Kang YW, Miller DL (1988) Nuclear and mitochondrial revertants of a yeast mitochondrial tRNA mutant. Mol Gen Genet 213: 425–434

    PubMed  CAS  Google Scholar 

  • Kawasaki K, Takahashi M, Natori M, Shibata T (1991) DNA sequence recognition by a eukaryotic sequence-specific endonuclease, endo. Scel from Saccharomyces cerevisiae. J Biol Chem 266: 5343–5347

    Google Scholar 

  • Kelly JL, Lehman IR (1986) Yeast mitochondrial RNA polymerase. Purification and properties of the catalytic subunit. J Biol Chem 261: 10340–10347

    Google Scholar 

  • Kohli J (1987) Genetic nomenclature and gene list of the fission yeast Schizosaccharomyces pombe L. Curr Genet 11: 575–590

    PubMed  CAS  Google Scholar 

  • Kotylak Z, Slonimski PP (1976) Joint control of cytochromes a and b by a unique mitochondrial DNA region comprising four genetic loci. In: Sacconé C, Kroon AM (eds) The genetic function of mitochondrial DNA. Elsevier, Amsterdam, pp 143–154

    Google Scholar 

  • Kovacova V, Irmlerova J, Kovac L (1968) Oxidative phosphorylation in yeast IV. Combination of a nuclear mutation affecting oxidative phosphorylation with cytoplasmic mutation to respiratory deficiency. Biochim Biophys Acta 162: 157–163

    Google Scholar 

  • Kruszewska A (1982) Nuclear and mitochondrial informational suppressors of box3 intron mutations in Saccharomyces cerevisiae. In: Slonimski PP, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 323–326

    Google Scholar 

  • Kuroiwa T (1982) Mitochondrial nuclei. Int Rev Cytol 75: 1–5

    PubMed  CAS  Google Scholar 

  • Lahaye A, Stahl H, Thiness-Empoux D, Foury F (1991) PIF1 - a DNA helicase in yeast mitochondria. EMBO J 10: 997–1007

    Google Scholar 

  • Law RHP, Devenish RJ, Nagley P (1990) Assembly of imported subunit 8 into the AT synthase complex of isolated mitochondria. Eur J Biochem 188: 421–429

    PubMed  CAS  Google Scholar 

  • Lawson JE, Douglas MG (1988) Separate genes encode functionally equivalent ADP/ATP carrier proteins in Saccharomyces cerevisiae. Isolation and analysis of AAC2. J Biol Chem 263: 14812–14818

    PubMed  CAS  Google Scholar 

  • Lee EH, Johnson BF (1977) Volume-related mitochondrial DNA synthesis in zygotes and vegetative cells in Saccharomyces cerevisiae. J Bacteriol 129: 1066–1070

    PubMed  CAS  Google Scholar 

  • Leff J, Eccleshall TR (1978) Replication of bromodeoxyuridylate-substituted mitochondrial DNA in yeast. J Bacteriol 135: 436–444

    PubMed  CAS  Google Scholar 

  • Lemesle-Meunier D (1989) Studies on the CoQH2cytochrome c reductase segment of the respiratory chain of yeast mitochondria, using mutants of the cytochrome b split gene. Biochimie 71: 1145–1156

    PubMed  CAS  Google Scholar 

  • Li M, Tzagoloff A (1979) Assembly of the mitochondrial membrane system: sequences of yeast mitochondrial valine and an unusual threonine tRNA gene. Cell 18: 47–54

    PubMed  CAS  Google Scholar 

  • Liao XS, Butow RA (1993) RTG1 and REG2 - two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell 72: 61–71

    Google Scholar 

  • Liao XS, Small WC, Srere PA, Butow RA (1991) Intramitochonrial functions regulate nonmitochondrial citrate synthase (CIT2) expression in Saccharomyces cerevisiae. Mol Cell Biol 11: 38–46

    PubMed  CAS  Google Scholar 

  • Macino G, Tzagoloff A (1980) Assembly of the mitochondrial membrane system: sequence analysis of a yeast mitochondrial ATPase gene containing the oli2 and oli4 loci. Cell 20: 507–517

    PubMed  CAS  Google Scholar 

  • Maleszka R, Skelly PJ, Clark-Walker GD (1991) Rolling circle replication of DNA in yeast mitochondria. EMBO J 10: 3923–3929

    PubMed  CAS  Google Scholar 

  • Marczynski GT, Schultz PW, Jaening JA (1989) Use of yeast nuclear DNA sequences to define the mitochondrial RNA polymerase promoter in vitro. Mol Cell Biol 9: 3193–31202

    PubMed  CAS  Google Scholar 

  • Marotta R, Colin Y, Goursot R, Bernardi G (1982) A region of extreme instability in the mitochondrial genome of yeast. EMBO J 1: 529–534

    PubMed  CAS  Google Scholar 

  • Martin RP, Schneller JM, Stahl AJC, Dirheimer G (1979) Import of nuclear deoxyribonucleic acid coded lysine-accepting transfer ribonucleic acid (anticodon CUU) into yeast mitochondria. Biochemistry 18: 4600–4605

    PubMed  CAS  Google Scholar 

  • Martin RP, Sibler AP, Dirheimer G, de Henan S, Grosjean H (1981) Yeast mitochondrial tRNA Trp injected with E. coli activating enzyme into Xenopus oocytes suppresse UGA termination. Nature 293: 235–237

    PubMed  CAS  Google Scholar 

  • Masters BS, Stohl LL, Clayton DA (1987) Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51: 89–99

    PubMed  CAS  Google Scholar 

  • Massardo DR, Manna F, Del Giudice L, Wolf K (1990) Interactions between the yeast mitochondrial and nuclear genomes: isogenic suppressive and hypersuppressive petites differ in their resistance to the alkaloid lycorine. Curr Genet 17: 455–459

    PubMed  CAS  Google Scholar 

  • Mattick JS, Hall RM (1977) Replicative deoxyribonucleic acid synthesis in isolated mitochondria from Saccharomyces cerevisiae. J Bacteriol 130: 973–982

    PubMed  CAS  Google Scholar 

  • Maxwell RJ, Devenish RJ, Nagley P (1986) The nucleotide sequence of the mitochondrial DNA genome of an abundant petite mutant of Saccharomyces cerevisiae carrying the oril replication origin. Biochem Int 13: 101–108

    PubMed  CAS  Google Scholar 

  • Meunier B, Colson AM (1989) Increased diuron resistance in the joint expression of mutations located at DIU2, DIU3 and DIU4 loci of Saccharomyces cerevisiae. Curr Genet 15: 121–128

    PubMed  CAS  Google Scholar 

  • Mieszczak M, Zagorski W (1987) Mima and nam3 omnipotent suppressor genes similarly affect the polypeptide composition of yeast mitoribosomes. Biochimie 69: 531–538

    Google Scholar 

  • Miyakawa I, Aoi H, Sando N, Kuroiwa T (1984) Fluorescence microscopic studies of mitochondrial nucleoids during meiosis and sporulation in the yeast, Saccharomyces cerevisiae. J Cell Sci 66: 21–38

    PubMed  CAS  Google Scholar 

  • Miyakawa I, Sando N, Kawano S, Nakamura S, Kuroiwa T (1987) Isolation of morphologically intact mitochondrial nucleoids from the yeast, Saccharomyces cerevisiae. J Cell Sci 88: 431–439

    PubMed  CAS  Google Scholar 

  • Miyaka I, Tsukamoto T, Sakoda M, Kuroiwa T, Sando N (1988) Inhibition of yeast mitochondrial nucleoid fusion by ethidium bromide and respiratory inhibitors. J Gen Appl Microbiol 34: 485–492

    Google Scholar 

  • Morales MJ, Wise CA, Hollingsworth MJ, Martin NC (1989) Characterization of yeast mitochondrial RNase P: an intact RNA subunit is not essential for activity in vitro. Nucl Acids Res 17: 6865–6881

    PubMed  CAS  Google Scholar 

  • Morales MJ, Dang TL, Lou YC, Sulo P, Marin NC (1992) A 105 kDa protein is required for yeast mitochondrial RNase P activity. Proc Natl Acad Sci USA 89: 9875–9879

    PubMed  CAS  Google Scholar 

  • Morris CE, McGraw, NJ, Joho K, Brown JE, Klement JF et al. (1987) Mechanisms of promoter recognition by the bacteriophage T3 and T7 RNA polymerases. In: Reznikoff WS, Burgess RR, Dahlberg JE, Gross CA, Record MP Jr, Wickens MP (eds) RNA Polymerase and the regulation of transcription. Elsevier, New York, pp 47–58

    Google Scholar 

  • Mueller DM, Getz GS (1986a) Transcriptional regulation of the mitochondrial genome of yeast Saccharomyces cerevisiae. J Biol Chem 261: 11756–11764

    PubMed  CAS  Google Scholar 

  • Mueller DM, Getz GS (1986b) Steady state analysis of mitochondrial RNA after growth of yeast Saccharomyces cerevisiae under catabolite repression and derepression. J Biol Chem 261: 11816–11822

    PubMed  CAS  Google Scholar 

  • Nagley P, Devenish RJ (1989) Leading organellar proteins along new pathways: the relocation of mitochondrial and chloroplast genes to the nucleus. TIBS 14: 31–35

    CAS  Google Scholar 

  • Nagley P, Farrell LB, Gearing DP, Nero D, Meltzer S, Devenish RJ (1988) Assembly of functional proteintranslocating ATPase complex in yeast mitochondria with cytoplasmically synthesized subunit 8, a polypeptide normally encoded within the organelle. Proc Natl Acad Sci USA 85: 2091–2095

    PubMed  CAS  Google Scholar 

  • Nakagawa K, Morishima N, Shibata T (1992) An endonuclease with multiple cutting sites, Endo. Scel, initiates genetic recombination at its cutting site in yeast mitochondria. EMBO J 11: 2707–2715

    PubMed  CAS  Google Scholar 

  • Netter P, Robineau S (1989) The differential overamplification of short sequences in the mitochondrial DNA of rho-petites in Saccharomyces cerevisiae stimulates recombination. Gene 83: 25–38

    PubMed  CAS  Google Scholar 

  • Netter P, Robineau S, Sirand-Pugnet P, Fauvarque MO (1992) The unusual reversion properties of a mitochondrial mutation in the structural gene of subunit I of cytochrome oxidase of Saccharomyces cerevisiae reveal a probable histidine ligand of the redox center. Curr Genet 21: 147–151

    PubMed  CAS  Google Scholar 

  • Novitski CE, Macreadie IG, Maxwell RJ, Lukins HB, Linnane AW, Nagley P (1984) Biogenesis of mitochondria: genetic and molecular analysis of the oli2 region of mitochondrial DNA in Saccharomyces cerevisiae. Curr Genet 8: 135–146

    CAS  Google Scholar 

  • Osawa S, Collins D, Ohama T, Jukes TH, Watanabe K (1990) Evolution of the mitochondrial genetic code. III. Reassignment of CUN codons from leucine to threonine during evolution of yeast mitochondria. J Mol Evol 30: 322–328

    Google Scholar 

  • Osinga KA, De Fries E, Van der Horst G, Tabak HF (1984) Processing of yeast mitochondrial messenger RNAs at a conserved dadecamer sequence. EMBO J 3: 829–834

    PubMed  CAS  Google Scholar 

  • Parikh VS, Conrad-Webb H, Docherty R, Butow RA (1989) Interaction between the yeast mitochondrial and nuclear genomes influencing the abundancy of novel transcripts derived from the spacer region of nuclear ribosomal DNA repeat. Mol Cell Biol 9: 1897–1907

    PubMed  CAS  Google Scholar 

  • Pasupathy K, Pradhan DS (1992) Evidence for excision repair in promitochondrial DNA of anaerobic cells of Saccharomyces cerevisiae. Mutat Res 273: 281–288

    PubMed  CAS  Google Scholar 

  • Perlman PS, Birky CW Jr, Strausberg RL (1979) Segregation of mitochondrial markers in yeast. Methods Enzymol 56: 139–154

    PubMed  CAS  Google Scholar 

  • Piskur J (1988a) Transmission of yeast mitochondrial loci to progeny is reduced when nearby intergenic regions containing on sequences are deleted. Mol Gen Genet 214: 425–432

    PubMed  CAS  Google Scholar 

  • Piskur J (1988b) A 5 kb intergenic region containing oril in the mitochondrial DNA of Saccharomyces cerevisiae is dispensable for expression of the respiratory phenotype. FEBS Lett 229: 145–149

    PubMed  CAS  Google Scholar 

  • Putrament A, Polakowska, R Baranowska H, Ejchart A (1976) On homozygotization of mitochondrial mutations in Saccharomyces cerevisiae. In: Bücher T, Neupert W, Sebald W, Werner S (eds) Genetics and biogenesis of chloroplasts and mitochondria. Elsevier, North-Holland, Amsterdam, pp 415

    Google Scholar 

  • Rank GH, Person C (1970) Reversion of cytoplasmically inherited respiratory deficiency in Saccharomyces cerevisiae. Can J Genet Cytol 11: 716–728

    Google Scholar 

  • Rickwood D, Chambers JAA (1981) Evidence for protected regions of DNA in the mitochondrial nucleoid of Saccharomyces cerevisiae. FEMS Microbiol Lett 12: 187–190

    CAS  Google Scholar 

  • Rickwood D, Chambers JAA, Barat M (1981) Isolation and preliminary characterization of DNA-protein complexes from mitochondria of Saccharomyces cerevisiae. Exp Cell Res 133: 1–7

    PubMed  CAS  Google Scholar 

  • Sakai H, Stiess R, Weiss-Brummer B (1991) Mitochondrial mutations restricting spontaneous translational frame-shift suppression in the yeast Saccharomyces cerevisiae. Mol Gen Genet 227: 306–317

    PubMed  CAS  Google Scholar 

  • Sando N, Miyakawa, I, Nishibayashi S, Kuroiwa T (1981) Arrangement of mitochondrial nucleoids during the life cycle of Saccharomyces cerevisiae. J Gen Appl Microbiol 27: 511–516

    Google Scholar 

  • Sargueil B, Hatat D, Delahodde A, Jacq C (1990) In vivo and in vitro analyses of an intron-encoded DNA endonuclease from yeast mitochondria - recognition site by site-directed mutagenesis. Nucl Acids Res 18: 56595665

    Google Scholar 

  • Sargueil B, Delahodde A, Hatat D, Tian GL, Lazowska J, Jacq C (1991) A new specific DNA endonuclease activity in yeast mitochondria. Mol Gen Genet 225: 340–341

    PubMed  CAS  Google Scholar 

  • Schinkel AH, Tabak HF (1989) Mitochondrial RNA polymerase: dual role in transcription and replication. Trends Genet 5: 149–154

    PubMed  CAS  Google Scholar 

  • Schinkel AH, Groot Koerkamp MJA, Van der Horst GTJ, Touw EPW, Osinga KA et al. (1986) Characterization of the promoter of the large ribosomal RNA gene in yeast mitochondria and separation of mitochondrial RNA polymerase into two different functional components. EMBO J 5: 1041–1047

    PubMed  CAS  Google Scholar 

  • Schinkel AH, Groot Koerkamp MJA, Touw EPW, Tabak HF (1987a) Specificity factor of yeast mitochondrial RNA polymerase. Purification and interaction with core RNA polymerase. J Biol Chem 262: 12785–12791

    Google Scholar 

  • Schinkel AH, Groot Koerkamp MJA, Stuiver MH, Van der Horst, GTJ, Tabak HF (1987b) Effect of point mutations on in vitro transcription from the promoter for the large ribosomal RNA gene of yeast mitochondria. Nucleic Acids Res 15: 5597–5612

    PubMed  CAS  Google Scholar 

  • Schinkel AH, Groot Koerkamp MJA, Tabak HF (1988a) Mitochondrial RNA polymerase of Saccharomyces cerevisiae: composition and mechanism of promoter recognition. EMBO J 7: 3255–3262

    PubMed  CAS  Google Scholar 

  • Schinkel AH, Groot Koerkamp MJA, Teunissen AWRH, Tabak HF (1988b) RNA polymerase induces DNA bending at yeast mitochondrial promoters. Nucleic Acids Res 16: 9147–9163

    PubMed  CAS  Google Scholar 

  • Schweyen RJ, Weiss-Brummer B, Backhaus B, Kaudewitz F (1977) The genetic map of the mitochondrial genome in yeast: Map of drugR and mit markers as revealed from population analyses of rho-clones in Saccharomyces cerevisiae. Mol Gen Genet 159: 151–160

    Google Scholar 

  • Sena EP, Welch JW, Halvorson H, Fogel S (1975) Nuclear and mitochondrial DNA replication during mitosis in Saccharomyces cerevisiae. J Bacteriol 123: 497–504

    PubMed  CAS  Google Scholar 

  • Seraphin B (1990) Conserved helicase motifs in the PIF protein. Nucl Acids Res 18: 661

    PubMed  CAS  Google Scholar 

  • Seraphin B, Boulet A, Simon M, Faye G (1987) Construction of a yeast strain devoid of mitochondrial introns and its use to screen nuclear genes involved in mitochondrial splicing. Proc Natl Acad Sci USA 84: 68106814

    Google Scholar 

  • Seraphin B, Simon M, Jacq C, Faye G (1989) Sequence of a yeast mitochondrial OXI310L12 promotor region. Nucl Acids Res 17: 4886

    PubMed  CAS  Google Scholar 

  • Skelly PJ, Clark-Walker GD (1991) Sequence rearrangements at the ori7 region of Saccharomyces cerevisiae mitochondrial DNA. J Mol Evol 32: 439–442

    PubMed  CAS  Google Scholar 

  • Sor F, Fukuhara H (1982) Nature of an inserted sequence in the mitochondrial gene coding for the 15S ribosomal RNA of yeast. Nucl Acids Res 10: 1625–1633

    PubMed  CAS  Google Scholar 

  • Stewart LC, Yaffe MP (1991) A role for unsaturated fatty acids in mitochondrial movement and inheritance. J Cell Biol 115: 1249–1257

    PubMed  CAS  Google Scholar 

  • Stohl LL, Clayton DA (1992) Saccharomyces cerevisiae contains an RNase MRP that cleaves at a conserved mitochondrial RNA sequence implicated in replication priming. Mol Cell Biol 12: 2561–2569

    Google Scholar 

  • Strausberg RL, Perlman PP (1978) The effect of zygotic bud position on the transmission of mitochondrial genes in Saccharomyces cerevisiae. Mol Gen Genet 163: 131–144

    PubMed  CAS  Google Scholar 

  • Tarassov IA, Entelis NS (1992) Mitochondrially imported cytoplasmic transfer RNAL, (CUU) of Saccharomyces cerevisiae — in vivo and in vitro targetting systems. Nucl Acids Res 20: 1277–1281

    PubMed  CAS  Google Scholar 

  • Thorsness PE, Fox TD (1990) Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae. Nature 346: 376–378

    PubMed  CAS  Google Scholar 

  • Thrailkill K, Birky CW Jr, Lückemann G, Wolf K (1980) Intracellular population genetics: evidence for random drift of mitochondrial allele frequencies in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Genetics 96: 237–262

    PubMed  CAS  Google Scholar 

  • Ticho BS, Getz GS (1988) The characterization of yeast mitochondrial RNA polymerase: a monomer of 150000 daltons with a transcription factor of 70 000 daltons. J Biol Chem 263: 10096–10103

    PubMed  CAS  Google Scholar 

  • Topper JN, Bennett JL, Clayton DA (1992) A role for RNAase MRP in mitochondrial RNA processing. Cell 70: 16–20

    PubMed  CAS  Google Scholar 

  • Tron T, Infossi P, Coppee JY, Colson AM (1991) Molecular analysis of revertants from a respiratory-deficient mutant affecting the center o domain of cytochrome b in Saccharomyces cerevisiae. FEBS Lett 278: 26–30

    PubMed  CAS  Google Scholar 

  • Tzagoloff A, Dieckmann CL (1990) PET genes of Saccharomyces cerevisiae. Microbiol Rev 54: 211–225

    Google Scholar 

  • Uchida A, Suda K (1976) Pattern of somatic segregation of the cytoplasmic drug resistance factors in yeast. Mol Gen Genet 145: 159–168

    PubMed  CAS  Google Scholar 

  • Vincent RD, Hofmann TJ, Zassenhaus HP (1988) Sequence and expression of NUC1, the gene encoding the mitochondrial nuclease in Saccharomyces cerevisiae. Nucl Acids Res 16: 3297–3312

    PubMed  CAS  Google Scholar 

  • Walsh JB (1992) Intracellular selection, conversion bias, and the expected substitution rate of organelle genes. Genetics 130: 939–946

    PubMed  CAS  Google Scholar 

  • Waters R, Moustacchi E (1974) The fate of ultraviolet-induced pyrimidine dimers in the mitochondrial DNA of Saccharomyces cerevisiae following various post-irradiation cell treatments. Biochim Biophys Acta 366: 241–250

    PubMed  CAS  Google Scholar 

  • Weiss-Brummer B, Sakai H, Kaudewitz F (1987a) A mitochondrial frameshift-suppressor (+) of the yeast S. cerevisiae maps in the mitochondrial 15 S rRNA locus. Curr Genet 1: 295–301

    Google Scholar 

  • Weiss-Brummer B, Sakai H, Magerl-Brenner M (1987b) At least two nuclear-encoded factors are involved together with a mitochondrial factor (MF1) in spontaneous mitochondrial frameshift-suppression of the yeast S. cerevisiae. Curr Genet 12: 387–392

    CAS  Google Scholar 

  • Weiss-Brummer B, Hüttenhofer A (1989) The paromomycin resistance mutation (par`-454) in the 15S-rRNA gene of the yeast Saccharomyces cerevisiae is involved in ribosomal frameshifting. Mol Gen Genet 217: 362–370

    PubMed  CAS  Google Scholar 

  • Weiss-Brummer B, Sakai H, Hüttenhofer A (1989) A mitochondrial frameshift suppressor maps in the tRNAser vara region of the mitochondrial genome of the yeast S. cerevisiae. Curr Genet 15: 239–246

    PubMed  CAS  Google Scholar 

  • Wenzlau JM, Perlman PS (1990) Mobility of 2 optional G+C-rich clusters of the vari gene of yeast mitochondrial DNA. Genetics 126: 53–62

    PubMed  CAS  Google Scholar 

  • Wernette CM, Saldahne R, Perlman PS, Butow RA (1990) Purification of a site-specific endonuclease, 1-Sce-II, encoded by intron-4-alpha of the mitochondrial cox/ gene of Saccharomyces cerevisiae. J Biol Chem 265: 18976–18982

    PubMed  CAS  Google Scholar 

  • Wettstein-Edwards J, Ticho BS, Martin NC, Najarian D, Getz GS (1986) In vitro transcription and promoter strength analysis of five mitochondrial tRNA promoters in yeast. J Biol Chem 261: 2905–2911

    PubMed  CAS  Google Scholar 

  • Wilcoxen SE, Peterson CR, Winkley CS, Keller MJ, Jaehning JA (1988) Two forms of RPO41-dependent RNA polymerase: regulation of the RNA polymerase by glucose repression may control yeast mitochondrial gene expression. J Biol Chem 263: 12346–12351

    PubMed  CAS  Google Scholar 

  • Wilkie D (1983) Genetic and functional aspects of yeast mitochondria. In: Spencer JFT, Spencer DM, Smith ARW (eds) Yeast genetics. Fundamental and applied aspects. Springer, Berlin Heidelberg New York Tokyo, pp 255–267

    Google Scholar 

  • Williamson DH (1976) Packaging and recombination of mitochondrial DNA in vegetatively growing yeast cells. In: Bandlow W, Schweyen RJ, Thomas DY, Wolf K, Kaudewitz F (eds) Genetics, biogenesis and bioenergetics of mitochondria. De Gruyter, Berlin, pp 117–124

    Google Scholar 

  • Williamson DH, Fennell DJ (1974) Apparent dispersive replication of yeast mitochondrial DNA as revealed by density labelling experiments. Mol Gen Genet 131: 193–207

    PubMed  CAS  Google Scholar 

  • Williamson DH, Johnston LH, Richmond KMV, Game JC (1977) Mitochondrial DNA and the heritable unit of the yeast mitochondrial genome: a review. In: Bandlow W, Schweyen RJ, Wolf K, Kaudewitz F (eds) Mitochondria 1977. De Gruyter, Berlin, pp 1–24

    Google Scholar 

  • Willson TA, Nagley P (1987) Amino acid substitutions in subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae — sequence analysis of a series of revertants of an obi mir mutant carrying an amino acid substitution in the hydrophilic loop of subunit 9. Eur J Biochem 167: 291–297

    PubMed  CAS  Google Scholar 

  • Wintersberger U, Blutsch H (1976) DNA-dependent DNA polymerase from yeast mitochondria. Dependence of enzyme activity on conditions of cell growth and properties of the highly purified polymerase. Eur J Biochem 68: 199–207

    Google Scholar 

  • Wintersberger U, Wintersberger W (1970) Studies on DNA polymerase from yeast. 2. Partial purification and characterization of mitochondrial DNA polymerase from wild-type and respiratory deficient yeast cells. Eur J Biochem 13: 20–27

    Google Scholar 

  • Wise CA, Martin NC (1991) Dramatic size variation of yeast mitochondrial RNAs suggest that RNAse P can be quite small. J Biol Chem 266: 19154–19157

    PubMed  CAS  Google Scholar 

  • Wolf K (1987) Mitochondrial genes of the budding yeast Saccharomyces cerevisiae. In: Kinghorn JR (ed) Gene structure in eukaryotic microbes. Spec Publ Soc Gen Microbiol vol 22, IRL Press, Oxford, Washington, DC, pp 41–67

    Google Scholar 

  • Wolf K, Del Giudice L (1988) The variable mitochondrial genome of ascomycetes: organization, mutational alterations, and expression. In: Caspari EW, Scandalios JG (eds) Advances in genetics 25. Academic Press, San Diego, pp 185–308

    Google Scholar 

  • Xu BJ, Clayton DA (1992) Assignment of yeast protein necessary for mitochondrial transcription initiation. Nucl Acids Res 20: 1053–1059

    PubMed  CAS  Google Scholar 

  • Yasui A, Yajima H, Kobayashi T, Eker APM, Oikawa A (1992) Mitochondrial DNA repair by photolyase. Mutat Res 273: 231–236

    PubMed  CAS  Google Scholar 

  • Zagorski W, Kozlowski M, Mieszczak M, Spyridakis A, Claisse M, Slonimski PP (1987) Protein synthesis in mitochondria from yeast strains carrying nam and mim suppressor genes. Biochimie 69: 517–530

    PubMed  CAS  Google Scholar 

  • Zimmermann W, Chen SM, Bolden A, Weissbach A (1980) Mitochondrial DNA replication does not involve DNA polymerase alpha. J Biol Chem 255: 11847–11852

    PubMed  CAS  Google Scholar 

  • Zinn AR, Pohlmann JK, Perlman PS, Butow RA (1987) Kinetic and segregational analysis of mitochondrial DNA recombination in yeast. Plasmid 17: 248–256

    PubMed  CAS  Google Scholar 

  • Zinn AR, Pohlmann JK, Perlman PS, Butow RA (1988) In vivo double-strand breaks occur at recombinogenic G+C-rich sequences in the yeast mitochondrial genome. Proc Natl Acad Sci USA 85: 2686–2690

    PubMed  CAS  Google Scholar 

  • Zweifel SG, Fangman WL (1991) A nuclear mutation reversing a biased transmission of yeast mitochondria) DNA. Genetics 128: 241–249

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wolf, K. (1995). Mitochondrial Genetics of Yeast. In: Kück, U. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10364-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10364-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10366-1

  • Online ISBN: 978-3-662-10364-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics