Lipids in Fungal Biotechnology

  • M. Sancholle
  • D. Lösel
Part of the The Mycota book series (MYCOTA, volume 2)

Abstract

Since most fungi are capable of degrading a wide diversity of readily available substrates, there has been much interest in their exploitation for the production of lipids. Even on inexpensive carbon sources, the conversion efficiency of substrate to fungal lipid is currently unable to compete in price with the plant oils widely used as human food. For example, approximately 5 t of substrate is needed to produce 1 t of fungal oil (Ratledge 1988). Lipid production from fungi becomes economically viable, however, when it either yields special metabolites not available more cheaply from other sources, such as polyunsaturated fatty acids (PUFA), or offers easy conversion to products of biochemical and pharmaceutical importance. This is especially true when utilizing waste products from other processes, particularly if direct disposal of such materials is environmentally hazardous.

Keywords

Lignin Hydrocarbon Alkane Ibuprofen Lactis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam O (1990) Stoffwechselwirkungen und Nebenwirkungen der n-3 fettsäuren. (DGF Abstr) Fat Sci Technol 92: 423Google Scholar
  2. Aguilera A, Benitez T (1986) Ethanol-sensitive mutants of Saccharomyces cerevisiae. Arch Microbiol 143: 337–344PubMedCrossRefGoogle Scholar
  3. Akoh CC, Cooper C, Nwosu CV (1992) Lipase G catalyzed synthesis of monoglycerides in organic solvent and analysis by HPLC. J Am Oil Chem Soc 69 (3): 257–260CrossRefGoogle Scholar
  4. Alhir S, Markakis P, Chandan RC (1990) Lipase of Penicillium caseicolum. J Agric Food Chem 38 (3): 598–601CrossRefGoogle Scholar
  5. Arbige MV, Freund PR, Silver SC, Zelko JT (1986) Novel lipase for cheddar cheese flavor development. Food Technol 40 (4): 91–96Google Scholar
  6. Auberger B, Lamberet G, Lenoir J (1985) Enzymatic activities of Penicillium camemberti. Sci Aliments 5 (5): 239–244Google Scholar
  7. Baillargeon MW (1990) Purification and specificity of lipases from Geotrichum candidum. Lipids 25 (12): 841–848CrossRefGoogle Scholar
  8. Baillargeon MW, McCarthy SG (1991) Geotrichum candidum NRRL Y-553 lipase: purification, characterization and fatty acid specificity. Lipids 26(10):831–936Google Scholar
  9. Baillargeon MW, Sonnet PE (1991) Selective lipid hydrolysis by Geotrichum candidum NRRL Y-553 lipase. Biotechnol Lett 13 (12): 871–874CrossRefGoogle Scholar
  10. Bajpai P, Bajpai PK (1993) Eicosapentaenoic acid (EPA) production from microorganisms; a review. J Biotechnol 30 (2): 161–183PubMedCrossRefGoogle Scholar
  11. Bajpai P, Bajpai PK, Ward OP (1991a) Production of docosahexanoic acid by Thraustochytrium aureum. Appl Microbiol Biotechnol 35 (6): 706–710CrossRefGoogle Scholar
  12. Bajpai PK, Bajpai P, Ward OP (1991b) Arachidonic acid production by fungi. Appl Environ Microbiol 57 (4): 1255–1258PubMedGoogle Scholar
  13. Bajpai P, Bajpai PK, Ward OP (1991c) Effect of aging Mortierlla mycelium on production of arachidonic and eicosapentaenoic acids. J Am Oil Chem Soc 68 (10): 775–780CrossRefGoogle Scholar
  14. Bajpai PK, Bajpai P, Ward OP (1991d) Optimization of production of docosahexanoic acid (DHA) by Thraustochytrium aureum ATCC 34304. J Am Oil Chem Soc 68 (7): 509–514CrossRefGoogle Scholar
  15. Bajpai P, Bajpai PK, Ward OP (1991e) Eicosapentaenoic acid (EPA) production by Mortierella alpina ATCC 32222. Appl Biochem Biotechnol 31 (3): 267–272PubMedCrossRefGoogle Scholar
  16. Bajpai P, Bajpai PK, Ward OP (1991f) Eicosapentaenoic acid (EPA) formation comparative studies with Mortierella strains and production by Mortierella elongata. Mycol Res 95 (11): 1294–1298CrossRefGoogle Scholar
  17. Beakes GW (1980) Electron microscopic study of oospore maturation and germination in an emasculate isolate of Saprolegnia ferax 3. Changes in organelle status and association. Can J Bot 58: 208–227Google Scholar
  18. Behalova B, Hozak P, Blahova M, Sillinger V (1992) Effect of nitrogen limitation and sporulation on sterol and lipid formation in Saccharomyces cerevisiae. Folia Microbiol 37 (6): 442–449CrossRefGoogle Scholar
  19. Berger M, Laumen K, Schneider MP (1992) Enzymatic esterification of glycerol I. Lipase catalysed synthesis of regioisometrically pure 1,3-sn-diacylglycerols. J Am Oil Chem Soc 69 (10): 955–960CrossRefGoogle Scholar
  20. Bhalerao UT, Dasaradhi L, Neelakantan P, Fadnavis NW (1991) Lipase catalysed regio selectives and enantio selectives hydrolysis molecular recognition phenemenon and synthesis of R dimorphecolic acid. J Chem Soc Chem Commun (17): 1197–1198Google Scholar
  21. Bilyk A, Bistline RG Jr, Haas MJ, Feairheller SH (1991) Lipase catalysed triglyceride hydrolysis in organic solvent. J Am Oil Chem Soc 68 (5): 320–323CrossRefGoogle Scholar
  22. Bistline RG Jr, Bilyk A, Feairheller SH (1991) Lipase catalyzed formation of fatty amines. J Am Oil Soc 68 (2): 95–98CrossRefGoogle Scholar
  23. Bloomer S, Adlercreutz P, Mattiasson B (1992) Facile synthesis of fatty acid esters in high yields. Enzyme Microb Technol 14 (7): 546–552CrossRefGoogle Scholar
  24. Borgström B, Brockman HL (1984) Lipases. Elsevier, New YorkGoogle Scholar
  25. Boulton CA, Ratledge C (1984) The physiology of hydrocarbon-utilizing microorganisms. In: Wiseman A (ed) Topics in fermentation and enzyme technology, vol 9. Ellis Horwood, Chichester, pp 11–77Google Scholar
  26. Bramley PM, Davies BH (1975) Carotene biosynthesis by cell extracts of Phycomyces blakesleeanus. Phytochemistry 14: 463CrossRefGoogle Scholar
  27. Brennan PJ, Lösel DM (1978) Physiology of fungal lipids: selected topics. Adv Microbial Physiol 17: 47–179CrossRefGoogle Scholar
  28. Brockerhoff H, Jensen R (1974) Lipolytic enzymes. Academic Press, New YorkGoogle Scholar
  29. Brown DE, Hasan M, Lepe-Casillas M, Thornton AJ (1990) Effect of temperature and pH on lipid accumulation by Trichoderma reesei. Appl Microbiol Biotechnol 34 (3): 335–339CrossRefGoogle Scholar
  30. Brunton AH, Gadd GM (1991) Evidence for an inositol signal pathway in the yeast-mycelium transition of Ophiostoma ulmi, the Dutch elm disease fungus. Mycol Res 95: 484–491CrossRefGoogle Scholar
  31. Brzozowski AM, Derewenda U, Derewenda ZS, Dodson GG, Lawson DM, Turkenburg JP, Bjorkling F, Huge-Jensen B, Patkar SA, Thim L (1991) A model for interfacial activation in lipases from the structure of a fungal lipase inhibitor complex. Nature (Lond) 351 (6326): 491–494CrossRefGoogle Scholar
  32. Bühler M, Schindler J (1984) Aliphatic hydrocarbons. In: Rehm HJ, Reed G (eds) Biotechnology, vol 6a. Verlag Chemie, Weinheim, pp 329–385Google Scholar
  33. Bull AT, Bushell ME (1976) Environmental control of fungal growth. In: Smith JE, Berry DR (eds) The filamentous fungi, vol 2. Edward Arnold, London, pp 1–31Google Scholar
  34. Burnanova L, Rezanka T, Jandera A (1990) Screening for strains of the genus Mortierella showing elevated production of highly unsaturated fatty acids. Folia Microbiol 35 (6): 578–582CrossRefGoogle Scholar
  35. Caltrider PG, Niss HF (1966) Role of methionine in cephalosporin synthesis. Appl Microbiol 14: 746–753PubMedGoogle Scholar
  36. Caltrider PG, Huber FM, Day LD (1968) Effect of methionine and sulfate on the metabolism of Cephalosporium acremonium. Appl Microbiol 16: 1913–1918PubMedGoogle Scholar
  37. Cardoso DBS, Angluster J, Travassos LR, Alviano CS (1987) Isolation and characterization of a glucocerebroside monoglucosylceramide from Sporothrix schenckii. Microbiol Lett 43: 279–282CrossRefGoogle Scholar
  38. Carrol AD, Schisler LC (1976) A delayed release nutrient for mushroom culture. Appl Environ Microbiol 31: 499–503Google Scholar
  39. Carta G, Gainer JL, Gibson ME (1992) Synthesis of esters using a nylon immobilized lipase in batch and continuous reactors. Enzyme Microb Technol 14 (11): 904–910PubMedCrossRefGoogle Scholar
  40. Carter GA, Kendall SJ, Burden RS, James CS, Clark T (1989) The lipid compositions of two isolates of Cladosporium cucumerinum do not explain their sensitivity to fungicides which inhibit sterol biosynthesis. Pesticide Sci 26: 181–192CrossRefGoogle Scholar
  41. Casey GP, Ingledew WM (1986) Ethanol tolerance in yeasts. Crit Rev Microbiol 13: 219–280PubMedCrossRefGoogle Scholar
  42. Casey WM, Rolph CE, Tomeo ME, Parks LW (1993) Effects of unsaturated fatty acid supplementation on phospholipid and triacylglycerol biosynthesis in Saccharomyces cerevisiae. Biochem Biophys Res Commun 193 (3): 1297–1303PubMedCrossRefGoogle Scholar
  43. Certik M, Sajbidor J, Stredanska S (1993a) Effect of carbon and nitrogen sources on growth lipid production and fatty acid composition of Mucor mucedo F-1384. Microbios 74 (298): 7–15Google Scholar
  44. Certik M, Sereke Berhan S, Sajbidor J (1993b) Lipid production and fatty acid composition of selected strains belonging to Mucorales. Acta Biotechnol 13 (2): 193–196CrossRefGoogle Scholar
  45. Charton E, Macrae AR (1992) Substrate specificities of lipases A and B from Geotrichum candidum. CMICC 335426. Biochim Biophys Acta 1123 (1): 59–64PubMedCrossRefGoogle Scholar
  46. Charton E, Macrae AR (1993) Specificities of immobilized Geotrichum candidum CMICC 335426. Enzyme Microb Technol 15 (6): 489–493CrossRefGoogle Scholar
  47. Chen JP, McGill SD (1992) Enzymatic hydrolysis of triglycerides by Rhizopus delemar immobilized on biomass support particles. Food Biotechnol (NY) 6 (1): 1–8CrossRefGoogle Scholar
  48. Chen JP, Yang B (1992) Enhancement of release of short chain fatty acids from milk fat with immobilized microbial lipase. J Food Sci 57 (3): 781–782CrossRefGoogle Scholar
  49. Chen J, Ishii T, Shimura S, Kirimura K, Usami S (1992) Lipase production by Trichosporum fermentans WU-C12, a newly isolated yeast. J Ferment Bioeng 73 (5): 412–414CrossRefGoogle Scholar
  50. Chen J, Shimura S, Kirimura K, Usami S (1993) Enhancement of lipase production from hydrocarbons by mutation of Trichospouon fermentans. Appl Microbiol Biotechnol 38 (6): 714–718CrossRefGoogle Scholar
  51. Cho SW, Rhee JS (1993) Immobilization of lipase for effective interesterification of fats and oils in organic solvent. Biotechnol Bioeng 41 (2): 204–210PubMedCrossRefGoogle Scholar
  52. Coetzee DJ, Kock JLF, Botha A, Van Dyk MS, Smit EJ, Botes EJ, Augustyn OPH (1992) Yeast eicosanoids (III) the distribution of arachidonic acid metabolites in the life cycle of Dipodascopsis uninucleatus. Syt Appl Microbiol 15: 311–318CrossRefGoogle Scholar
  53. Commenil P, Belingheri L, Dehorter B, Sancholle M (1992) Parital purification of a lipase from Botrytis cinerea. In: Cherif A, Daoud DBM, Marzouk B, Smaoui A, Zarrouk M (eds) Metabolism, structure and utilization of plant lipids. National Institute of Scientific and Technical Research, Hammam-Lif, TunisiaGoogle Scholar
  54. Conzelmann A, Puoti A, Lester R, Desponds C (1992) Two different types of lipid moieties are present in glycophosphoinositol anchored membrane proteins of Saccharomyces cerevisiae. EMBO J 11: 457–466PubMedGoogle Scholar
  55. Cooper DG, Paddock DA (1984) Production of a biosurfactant from Torulopsis bombicola. Appt Environ Microbiol 47: 173–176Google Scholar
  56. Cornelius G, Gebauer G, Techel D (1989) Inositol triphosphate induces calcium release from Neurospora crassa vacuoles. Biochem Biophys Res Commun 162: 852–856PubMedCrossRefGoogle Scholar
  57. Davranov KD, Meerov GI, Bezborodov AM, Tros’ko UI, Sergeev AG (1985) The use of Oospora lactis lipase for the hydrolysis of vegetable oils. Prikl Biokhim Mikrobiol 21 (2): 199–202Google Scholar
  58. Del Rio JL, Serra P, Valero F, Poch M, Sola C (1990) Reaction scheme of lipase production by Candida rugosa growing on olive oil. Biotechnol Lett 12 (11): 835–838CrossRefGoogle Scholar
  59. Dooijewaard-Klosterziel AMP, Wouters JTM (1976) Some properties of the lipase of Geotrichum candidum evaluated by a fluorimetric assay technique. J Appl Bacteriol 40: 93–299Google Scholar
  60. Dostalek M (1986) Production of lipid from starch by a nitrogen-controlled mixed culture of Saccharomycopsis fibuliger and Rhodosporidium toruloides. Appt Microbiol Biotechnol 24 (1): 19–23Google Scholar
  61. Druet D, El Abbadi N, Comeau LC (1992) Purification and characterization of the extracellular and cell-bound lipases from a Penicillium cyclopium variety. Appt Microbiol Biotechnol 37 (6): 745–749Google Scholar
  62. Dyer PS, Ingram DS, Johnstone K (1993) Evidence for the involvement of linoleic acid and other endogenous lipid factors in perithecial development of Nectria haematococca mating population VI. Mycol Res 97: 485–496CrossRefGoogle Scholar
  63. Dyerberg J (1986) Linolenate derived polyunsaturated fatty acids and prevention of atherosclerosis. Nutr Rev 44: 123–134Google Scholar
  64. Einsele A (1983) Biomass from higher n-alkanes. In: Rehm HJ, Reed G (eds) Biotechnology, vol 3. Verlag Chemie, Weinheim, pp 43–81Google Scholar
  65. Elliott CG (1977) Sterols in fungi. Their function in fungal growth and reproduction. Adv Microbial Physiol 15: 121–173CrossRefGoogle Scholar
  66. Elwan SH, Ammar MS, Mohawed SM (1986a) Lipases from Aspergillus sidowii. Zentralbl Mikrobiol 141 (3): 233–239Google Scholar
  67. Elwan SH, Ammar MS, Mohawed SM (1986b) Production of Aspergillus sidowii lipases under bench and large scale fermentation. Zentralbl Mikrobiol 141 (3): 241–246Google Scholar
  68. Elwan SH, Ammar MS, El-Moussallamy MK (1986c) Identity and lipases productivity of Penicillium-chrysogenum. Egypt J Microbiol 21 (2): 143–154Google Scholar
  69. Elwan SH, Ammar MS, El-Moussallamy MK (1988) Partial purification and properties of Penicilliumchrysogenum lipase. Egypt J Microbiol 22 (1): 11–26Google Scholar
  70. Emerson R, Natvig DO (1981) Adaptation of fungi to stagnant waters. In: Wicklow DT, Carrot GC (eds) The fungal community. Marcel Dekker, New York, pp 109128Google Scholar
  71. Engel KH, Bohnen M, Dobe M (1991) Lipase catalysed reactions of chiral hydroxyacid esters: competition of esterification on transesterification. Enzyme Microb Technol 13 (8): 654–660CrossRefGoogle Scholar
  72. Ergan F, Trani M (1991) Effect of lipase specificity on triglyceride synthesis. Biotechnol Lett 13 (1): 19–24CrossRefGoogle Scholar
  73. Espinosa E, Sanchez S, Farres A (1900) Nutrition) factors affecting lipase production by Rhizopus delemar CDBB H313. Biotechnol Lett 12 (3): 209–214CrossRefGoogle Scholar
  74. Fahrasmane L, Parfait A, Jouret C, Galzy P (1985) Production of higher alcohols and short chain fatty acids by different yeasts used in rum fermentations. J Food Sci 50: 1427–1430CrossRefGoogle Scholar
  75. Farag AA, Aly ME, El Alfy MB (1992) Enhancement of blue cheese flavor using sodium dodecylsulfate and lipase. Nahrung 36 (1): 1–7CrossRefGoogle Scholar
  76. Farahat SM, Rabie AM, Farag AA (1990) Evaluation of the proteolytic and lipolytic activity of different Penicillium roqueforti strains. Food Chem 36 (3): 169–180CrossRefGoogle Scholar
  77. Feofilova EP, Daragan-Sushchova MV, Volokhova MV, Velichko BA, Shirokova EA, Sinitsin AP (1988) Changes in the chemical composition of Aspergillus japonicus cells in the course of their growth. Microbiologiya 57: 778–784Google Scholar
  78. Feofilova EP, Kuznetsova LS, Kogtev LG, Shirokova EA (1989) Temperature shock and the lipid composition of the fungus Cunninghamella japonica. Prikl Biochem Mikrobiol 25: 373–384Google Scholar
  79. Fermor TR, Grant WD (1985) Degradation of fungal and actinomycete mycelia by Agaricus bisporus. J Gen Microbiol 131: 1729–1734Google Scholar
  80. Ferrer P, Sola C (1992) Lipase production by immobilized Candida rugosa cells. Appt Microbiol Biotechnol 37 (6): 737–741Google Scholar
  81. Finnerty WR (1989) Microbial lipid metabolism. In: Ratledge C, Wilkinson SG (eds) Microbial lipids. Academic Press, London, pp 525–566Google Scholar
  82. Frautz B, Lang S, Wagner F (1986) Formation of cellobiose lipids by growing and resting cells of Ustilago maydis. Biotechnol Lett 8: 757–762CrossRefGoogle Scholar
  83. Fukuda H, Morikawa H (1987) Enhancement of y-linolenic acid production by Mucor ambiguus with non ionic surfactants. Appt Microbiol Biotechnol 27: 15–20Google Scholar
  84. Funtikova NS, Katomina AA (1988) Effect of alcohols with short chains on the unsaturation of polar and neutral fractions of lipids in Aspergillus oryzae. Mikrobiologiya 57: 771–773Google Scholar
  85. Funkitova NS, Katomina AA, Sukhikh AP (1988) Changes in the fatty acid composition of lipids from the fungus Aspergillus oryzae in the course of its adaptation to alcohols. Microbiologiya 57: 885–886Google Scholar
  86. Furtado MM, Chandan RC (1985) Ripening changes in a blue mold surface ripened cheese from goats milk. J Food Sci 50 (2): 545–546CrossRefGoogle Scholar
  87. Gancet C, Guignard C, Fourmentraux P (1987) Catalysis by a lipase bearing Rhizopus arrhizus mycelium in fluorinated and halogeno-fluorinated hydrocarbons. J Am Oil Chem Soc 64 (9): 12–63Google Scholar
  88. Gandhi SR, Weete JD (1991) Production of the polyunsaturated fatty acids arachidonic acid and eicosapentaenoic acid by the fungus Pythium ultimum. J Gen Microbiol 137 (8): 1825–1830PubMedCrossRefGoogle Scholar
  89. Garcia HS, Amundson CH, Hill CG Jr (1991) Partial characterization of the action of an Aspergillus niger lipase on butteroil emulsions. J Food Sci 56 (5): 1233–1237CrossRefGoogle Scholar
  90. Garcia HS, Malcata FX, Hill CG Jr, Amundson CH (1992) Use of Candida rugosa lipase immobilized in a spiral wound membrane reactor for the hydrolysis of milkfat. Enzyme Microb Technol 14 (7): 535–545CrossRefGoogle Scholar
  91. Gatfield IL (1986) The enzymatic synthesis of esters in non aqueous systems. Lebensm Wiss Technol 19 (1): 87–88Google Scholar
  92. Geluk MA, Norde W, Van Kalsbeek HKAI, Van Riet K (1992) Adsorption of lipase from Candida rugosa on cellulose and its influence on lipolytic activity. Enzyme Microb Technol 14 (9): 748–754CrossRefGoogle Scholar
  93. Giuseppin MLF (1984) Effect of dissolved oxygen concentration on lipase production by Rhizopus delemar. Appl Microbiol Biotechnol 20 (3): 161–165CrossRefGoogle Scholar
  94. Goebbert U, Lang S, Wagner F (1984) Sophorose lipid formation by resting cells of Torulopsis bombicola. Biotechnol Lett 6: 225–230CrossRefGoogle Scholar
  95. Goh SH, Yeong SK, Wang CW (1993) Transesterification of cocoa butter by fungal lipases: effect of solvent on 1,3 specificity. J Am Oil Chem Soc 70 (6): 567–570CrossRefGoogle Scholar
  96. Goodwin TW (1980) The biochemistry of the carotenoids, 2nd edn. Chapman and Hall, LondonCrossRefGoogle Scholar
  97. Granger LM, Perlot P, Goma G, Pareilleux A (1992) Kinetics of growth and fatty acid production of Rhodotorula glutinis. Appl Microbiol Biotechnol 37 (1): 13–17CrossRefGoogle Scholar
  98. Granger LM, Perlot P, Goma G, Pareilleux A (1993) Effect of various nutrient limitations on fatty acid production by Rhodotorula glutinis. Appl Microbiol Biotechnol 38 (6): 784–789CrossRefGoogle Scholar
  99. Gray CJ, Narang JS, Barker SA (1990) Immobilisation of lipase from Candida cylindracea and its use in the synthesis of menthol esters by transesterification. Enzyme Microb Technol 12 (10): 800–807PubMedCrossRefGoogle Scholar
  100. Guilbaut CG, Hierserman J (1969) Fluorometric substrate for sulfatase and lipase. Analyt Chem 41: 2006–2009CrossRefGoogle Scholar
  101. Guilbaut CG, Kramer DN (1966) Lipolysis of fluorescein and eosin esters. Kinetics of hydrolysis. Analyt Biochem 14: 28–40Google Scholar
  102. Guit RPM, Kloosterman M, Meindersma GW, Mayer M, Meijer EM (1991) Lipase kinetics: hydrolysis of triacetin by lipase from Candida cylindracea in a hollow fiber membrane reactor. Biotechnol Bioeng 38 (7): 727–732PubMedCrossRefGoogle Scholar
  103. Haas MJ, Allen J, Berka TR (1991) Cloning expression and characterization of a cDNA encoding lipase from Rhizopus delemar. Gene (AMST) 109 (1): 107–114CrossRefGoogle Scholar
  104. Haas MJ, Cichowicz DJ, Bailey DG (1992) Purification and characterization of an extracellular lipase from the fungus Rhizopus delemar. Lipids 27: 571–576CrossRefGoogle Scholar
  105. Haas MJ, Cichowicz DJ, Phillips J, Moreau R (1993) The hydrolysis of phosphatidylcholine by an immobilized lipase: optimization of hydrolysis in organic solvents. J Am Oil Chem Soc 70 (2): 111–117CrossRefGoogle Scholar
  106. Haferburg D, Hommel RK, Claus R, Kleber HP (1986) Extracellular microbial lipids as biosurfactants. Adv Biochem Eng Biotechnol 33: 53–93Google Scholar
  107. Hansson L, Dostalek M (1986) Effect of culture conditions on fatty-acid composition in lipids produced by the yeast Cryptococcus albidus var. albidus. J Am Oil Chem Soc 63 (9): 1179–1184CrossRefGoogle Scholar
  108. Hansson L, Dostalek M, Sorenby B (1989) Production of y-linolenic acid by the fungus Mucor rouxii in fed-batch and continuous culture. Appl Microbiol Biotechnol 31 (3): 223–227CrossRefGoogle Scholar
  109. Hayes DG, Gulari E (1991) 1-Monoglyceride production from lipase catalysed esterification of glycerol and fatty acid in reverse micelles. Biotechnol Bioeng 38(5):507–517Google Scholar
  110. Hayes WA (1978) Nutrition, substrates and principles of disease control. In: Chang ST, Hayes WA (eds) The biology and cultivation of edible mushrooms. Academic Press, London, pp 219–239Google Scholar
  111. Hedrich HC, Spener F, Menge U, Hecht HJ, Schmid RD (1991) Large scale purification, enzymatic characteriza-Google Scholar
  112. tion and crystallization of the lipase from Geotrichum candidum. Enzyme Microb Technol 13(10):840–847Google Scholar
  113. Hedström G, Backlund M, Slotte JP (1993) Enantioselective synthesis of ibuprofen esters in AOT/isooctane microemulsions by Candida cylindracea lipase. Biotechnol Bioeng 42: 618–624PubMedCrossRefGoogle Scholar
  114. Heisler A, Rabiller C, Hublin L (1991) Lipase catalyzed isomerisation of 1,2 (2,3) diglyceride into 1,3 diglyceride: the crucial role of water. Biotechnol Lett 13 (5): 327–332CrossRefGoogle Scholar
  115. Hendrix JW (1974) Physiology and biochemistry of growth and reproduction in Pythium. Proc Am Phytopathol Soc 1: 207–210Google Scholar
  116. Hering L, Bisping B, Rehm Hi (1991) Patterns and formation of fatty acids at tempe fermentation by several strains of Rhizopus sp. Fett Wiss Technol 93 (8): 303–308Google Scholar
  117. Hertzberg S, Kvittingen L, Anthonsen T, Skjak-Braek G (1992) Alginate as immobilization matrix and stabilizing agent in a two phase liquid system: application in lipase catalyzed reactions. Enzyme Microb Technol 14 (1): 4247CrossRefGoogle Scholar
  118. Hitchcock CA, Barret-Bee KJ, Russel NJ (1986) The lipid composition of azole sensitive and azole resistant strains of Candida albicans. J Gen Microbiol 132: 2421–2432PubMedGoogle Scholar
  119. Hoehfeld J, Kunau WH (1990) PAS-3 a gene of Saccharomyces cerevisiae essential for peroxisome biogenesis cloning sequence and identification of the gene product. Yeast 6: 53–50CrossRefGoogle Scholar
  120. Holdsworth JE, Ratledge C (1991) Triacylglycerol synthesis in the oleaginous yeast Candida curvata. Lipids 26 (2): 111–118PubMedCrossRefGoogle Scholar
  121. Holtz RB, Schisler LC (1972) Lipid metabolism of Agaricus bisporus. II. Biosynthesis of sporophore lipids. Lipids 7: 251–255Google Scholar
  122. Holtz RB, Stewart PS, Patton S, Schisler LC (1972) Isolation and characterization of membranes from the cultivated mushroom. Plant Physiol 50: 541–546PubMedCrossRefGoogle Scholar
  123. Hommel RK (1991) Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms. In: Ratledge C (ed) Physiology of biodegradative microorganisms VIII. Kluwer, Dordrecht, pp 107–120Google Scholar
  124. Hoq MM, Tagami H, Yamane T, Shimizu S (1985) Some characteristics of continuous glyceride synthesis by lipase in a microporous hydrophobic membrane bioreactor. Agric Biol Chem 49 (2): 335–342CrossRefGoogle Scholar
  125. Hoshizaki DK, Hill JE, Henry SA (1990) The Saccharomyces cerevisiae INO4 gene encodes a small highly basic protein required for derepression of phospholipid biosynthesis enzymes. J Biol Chem 265: 4736–4745PubMedGoogle Scholar
  126. Hosono K (1992) Effect of salt stress on lipid composition and membrane fluidity of the salt-tolerant yeast Zygosaccharomyces rouxii. J Gen Microbiol 138 (1): 91–96CrossRefGoogle Scholar
  127. Huang SY, Stukey J, Martin CE (1991) Unsaturated fatty acid regulation of the yeast A-9 fatty acid desaturase gene. Fed Am Soc Exp Biol J 5: A1160Google Scholar
  128. Huber FM, Tietz AJ (1983) Defined media strategies for the biosynthesis of cephalosporin C. Biotechnol Lett 5: 385–390CrossRefGoogle Scholar
  129. Huene K, Schweizer M, Schweizer E (1990) Genetic manipulation of the fatty acid chain length pattern in yeast. Fett Wiss Technol 92: 232–236Google Scholar
  130. Huge-Jensen B, Galluzzo DR, Jensen RG (1987) Partial purification and characterization of free and immobilized lipases from Mucor miehei. Lipids 22 (8): 559–565CrossRefGoogle Scholar
  131. Ingram LD, Butke TM (1984) Effects of alcohol on microorganisms. Adv Microb Physiol 25: 253–300PubMedCrossRefGoogle Scholar
  132. Isobe K, Nokihara K, Yamaguchi S, Mase T, Schmid RD (1992) Crystallization and characterization of monoacylglycerol and diacylglycerol lipase from Penicillium camemberti. Eur J Biochem 203 (1/2): 233–238PubMedCrossRefGoogle Scholar
  133. Jacks TJ, Kircher HW (1967) Fluorimetric assay for the hydrolytic activity of lipase using fatty acyl esters of 4methylumbelliferone. Analyt Biochem 21: 279–285PubMedCrossRefGoogle Scholar
  134. Jackson MA, Lanser AC (1993) Glucose and zinc concentration influence fusarin C synthesis, ethanol synthesis and lipid composition in Fusarium moniliforme submerged cultures. FEMS Microbiol Lett 108 (1): 69–74PubMedGoogle Scholar
  135. Jacobsen T, Poulsen OM, Hau J (1989a) Enzyme activity electrophoresis and rocket immunoelectrophoresis for the qualitative and quantitative analysis of Geotrichum candidum lipase activity. Electrophoresis 10 (1): 49–52PubMedCrossRefGoogle Scholar
  136. Jacobsen T, Olsen J, Allermann K, Poulsen OM, Hau J (1989b) Production partial purification and immunochemical characterization of multiple forms of lipase from Geotrichum candidum. Enzyme Microb Technol 11 (2): 90–95CrossRefGoogle Scholar
  137. Jacobsen T, Olsen J, Allermann K (1990) Substrate specificity of Geotrichum candidum lipase preparations. Biotechnol Lett 12 (2): 121–126CrossRefGoogle Scholar
  138. Jambhulkar V, Shankhapal KV (1992) Effect of minerals on lipid production by Rhizopus nigricans on tamarind kernel powder. J Food Sci Technol 29 (5): 333–335Google Scholar
  139. Janssen AEM, Lefferts AG, Van Riet K (1990) Enzymatic synthesis of carbohydrate esters in aequeous media. Biotechnol Lett 12 (10): 711–716CrossRefGoogle Scholar
  140. Jareonkitmongkol S, Kawashima H, Shirasaka N, Shimizu S, Yamada H (1992a) Production of dihomo-y-linolenic acid by a 45-desaturase-defective mutant of Mortierella alpina 1S-4. Appl Environ Microbiol 58 (7): 2196–2200PubMedGoogle Scholar
  141. Jareonkitmongkol S, Shimizu S, Yamada H (1992b) Fatty acid desaturation-defective mutants of an arachidonic acid-producing fungus, Mortierella alpina 1S-4. J Gen Microbiol 138 (5): 997–1002CrossRefGoogle Scholar
  142. Jareonkitmongkol S, Shimizu S, Yamada H (1993) Production of an eicosapentaenoic acid-containing oil by a 412 desaturase-defective mutant of Mortierella alpina 1S-4. J Am Oil Chem Soc 70 (2): 119–123CrossRefGoogle Scholar
  143. Jarl K (1969) Symba yeast process. Food Technol 23: 1009–1012Google Scholar
  144. Jensen GL, Daggy B, Bensadoun A (1982) Triacylglycerol lipase. Monoglycerol lipase and phospholipase activities of highly purified rat hepatic lipase. Biochem Biophys Acta 710: 464–470Google Scholar
  145. Jensen RG (1983) Detection and determination of lipase (acylglycerol hydrolase) activity from various sources. Lipids 18: 650–657PubMedCrossRefGoogle Scholar
  146. Jernejc K, Vendramin M, Cimerman A (1989) Lipid composition of Aspergillus niger in citric acid accumulating and nonaccumulating conditions. Enzyme Microb Technol 11 (7): 452–456CrossRefGoogle Scholar
  147. Johnson V, Singh M, Saini VS, Sista VR, Yadav NK (1992a) Effect of pH on lipid accumulation by an oleaginous yeast: Rhodotorula glutinis IIP-30. World J Microbiol Biotechnol 8 (4): 382–384CrossRefGoogle Scholar
  148. Johnson V, Singh M, Yadav NK (1992b) Transformation of vegetable oils by an oleaginous yeast: Rhodotorula glutinis IIP-30. Biotechnol Lett 14 (9): 801–804CrossRefGoogle Scholar
  149. Johri BN, Alurralde JD, Klein J (1990) Lipase production by free and immobilized protoplasts of Sporotrichum thermophile alpinis. Appl Microbiol Biotechnol 33 (4): 367–371PubMedCrossRefGoogle Scholar
  150. Kalo P, Perttila M, Kemppinen A, Antila M (1988) Modification of butter fat by interesterifications cata-Google Scholar
  151. lysed by Aspergillus niger and Mucor Miehei lipases. Meijeritiet Aikak 46(1):36–47Google Scholar
  152. Karahadian C, Josephson DB, Lindsay RC (1985) Contribution of Penicillium sp. to the flavors of Brie and Camembert cheese. J Dairy Sci 68 (8): 1865–1877CrossRefGoogle Scholar
  153. Karanth NG, Sattur AP (1991) Mathematical modeling of production of microbial lipids: part II. Kinetics of lipid accumulation. Bioprocess Eng 6 (6): 241–248CrossRefGoogle Scholar
  154. Kates M (1990) Glycolipids of higher plants, algae, yeasts and fungi. In: Kates M (eds) Handbook of lipid research, vol 6. North-Holland, Amsterdam; Oxford American Elsevier, New York, pp 235–320Google Scholar
  155. Kawai G (1989) Molecular species of cerebrosides in fruiting bodies of Lentinus edodes and their biological activity. Biochim Biophys Acta 1001: 185–190PubMedCrossRefGoogle Scholar
  156. Kawai G, Ikeda Y (1982) Fruiting inducing activity of cerebrosides observed with Schizophyllum commune. Biochim Biophys Acta 719: 612–618CrossRefGoogle Scholar
  157. Kawai G, Ikeda Y, Tubaki K (1985) Fruiting of Schizophyllum commune induced by ceramides and cerebrosides from Penicillium funiculosum. Agric Biol Chem 49: 2137–2146CrossRefGoogle Scholar
  158. Kendrick A, Ratledge C (1990) Microbial lipid technology: microbial formation of polyunsaturated fatty acids. Lipid Technol 2: 62–66Google Scholar
  159. Kendrick A, Ratledge C (1992a) Lipids of selected molds growth for production of n-3 and n-6 polyunsaturated fatty acids. Lipids 27 (1): 15–20PubMedCrossRefGoogle Scholar
  160. Kendrick A, Ratledge C (1992b) Lipid formation in the oleaginous mould Entomophthora exitalis grown in continuous culture: effects of growth rate, temperature and dissolved oxygen tension on polyunsaturated fatty acids. Appl Microbiol Biotechnol 37 (1): 18–22CrossRefGoogle Scholar
  161. Kennedy MJ, Reader SL, Davies RJ (1993) Fatty acid production characteristics of fungi with particular emphasis on y-linolenic acid production. Biotechnol Bioeng 42 (5): 625–634PubMedCrossRefGoogle Scholar
  162. Kimura M, Hasegawa K, Takamura H, Matoba T (1991) Preparation of triacylglycerol molecular species in esterification using endocullular lipase in n hexane. Agric Biol Chem 55 (12): 3039–3043CrossRefGoogle Scholar
  163. Kinney AJ, Carman GM (1990) Enzymes of phosphoinositide synthesis in secretory vesicles destined for the plasma membrane in Saccharomyces cerevisiae. J. Bacteriol 172: 4115–4117PubMedGoogle Scholar
  164. Kitamoto D (1992) Production of surfactants by microorganisms. J Jpn Oil Chem Soc 41: 839–845CrossRefGoogle Scholar
  165. Kitamoto D, Nakane T, Nakao N, Nakahara T, Tabuchi T (1992a) Intracellular accumulation of mannosylerythritol lipids as storage material by Candida antarctica. Appl Microbiol Biotechnol 36: 768–772CrossRefGoogle Scholar
  166. Kitamoto D, Fuzishiro T, Yanagishita H, Nakane T, Nakahara T (1992b) Production of mannosylerythritol lipids as biosurfactants by resting cells of Candida antarctica. Biotechnol Lett 14: 305–310CrossRefGoogle Scholar
  167. Kitamoto D, Yanagishita H, Shinbo T, Nakane T, Kamisawa C, Nakahara T (1993) Surface active properties and antimicrobial activities of mannosyleryrhritol lipids as biosurfactants produced by Candida antarctica. J Biotechnol 29: 91–96CrossRefGoogle Scholar
  168. Klug MJ, Markovetz AJ (1971) Utilization of aliphatic hydrocarbons by micro-organisms. Adv Microbial Physiol 5: 1–43CrossRefGoogle Scholar
  169. Kohno M, Kugimiya W, Hashimoto Y, Morita Y (1993) Preliminary investigation of crystals of lipase I from Rhizopus niveus. J Mol Biol 229 (3): 785–786PubMedCrossRefGoogle Scholar
  170. Kouker G, Jaeger KE (1987) Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53: 211–213PubMedGoogle Scholar
  171. Koukou AI, Tsoukatos D, Drainas C (1990) Effects of ethanol on the phospholipid and fatty acid content of Schizosaccharomyces pombe membranes. J Gen Microbiol 1271–1278Google Scholar
  172. Kruszewska J, Messner R, Kubicek CP, Palamarczyk G (1989) 0-glycosylation of proteins by membrane fractions of Trichoderma reesei QM9414. J Gen Microbiol 135: 301–308Google Scholar
  173. Krylova NI, Dedyukhina EG, Eroshin VK (1984) Lipid synthesis by the yeast Cryptococcus albidus during growth. Prikl Biokhim Microbiol 20 (6): 781–786Google Scholar
  174. Kundu M, Basu J, Guchhait M, Chakrabarti P (1987) Isolation and characterization of an extracellular lipase from the conidia of Neurospora crassa. J Gen Microbiol 133 (1): 149–154PubMedGoogle Scholar
  175. Kurtzman CP (1983) Fungi sources of food, fuel, and biochemicals. Mycologia 75 (2): 374–382CrossRefGoogle Scholar
  176. Kyotani S, Nakashima T, Izumoto E, Fukuda H (1991) Continuous interesterification of oils and fats using dried fungus immobilized in biomass support particles. J Ferment Bioeng 71 (4): 286–288CrossRefGoogle Scholar
  177. de Laborde de Monpezat T (1990) Production de lipases fongiques spécifiques. Etude par fluorométrie. Thèse Doctorat Université, Toulouse No 747Google Scholar
  178. de Laborde de Monpezat T, Sancholle M (1989) Detection of fungal lipases using a new fluorimetric method. Actes du Congrès International Chevreul pour 1’Etude des Corps Gras, Tome 2: 1051–1058Google Scholar
  179. de Laborde de Monpezat T, De Jeso B, Butour JL, Chavant L, Sancholle M (1990) A fluorimetric method for measuring lipase activity based on umbelliferyl esters. Lipids 25 (10): 661–664Google Scholar
  180. Lakshmanan A, Venkata Rao P, Kunthala J, Lakshmanan CM (1992) Lipase catalysed deacidification of high free acid rice bran oil. Biotechnol Tech 6 (2): 169–172CrossRefGoogle Scholar
  181. Lamberet G, Benassa A (1983) Purification and properties of an acid lipase from Penicillium roqueforti. J Dairy Res 50 (4): 459–468CrossRefGoogle Scholar
  182. Langholz P, Andersen P, Forskov T, Schmidtsdorff W (1989) Application of a specificity of Mucor Miehei lipase to concentrate docosahexaenoic acid DHA. J Am Oil Chem Soc 66 (8): 1120–1123CrossRefGoogle Scholar
  183. Langrand G, Rondot N, Triantaphylides A, Baratti J (1990) Short chain flavor esters synthesis by microbial lipases. Biotechnol Lett 12 (8): 581–586CrossRefGoogle Scholar
  184. Law SWT, Burton DN (1974a) Lipid metabolism in Achlya: studies on lipid turnover during development. Can J Microbiol 22: 1710–1715CrossRefGoogle Scholar
  185. Law SWT, Burton DN (1974b) Lipid metabolism in Achlya: changes in lipid composition during development. Can J Microbiol 22: 1716–1719CrossRefGoogle Scholar
  186. Lechavalier LI, Lechavalier MP (1988) Chemotaxonomic use of lipids-an overview. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London, pp 869–902Google Scholar
  187. Lestan D, Strancar A, Perdih A (1990) Influence of some oils and surfactants on ligninolytic activity, growth and lipid fatty acids of Phanerochaete chrysosporium. Appl Microbiol Biotechnol 34 (3): 426–428Google Scholar
  188. Lester RL, Dickson RC, Srinivasan B (1990) Saccharomyces mutants that survive without phosphoinositol sphingolipids. FASEB 4: A2139Google Scholar
  189. Li Y, Cho KY, Wu YZ, Nair NG (1992) The effect of lipids and temperature on the physiology and growth of Volvariella volvacea. World J Microbiol Biotechnol 8: 621–626CrossRefGoogle Scholar
  190. Lie E, Molin G (1992) Esterification of polyunsaturated fatty acids with lipases from different sources. Int J Food Sci Technol 27 (1): 73–76CrossRefGoogle Scholar
  191. Lindberg AM, Hansson L (1991) Production of,-linolenic acid by the fungus Mucor rouxii on cheap nitrogen and carbon sources. Appl Microbiol Biotechnol 36 (1): 26–28CrossRefGoogle Scholar
  192. Lindberg AM, Molin G (1993) Effect of temperature and glucose supply on the production of polyunsaturated fatty acids by the fungus Mortierella alpina CBS 343.66 in fermentor cultures. Appl Microbiol Biotechnol 39 (45): 450–455CrossRefGoogle Scholar
  193. Liodakis A, Drew J, Chan RYS, Sawyer WH (1991) Spectrofluorometric determination of lipase activity. Biochem Int 23 (5): 825–834PubMedGoogle Scholar
  194. Lobyreva LV, Marchenkova AI (1983) Lipolytic activity of the fungus Penicillium roqueforti. Prikl Biokhim Mikrobiol 19 (1): 78–82Google Scholar
  195. Lodewyk J, Kock F, Ratledge C (1993) Changes in lipid composition and arachidonic acid turnover during the life cycle of the yeast Dipodascopis uninucleata. J Gen Microbiol 139: 459–464CrossRefGoogle Scholar
  196. Lortie R, Trani M, Ergan F (1993) Kinetic studies of the lipase catalysed synthesis of triolein. Biotechnol Bioeng 41: 1021–1026PubMedCrossRefGoogle Scholar
  197. Lösel DM (1988) Fungal lipids. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London, pp 699–806Google Scholar
  198. Lösel DM (1989) Functions of lipids: specialized roles in fungi and algae. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 2. Academic Press, London, pp 367–438Google Scholar
  199. Malcata FX, Garcia HS, Hill CG Jr, Amundson CH(1992a) Hydrolysis of butteroil by immobilized lipase using a hollow fiber reactor. Part I. lipase absorption studies. Biotechnol Bioeng 39(6):647–657Google Scholar
  200. Malcata FX, Hill CG Jr, Amundson CH(1992b) Hydrolysis of butteroil by immobilized lipase using a hollow fiber reactor. Part II. Uniresponse kinetic studies. Biotechnol Bioeng 39(10):984–1001Google Scholar
  201. Malcata FX, Hill CG Jr, Amundson CH(1992c) Hydrolysis of butteroil by immobilized lipase using a hollow fiber reactor. Part III. Multiresponse kinetic studies. Biotechnol Bioeng 39(10):1002–1012Google Scholar
  202. Malcata FX, Hill CG Jr, Amundson CH (1992d) Hydrolysis of butteroil by immobilized lipase using a hollow fiber reactor. Part IV. Effects of temperature. Biotechnol Bioeng 39 (11): 1097–1111PubMedCrossRefGoogle Scholar
  203. Maliszewska I, Mastalerz P (1992) Production and some properties of lipase from Penicillium citrinum. Enzyme Microb Technol 14 (3): 190–193CrossRefGoogle Scholar
  204. Manjon A, Iborra JL, Arocas A (1991) Short chain flavor ester synthesis by immobilized lipase in organic media. Biotechnol Lett 13 (5): 339–344CrossRefGoogle Scholar
  205. Marx JL (1982) The leucotrienes in allergy and inflammation. Science 215: 1380–1383PubMedCrossRefGoogle Scholar
  206. Matsumura M, Imanaka T, Yoshida T, Taguchi H (1980) Morphological differentiation in relation to cephalosporin C synthesis by Cephalosporium acremonium. J Ferment Technol 58: 197–204Google Scholar
  207. Matyashova RN, Kuvichkina TN, Romanova IB (1987) The effect of oxygen concentration on the content of lipids during the growth of Candida lipolytica in a medium with hexadecane and glucose. Mikrobiologiya 56 (6): 991–994Google Scholar
  208. McGee TP, Bankaitis VA (1990) Mutations in the CDPcholine pathway of phospholipid biosynthesis suppress defects in the phosphatidyl inositol transfer protein of yeast. J Cell Biol 111: 205AGoogle Scholar
  209. Mevvedeva TN, Matyashova RN, Lenskikh GV, Romanova IB (1985) Production of exocellular higher fatty acids by Candida yeasts growing on hexadecane. Mikrobiologiya 54 (1): 17–21Google Scholar
  210. Mishra P, Prasad R (1989) Relationship between ethanol tolerance and fatty acyl composition of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 30: 294–298CrossRefGoogle Scholar
  211. Miyazima M, Iida M, Iizuka H (1985a) Phospholipid derived from hydrocarbons by fungi. J Ferment Technol 63 (3): 219–224Google Scholar
  212. Miyazima M, Iida M, Iizuka H (1985b) Effect of n-alkanes on compositions of cellular non-polar lipids in Aspergillus sp. isolated from soils. J Ferment Technol 63 (3): 225–230Google Scholar
  213. Mojovic L, Siler-Marinkovic S, Kukic G, VunjakNovakovic G (1993) Rhizopus arrhizus lipase catalysed interesterification of the midfraction of palm oil to a cocoa butter equivalent fat. Enzyme Microb Technol 15(5):438–443Google Scholar
  214. Monot F, Borzeix F, Bardin M, Vandecasteele JP (1991) Enzymatic esterification in organic media: role of water and organic solvent in kinetics and yeld of butyl butyrate synthesis. Appl Microbiol Biotechnol 35 (6): 759–765CrossRefGoogle Scholar
  215. Monot F, Paccard E, Borzeix F, Bardin M, Vandecasteele JP (1993) Effect of lipase conditioning on its activity in organic media. Appl Microbiol Biotechnol 39 (4–5): 483–486CrossRefGoogle Scholar
  216. Montant C, Sancholle M (1969) Evolution des lipides du Trichothecium roseum au cours des premiers stades de la croissance en fonction des variations de la source nutritive carbonée. CR Acad Sci Sér D 269: 886–889Google Scholar
  217. Montero S, Blanco A, Virto MD, Landeta LC, Agud I, Solozabal R, Lascaray JM, Mertxe de Renobales, Llama MJ, Serra JL (1993) Immobilization of Candida rugosa lipase and some properties of the immobilized enzyme. Enzyme Microb Technol 15 (3): 239–247PubMedCrossRefGoogle Scholar
  218. Montet D, Ratomahenina R, Galzy P, Pina M, Graille J (1985a) A study of the influence of the growth media on the fatty-acid composition in Candida lipolytica. Biotechnol Lett 7 (10): 733–736CrossRefGoogle Scholar
  219. Montet D, Ratomahenina R, Pina M, Graille J, Galzy P (1985b) Purification and characterization of a lipase from Candida curvata CBS-570. Fette Seifen Anstreichm 87 (5): 181–184CrossRefGoogle Scholar
  220. Montet D, Pina M, Graille J, Renard G, Grimaud J (1989) Synthesis of n-lauryloleoylamide by the Mucor miehei lipase in an organic medium. Fett Wiss Technol 91 (1): 14–18Google Scholar
  221. Moody AR, Weinhold AR (1972) Fatty acids and naturally occurring plant lipids as stimulants of rhizomorph production in Armillaria mellea. Phytopathology 62: 264–267CrossRefGoogle Scholar
  222. Moreau RA, Nagahashi G (1987) Glycoprotein nature of lipolytic acyl hydrolases in potato tubers and leaves. In: Stumpf PK, Mudd JB, Nes WD (eds) The metabolism, structure, and function of plant lipids. Plenum, New York, pp 369–371CrossRefGoogle Scholar
  223. Moreau RA, Rawa D (1984) Phospholipase activity in cultures of Phytophthora infestans and in infected potato leaves. Physiol Plant Pathol 24: 187–199CrossRefGoogle Scholar
  224. Moreton RS (1985) Modification of fatty acid composition of lipid accumulating yeasts with cyclopropene fatty acid desaturase inhibitors. Appl Microbiol Biotechnol 22: 41–45CrossRefGoogle Scholar
  225. Morquer R (1931) Recherches morphogénétiques sur le Dactylium macrosporum. Thèse Doctorat ès Sciences ToulouseGoogle Scholar
  226. Morse MJ, Satter RL, Crain RC, Cote GG (1989) Signal transduction and phosphatidyl inositol turnover in plants. Physiol Plant 76: 118–121CrossRefGoogle Scholar
  227. Mosmuller EWJ, Franssen MCR, Engbersen JFJ (1993) Lipase activity in vesicular systems: characterization of Candida cylindracea lipase and its activity in polymerizable diakylammonium surfactant vesicles. Biotechnol Bioeng 42 (2): 196–204PubMedCrossRefGoogle Scholar
  228. Muderhwa JM, Ratomahenina R, Pina M, Graille J, Galzy P (1985) Purification and properties of the lipase from Candida deformans. J Am Oil Chem Soc 62 (6): 1031–1036CrossRefGoogle Scholar
  229. Mukherjee KD, Kiewitt I (1991) Enrichment of y-linolenic acid from fungal oil by lipase catalysed reactions. Appl Microbiol Biotechnol 35 (5): 579–584CrossRefGoogle Scholar
  230. Mustranta A, Forssell P, Poutanen K (1993) Applications of immobilized lipases to transesterification and esterification reactions in nonaqueous systems. Enzyme Microb Technol 15 (2): 133–139PubMedCrossRefGoogle Scholar
  231. Mutua LN, Akoh CC (1993) Synthesis of alkyl glycoside fatty acid esters in non aequeous media by Candida sp. lipase. J Am Oil Chem Soc 70 (1): 43–46CrossRefGoogle Scholar
  232. Naganuma T, Uzuka Y, Tanaka K (1985a) Physiological factors affecting total cell number and lipid content of the yeast Lipomyces starkeyi. J Gen Appl Microbiol 31 (1): 29–38CrossRefGoogle Scholar
  233. Naganuma T, Uzuka Y, Tanaka K (1985b) Medium for enhancing lipid accumulation and cell proliferation of Lipomyces starkeyi. Nippon Nogeikagaku Kaishi 59 (12): 1263–1266CrossRefGoogle Scholar
  234. Nahas E (1988) Control of lipase production by Rhizopus oligosporus under various growth conditions. J Gen Microbiol 134 (1): 227–234Google Scholar
  235. Nakano H, Kitahata S, Tominaga Y, Takenishi S (1991) Esterification of glycosides with glycerol and trimethylpropane moieties by Candida cylindracea lipase. Agric Biol Chem 55 (8): 2083–2090CrossRefGoogle Scholar
  236. Nakashima T, Fukuda H (1990) Effects of aeration rate on intracellular lipase production by Rhizopus chinensis immobilized within biomass support particles in a circulating bed fermentor. Ferment Bioeng 70 (5): 355–358CrossRefGoogle Scholar
  237. Nakashima T, Fukuda H, Kyotani S, Morikawa H (1988) Culture conditions for intracellular lipase production by Rhizopus chinensis and its immobilization within biomass support particles. J Ferment Technol 66 (4): 441–448CrossRefGoogle Scholar
  238. Nash CH, Huber FM (1971) Antibiotic synthesis and morphological differentiation of Cephalosporium acremonium. Appl Microbiol 22: 6–10PubMedGoogle Scholar
  239. Negre A, Salvayre R, Dagan A, Gatt S (1989) Pyrenemethyl laurate a new fluorescent substrate for continuous kinetic determination of lipase activity. Biochim Biophys Acta 1006 (1): 84–88PubMedCrossRefGoogle Scholar
  240. Nelson NA, Kelly R, Johnson RA (1982) Prostaglandinand the arachidonic cascade. Chem Eng News 60: 1–15CrossRefGoogle Scholar
  241. Nes WR (1977) Biochemistry of plant sterols. Adv Lipid Res 15: 233–324Google Scholar
  242. Nes WD, Adler JH, Nes WR (1984) A structure function correlation for fatty acids in Saccaromyces cerevisiae. Exp Mycol 8: 55–62CrossRefGoogle Scholar
  243. Nes WD, Le P, Van Tamalen EE, Leopold EJ (1990) Presqualene alcohol, squalene and sterol biosynthesis from bifarnesol. Exp Mycol 14: 74–77CrossRefGoogle Scholar
  244. Nielsen T (1985) Industrial application possibilities for lipase. Fette Seifen Anstrichm 87 (1): 15–19CrossRefGoogle Scholar
  245. Nukina M, Sassa T, Ikeda M, Takahashi K, Toyota S (1981) Linoleic acid enhances perithecial production in Neurospora crassa. Agric Biol Chem 45: 2371–2373CrossRefGoogle Scholar
  246. Obradors N, Montesinos JL, Valero F, Lafuente FJ, Sola C (1993) Effects of different fatty acids on lipase production by Candida rugosa. Biotechnol Lett 15 (4): 357–360CrossRefGoogle Scholar
  247. O’Connor CJ, Aggett AM, Williams DR, Stanley RA (1991) Candida cylindracea lipase catalysed hydrolysis of methyl palmitate in detergentless microemulsion and paraffin water biphasic media. Aust J Chem 44(1):53–60Google Scholar
  248. O’Connor CJ, Petricevic SF, Coddington JM, Stanley RA (1992) An NMR assay for quantitating lipase activity in biphasic macroemulsions. J Am Oil Chem Soc 69 (4): 295–300CrossRefGoogle Scholar
  249. O’Day DH, Horgan PA (1981) Sexual interactions in eukaryotic microbes. Academic Press, LondonGoogle Scholar
  250. Oguntimein GB, Erdmann H, Schmid RD (1993) Lipase catalysed synthesis of sugar ester in organic solvents. Biotechnol Lett 15 (2): 175–180CrossRefGoogle Scholar
  251. Ohta K, Hayashida S (1983) Role of Tween 80 and mono olein in a lipid sterol complex which enhances ethanol tolerance of sake yeasts. Appl Environ Microbiol 46: 821–825PubMedGoogle Scholar
  252. Okeke CN, Cugnani HC (1989) Lipases of Fonseca pedrosi and Phialophora verrucosa. Antonie van Leeuwenhoek J Microbiol Serol 55 (4): 313–324CrossRefGoogle Scholar
  253. Okeke CN, Okolo BN (1990) The effect of cultural conditions on the production of lipase by Acremonium strictum. Biotechnol Lett 12 (10): 747–750CrossRefGoogle Scholar
  254. Okolo BN, Johnston JR, Berry DR (1990) Kinetics of alcohol tolerance of distilling yeast. Enzyme Microb Technol 12: 783–787CrossRefGoogle Scholar
  255. Olama ZA, El-Sabaeny A (1990) Extracellular lipase activity produced by fungi grown on plant wastes. J Med Res Inst 11 (2): 71–77Google Scholar
  256. Olama Z, El-Sayed M, Shaaban N, Temsah S (1990) Biodegradation of solar by Candida guilliermondii strain 1. Appl Microbiol Biotechnol 34 (1): 138–140CrossRefGoogle Scholar
  257. Osman M, Mohamed YAH, Metwally M (1988) Lipolytic activity of Alternaria alternata and Fusarium oxysporum and certain properties of their lipids. Microbios Lett 39 (155–156): 131–136Google Scholar
  258. Osman M, Mohamed YAH, El-Sayed MA, Metwally M (1991) Effect of various nitrogen sources on growth: biomass and total lipids in Alternaria alternata and Fusarium oxysporum. Egypt J Microbiol 24 (1): 127–141Google Scholar
  259. Ota T, Takano S, Hasegawa T (1990) Synthesis of C18 fatty acid esters in organic solvent by lipase from Candida cylindracea. Agric Biol Chem 54 (6): 1571–1572CrossRefGoogle Scholar
  260. Pan CH, Speth SV, McKilli E, Nash CH (1982) Methyl oleate-based fermentation medium for cephalosporin C production. Div Ind Microbiol 23: 315–323Google Scholar
  261. Pan SH, Kawamoto T, Fukui T, Sonomoto K, Tanaka A (1990) Stereoselective esterification of halogen containing carboxylic acids by lipase in organic solvents: effects of alcohol chain length. Appl Microbiol Biotechnol 34 (1): 47–51CrossRefGoogle Scholar
  262. Papacharilaou E, Pisano MA (1984) Changes in the lipid composition of Paecilomyces persicinus P-10 Ml during growth and cephalosporin C production. Appl Environ Microbiol 48:1084–1087Google Scholar
  263. Papacharilaou E, Pisano MA (1984) Changes in the lipid composition of Paecilomyces persicinus P-10 Ml during growth and cephalosporin C production. Appl Environ Microbiol 48:1084–1087Google Scholar
  264. Papaparaskevas D, Christakopoulos P, Kekos D, Macris BJ (1992) Optimizing production of extracellular lipase from Rhodotorula glutinis. Biotechnol Lett 14 (5): 397–402CrossRefGoogle Scholar
  265. Park WS, Murphy PA, Glatz BA (1990) Lipid metabolism and cell composition of the oleaginous yeast Apiotrichum curvatum grown at different carbon to nitrogen ratios. Can J Microbiol 36: 318–326PubMedCrossRefGoogle Scholar
  266. Patton JL, Lester RL (1991) The phosphoinositol sphingolipids of Saccharomyces cerevisiae are highly localized in the plasma membrane. J Bacteriol 173: 3101–3108PubMedGoogle Scholar
  267. Pecnik S, Knez Z (1992) Enzymatic fatty ester synthesis. J Am Oil Chem Soc 69 (3): 261–265CrossRefGoogle Scholar
  268. Pedrocchi-Fantoni G, Servi S (1992) Regio and chemo selective properties of lipase from Candida cylindracea. J Chem Soc Perkin Trans I 0 (8): 1029–1033CrossRefGoogle Scholar
  269. Petrovic SE, Skrinjar M, Becarevic A, Vujicic IF, Banka L (1990) Effect of various carbon sources on microbial lipases biosynthesis. Biotechnol Lett 12 (4): 299–304CrossRefGoogle Scholar
  270. Phillips A, Pretorius GHJ (1991) Purification and characterization of an extracellular lipase of Galactomyces geotrichum. Biotechnol Lett 13 (11): 833–838CrossRefGoogle Scholar
  271. Pilkington BJ, Rose AH (1991) Incorporation of unsaturated fatty acids by Saccharomyces cerevisiae: conservation of fatty-acyl saturation in phosphatidylinositol. Yeast 7 (5): 489–494PubMedCrossRefGoogle Scholar
  272. Pronk W, Boswinkel G, Vant Riet K (1992) Parameters influencing hydrolysis kinetics of lipase in a hydrophilic membrane bioreactor. Enzyme Microb Technol 14 (3): 214–220CrossRefGoogle Scholar
  273. Puoti A, Desponds C, Conzelman A (1991) Biosynthesis of mannosylinositolphosphoceramide in Saccharomyces cerevisiae is dependent on genes controlling the flow of secretory vesicles from the endoplasmic reticulum to the Golgi. J Cell Biol 113: 515–526PubMedCrossRefGoogle Scholar
  274. Rabie AM (1989) Acceleration of blue cheese ripening by cheese slurry and extracellular enzymes of Penicillium roqueforts. Lait 69 (4): 305–314CrossRefGoogle Scholar
  275. Radwan SS (1991) Sources of C20-polyunsaturated fatty acids for biotechnological use. Appl Microbiol Biotechnol 35: 421–430CrossRefGoogle Scholar
  276. Randle PE (1983) Supplementation of mushroom composts: a review. Crop Res (Hortic Res) 23: 51–69Google Scholar
  277. Rao TVG, Das S, Prasad R (1985) Effect of phospholipid enrichment on nystatin action differences in antibiotic sensitivity between in vivo and in vitro conditions. Mikrobios 42: 169–170Google Scholar
  278. Rapp P, Backhaus S (1992) Formation of extracellular lipases by filamentous fungi, yeasts, and bacteria. Enzyme Microb Technol 14 (11): 938–943CrossRefGoogle Scholar
  279. Ratledge C (1982) Microbial oils and fats: an assessment of their commercial potential. Prog Ind Microbiol 16: 199–206Google Scholar
  280. Ratledge C (1986) Lipids. In: Rehm HJ, Reed G (eds) Biotechnology, vol 4 (Pape H, Rehm HJ (eds) Microbial Products II). Verlag Chemie, Weinheim, pp 185–213Google Scholar
  281. Ratledge C (1988) Yeasts for lipid production. Biochem Soc Transact 16: 1088–1091Google Scholar
  282. Ratledge C (1989) Biotechnology of oils and fats. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 2. Academic Press, London, pp 567–668Google Scholar
  283. Ratledge C (1991) Microorganisms for lipids. Acta Biotechnol 11 (5): 429–438CrossRefGoogle Scholar
  284. Ratledge C (1992) Microbial lipids: commercial realities or academic curiosities. In: Kyle DJ, Ratledge C (eds) Applied single cell oils. AOCS, Champaign, Ill, pp 1–15Google Scholar
  285. Ratledge C, Gilbert SC (1985) Carnitine acetyl transferase activity in oleaginous yeasts. FEMS Microbiol Lett 27: 273–275CrossRefGoogle Scholar
  286. Ratledge C, Wilkinson SG (1988) Fatty acids related and derived lipids. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London, pp 23–79Google Scholar
  287. Rattray JBM (1988) Yeasts. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London, pp 555–697Google Scholar
  288. Rehm HJ, Reed G (eds) (1983–1987) Biotechnology (8 volumes). Verlag Chemie, WeinheimGoogle Scholar
  289. Rehm HJ, Reed G (eds) (1991–1994) Biotechnology, 2nd completely revised edn. Verlag Chemie, WeinheimGoogle Scholar
  290. Renard G, Grimaud J, El Zant A, Pina M, Graille J (1987) An improved method for the colorimetric assay of lipase activity using an optically clear medium. Lipids 22: 539–554PubMedCrossRefGoogle Scholar
  291. Revah S, Lebeault JM (1989) Accelerated production of blue cheese flavors by fermentation on granular curds with lipase addition. Lait 69 (4): 281–290CrossRefGoogle Scholar
  292. Riaublanc A, Ratomahenina R, Galzy P (1993) Study of a lipase from Candida rugosa Diddens and Lodder. Fat Sci Technol 95 (4): 134–137Google Scholar
  293. Rivera-Munoz G, Tinoco-Valencias JR, Sanchez S, Farres A (1991) Production of microbial lipases in a solid state fermentation system. Biotechnol Lett 13 (4): 277–280CrossRefGoogle Scholar
  294. Roberts IM (1985) Hydrolysis of 4-methylumbelliferyl butyrate: a convenient and sensitive fluorescent assay for lipase activity. Lipids 20: 243–247CrossRefGoogle Scholar
  295. Roberts RG, Morisson WH, Robertson JA, Hanlin RT (1987) Extracellular lipase production by fungi from sunflower seed. Mycologia 79 (2): 265–273CrossRefGoogle Scholar
  296. Robson GD, Trinci APJ, Wiebe MG, Best LC (1991) Phosphatidylinositol 4,5-bisphosphate (PIP2) is present in Fusarium graminearum. Mycol Res 95: 1082–1084CrossRefGoogle Scholar
  297. Rosa MF, Sa-Correia I (1992) Ethanol tolerance and activity of plasma membrane ATPase in Kluyveromyces marxianus and Saccharomyces cerevisiae. Enzyme Microbiol Technol 14: 23–27CrossRefGoogle Scholar
  298. Rose AH (1989) Influence of the environment on microbial lipid composition. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 2. Academic Press, London, pp 256–278Google Scholar
  299. Rosenberg M, Kristofikova L, Proksa B, Magdolen P (1992) The formation of polyols and fatty acids during L lactic acid fermentation by Rhizopus arrhizus. Biotechnol Lett 14 (1): 45–48CrossRefGoogle Scholar
  300. Rozes N, Larue F, Ribereau-Gayon P (1988) Effect of a variation of grape must temperature on the fermentative ability and the neutral lipid content of Saccharomyces cerevisiae. Biotechnol Lett 10: 821–824CrossRefGoogle Scholar
  301. Rua M, Luisa M, Diaz-Maurino T, Fernandez VM, Otero C, Ballesteros A (1993) Purification and characterization of two distinct lipases from Candida cylindracea. Biochim Biophys Acta 1156 (2): 181–189PubMedCrossRefGoogle Scholar
  302. Rucka M, Turkiewicz B, Zuk JS, Krystynowicz A, Galas E (1991) Hydrolysis of plant oils by means of lipase from Rhizopus nigricans. Bioprocess Eng 7 (3): 133–136CrossRefGoogle Scholar
  303. Ruckenstein E, Wang X (1993) A novel support for the immobilization of lipase and the effects of the details of its preparation on the hydrolysis of triacylglycerides. Biotechnol Tech 7 (2): 117–122CrossRefGoogle Scholar
  304. Rydin S, Molin G, Nilsson I (1990) Conversion of fat into yeast biomass in protein containing waste water. Appl Microbiol Biotechnol 33 (4): 473–476CrossRefGoogle Scholar
  305. Sajbidor J, Grego J (1992) Fatty acid alterations in Saccharomyces cerevisiae exposed to ethanol stress. FEMS Microbiol Lett 93: 13–16CrossRefGoogle Scholar
  306. Sajbidor J, Dobronova S, Certik M (1990) Arachidonic acid production by Mortierella sp. S-17 influence of carbon nitrogen ratio. Biotechnol Lett 12 (6): 455–456CrossRefGoogle Scholar
  307. Sajbidor J, Kozelouhova D, Certik M (1992) Influence of some metal ions on the lipid content and arachidonic acid production by Mortierella sp. Folia Microbiol 37 (6): 404–406CrossRefGoogle Scholar
  308. Sakaguchi K, Takagi M, Horiuchi H, Gomi K (1992) Fungal enzymes used in oriental food and beverage industries. In: Kinghorn JR, Turner G (eds) Applied molecular genetics of filamentous fungi. Blackie, London, pp 54–99CrossRefGoogle Scholar
  309. Samad MYA, Salleh AB, Razak CNA, Ampon K, Yunus WMZW, Basri M (1990) A lipase from a newly isolated thermophilic Rhizopus rhizopodiformis. World J Microbiol Biotechnol 6 (4): 390–394CrossRefGoogle Scholar
  310. Sattur AP, Karanth NG, Divakar S (1988) Regulation of phosphate metabolism during intracellular lipid production in Rhodotorula gracilis. Biotechnol Lett 10 (10): 745–750CrossRefGoogle Scholar
  311. Scanlon C (1990) The role of lipids in the physiology of the cultivated mushroom. PhD Thesis, University of SheffieldGoogle Scholar
  312. Scanlon CH, Fermor TR, Wood DA, Lösel DM (1989) The production of extracellular lipase by mushroom mycelium. Mushroom Sci 12: 261–268Google Scholar
  313. Scheuller HJ, Foertsch B, Fleisch A, Meurer G, Schweizer E (1990) Expression of yeast fatty acid synthetase genes. Yeast 6: 5245Google Scholar
  314. Schweizer E (1989) Biosynthesis of fatty acids and related compounds. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 2. Academic Press, London, pp 3–50Google Scholar
  315. Serra P, Del Rio JL, Robuste J, Poch M, Sola C, Cheruy A (1992) A model for lipase production by Candida Rugosa. Bioprocess Eng 8 (3–4): 145–150CrossRefGoogle Scholar
  316. Serrano-Carreon L, Hathout Y, Bensoussan M, Belin JM (1992) Lipid accumulation in Trichoderma spp. Microbiol Lett 93 (2): 181–188CrossRefGoogle Scholar
  317. Servat F, Montet D, Pina M, Galzy P, Arnaud A, Ledon H, Marcou L, Graille J (1990) Synthesis of fatty hydroxamic acids catalysed by the lipase of Mucor miehei. J Am Oil Chem Soc 67 (10): 646–649CrossRefGoogle Scholar
  318. Shaw R (1965) The occurrence of y-linolenic acid in fungi. Biochim Biophys Acta 98: 230–237PubMedCrossRefGoogle Scholar
  319. Shimada Y, Sugihara A, Nagao T, Tominaga Y (1992) Induction of Geotrichum candidum lipase by long chain fatty acids. J Ferment Bioeng 73 (2): 77–80CrossRefGoogle Scholar
  320. Shimizu S, Akimoto K, Kawashima H, Shinmen Y, Jareonkitmongkol S, Yamada H (1989) Stimulatory effect of peanut oil on the production of dihomo-ylinolenic acid by filamentous fungi. Agric Biol Chem 53 (5): 1437–1438CrossRefGoogle Scholar
  321. Shimizu S, Jareonkitmongkol S, Kawashima H, Akimoto K, Yamada H (1991) Production of a novel w-3eicosapentaenoic acid by Mortierella alpina 1S-4 grown on 1-hexadecene. Arch Microbiol 156: 163–166CrossRefGoogle Scholar
  322. Shimizu S, Jareonkitmongkol S, Kawashima H, Akimoto K, Yamada H (1992a) Inhibitory effect of curcumin on fatty acid desaturation in Mortierella alpina 1S-4 and rat liver microsomes. Lipids 27 (7): 509–512PubMedCrossRefGoogle Scholar
  323. Shimizu S, Shinmen Y, Akimoto K, Sugano M, Yamada H (1992b) Production of polyunsaturated fatty acids by filamentous fungi. Vitamins (Kyoto) 66 (5–6): 289–299Google Scholar
  324. Shinmen Y, Shimizu S, Akimoto K, Kawashima H, Yamada H (1989) Production of arachidonic acid by Mortierella fungi: Selection of a potent producer and optimization of culture conditions for large-scale production. Appl Microbiol Biotechnol 31 (1): 11–16CrossRefGoogle Scholar
  325. Shinmen Y, Kawashima H, Shimizu S, Yamada H (1992) Concentration of eicosapentaenoic acid and docosahexaenoic acid in an arachidonic acid-producing fungus, Mortierella alpina 15–4, grown with fish oil. Appl Microbiol Biotechnol 38 (3): 301–304CrossRefGoogle Scholar
  326. Sidebottom CM, Charton E, Dunn PPJ, Mycok G, Davies C, Sutton JL, Macrae AR, Slabas AR (1991) Geotrichum candidum produces several lipases with markedly different substrate specificities. Eur J Biochem 202(2): 485–492Google Scholar
  327. Siebenlist U, Nix J, Schweizer M, Jaeger D, Schweizer E (1990) Mapping of the trifunctional fatty acid synthetase gene FAS2 on chromosome XVI of Saccharomyces cerevisiae. Yeast 6: 411–416PubMedCrossRefGoogle Scholar
  328. Singer ME, Finnerty WR (1984) Microbial lipid metabolism. In: Aylas RM (eds) Petroleum microbiology. Macmillan, New York, pp 1–50Google Scholar
  329. Singer P (1990) Fischreiche Kost and Fischöl-Wirkungen auf ausgewähte Risikofaktoren von Herz-Kreislauf Krankheiten. (DGF Abstr) Fac Sci Technol 92: 430Google Scholar
  330. Singh A (1991) Lipid production by a cellulolytic strain of Aspergillus niger. Lett Appl Microbiol 12: 200–202CrossRefGoogle Scholar
  331. Singh B, Oberoi GK, Sharma SC (1990) Effect of pH stress on lipid composition of Saccharomyces cerevisiae. Indian J Exp Biol 28 (5): 430–433PubMedGoogle Scholar
  332. Solomons GL (1975) Submerged culture production of mycelial biomass. In: Smith JE, Berry DR (eds) The filamentous fungi, vol 1. Industrial mycology. Edward Arnold, LondonGoogle Scholar
  333. Song CH, Cho KY, Nair NG (1991) Effect of low temperature shock treatment on sporophore initiation, lipid profile and nutrient transport in Lentinula edodes. Mycologia 83 (1): 24–29CrossRefGoogle Scholar
  334. Sonnet PE, Foglia TA, Feairheller SH (1993) Fatty acid selectivity of lipases: erucic acid from rapeseed oil. J Am Oil Chem Soc 70 (4): 387–391CrossRefGoogle Scholar
  335. Sorkhoh NA, Ghannoum MA, Ibrahim AS, Stretton RJ, Radwan SS (1990) Growth of Candida albicans on hydrocarbons: influence on lipids and sterols. Microbios 64 (260–261): 159–172PubMedGoogle Scholar
  336. Sorkhoh NA, Ghannoum MA, Ibrahim AS, Stretton RJ, Radwan SS (1991) Growth of Candida albicans in the presence of hydrocarbons: a correlation between sterol concentration and hydrocarbon uptake. Appl Microbiol Biotechnol 34 (4): 509–512CrossRefGoogle Scholar
  337. Sridhar R, Lakshminarayana G (1992) Incorporation of eicosapentaenoic and docosahexaenoic acids into groundnut oil by lipase catalysed ester interchange. J Am Oil Chem Soc 69 (10): 1041–1042CrossRefGoogle Scholar
  338. Sridhar R, Lakshminarayana G, Kaimal TNB (1991a) Modifications of selected Indian vegetable fats into cocoa butter substitutes by lipase catalysed ester interchange. J Am Oil Chem Soc 68 (10): 726–730CrossRefGoogle Scholar
  339. Sridhar R, Lakshminarayana G, Kaimal TNB (1991b) Modifications of selected edible vegetable oils to high oleic oils by lipase catalysed ester interchange. J Agric Food Chem 39 (11): 2069–2071CrossRefGoogle Scholar
  340. Stack JH, Herman PK, Schu PV, Emr SD (1993) A membrane associated complex containing the VPS pro-Google Scholar
  341. tein kinase and the VPS P1–3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. Eur Mol Biol Organ J 12:2195–2204Google Scholar
  342. Stamatis H, Xenakis A, Kolisis FN (1993a) Enantiomeric selectivity of a lipase from Penicillium simplicissimum in the esterification of menthol in microemulsions. Biotechnol Lett 15 (5): 471–476CrossRefGoogle Scholar
  343. Stamatis H, Xenakis A, Provelegiou M, Kolisis FN (1993b) Esterification reactions catalysed by lipases in micro-emulsions: the role of enzyme localization in relation of its selectivity. Biotechnol Bioeng 42 (1): 103–110PubMedCrossRefGoogle Scholar
  344. Stevens S, Hofmeyer JHS (1993) Effects of ethanol, octanoic and decanoic acids on fermentation and the passive efflux of protons through the plasma membrane of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38: 656–663CrossRefGoogle Scholar
  345. Stillwell W, Ehringer W, Jenski LJ (1993) Docosahexaenoic acid increases permeability of lipid vesicles and tumor cells. Lipids 28 (2): 103–108PubMedCrossRefGoogle Scholar
  346. Stöcklein W, Sztajer H, Menge U, Schmid RD (1993) Purification and properties of a lipase from Penicillium expansum. Biochim Biophys Acta 1168 (2): 181–189PubMedCrossRefGoogle Scholar
  347. Stred’Anska S, Sajbidor J (1992) Oligounsaturated fatty acid production by selected strains of micromycetes. Folia Microbiol 37 (5): 357–359CrossRefGoogle Scholar
  348. Stred’Anska S, Sajbidor J (1993) Influence of carbon and nitrogen sources on the lipid accumulation and arachidonic acid production by Mortierella alpina. Acta Biotechnol 13 (2): 185–191CrossRefGoogle Scholar
  349. Stred’Anska S, Slugen D, Stred’Ansky M, Grego J (1993) Arachidonic acid production by Mortierella alpina grown on solid substrates. World J Microbiol Biotechnol 9 (5): 511–513CrossRefGoogle Scholar
  350. Stroh S, Elmadfa I, Schlotzer E, Weidler B (1990) In vivo und in vitro, Untersuchungen zum Einfluss von w-3 Polyenfettsäuren auf die Aggregation von Humanthrombozyten (DGF Abstr) Fat Sci Technol 92: 433–434Google Scholar
  351. Sugano M, Ishida T, Yoshida K, Tanaka K, Miwa M, Arima N, Morita A (1986) Effect of mold oil containing 7-linolenic acid on the blood cholesterol and eicosanoid levels of rats. Agric Biol Chem 50: 2483–2491CrossRefGoogle Scholar
  352. Sugihara A, Shimada Y, Tominaga Y (1991) A novel Geotrichum candidum lipase with some preference for the 2-position on a triglyceride molecule. Appl Microbiol Biotechnol 35 (6): 738–740CrossRefGoogle Scholar
  353. Suzuki M, Mizugaki M (1987) Comparaison of intracellular and extracellular lipases produced by Rhizopus japonicus NR-400. J Pharm Sci 76 (11): S118Google Scholar
  354. Svensson I, Adlercreutz P, Mattiasson B (1990) Interesterification of phosphatidylcholine with lipases in organic media. Appl Microbiol Biotechnol 33 (3): 255–258PubMedCrossRefGoogle Scholar
  355. Sztajer H, Maliszewska I (1989) The effect of culture conditions on lipolytic productivity of Penicillium citrinum. Biotechnol Lett 11 (12): 895–898CrossRefGoogle Scholar
  356. Sztajer H, Luensdorf H, Erdmann H, Menge U, Schmid R (1992) Purification and properties of lipase from Penicillium simplicissimum. Biochim Biophys Acta 1124 (3): 253–261PubMedCrossRefGoogle Scholar
  357. Tahoun MK (1986) Fatty acid and position specificities of Rhizopus delemar intracellular lipases. Grasas Aceites 37 (4): 191–193Google Scholar
  358. Tahoun MK, El Kady M, Wahba A (1985) Glyceride synthesis by an intracellular lipase from Aspergillus niger. Microbios Lett 28 (111–112): 133–140Google Scholar
  359. Tahoun M, Shata O, Mashaley R, Abou-Donia S (1986) Influence of selected sugars and temperature on fatty acids composition in Candida lipolytica. Appl Microbiol Biotechnol 24 (3): 235–239CrossRefGoogle Scholar
  360. Tahoun MK, Mashaley R, Asmail AA (1988) The mechanism of Rhizopus delemar intracellular lipases inhibition by various chemicals. Microbios 53 (216–217): 139–146Google Scholar
  361. Tamai KT, Greenberg ML (1990) Biochemical characterization and regulation of cardiolipin synthase in Saccharomyces cerevisiae. Biochim Biophys Acta 1046: 214–222PubMedCrossRefGoogle Scholar
  362. Tanaka Y, Hirano J, Funada T (1992) Concentration of docosahexaenoic acid in glyceride by hydrolysis of fish oil with Candida cylindracea lipase. J Am Oil Chem Soc 69 (12): 1210–1214CrossRefGoogle Scholar
  363. Thakur MS, Prapulla SG, Karanth NG (1989) Estimation of intracellular lipids by the measurement of absorbance of yeast cells stained with Sudan Black B. Enzyme Microb Technol 11 (4): 252–254CrossRefGoogle Scholar
  364. Thomas DS, Rose AHK (1979) Inhibitory effect of ethanol on growth and solute accumulation by Saccharomyces cerevisiae as affected by plasma-membrane composition. Arch Microbiol 122: 49–55PubMedCrossRefGoogle Scholar
  365. Torossian K, Bell AW (1991) Purification and characterization of an acid resistant triacylglycerol lipase from Aspergillus niger. Biotechnol Appl Biochem 13 (2): 205–211Google Scholar
  366. Toskueva EP, Araviiskii RA, Efimova TP (1988) Cytophysiology of Penicillium solitum the producer of lipase. Antibiot Khimioter 33 (9): 647–650PubMedGoogle Scholar
  367. Totani Y, Hara S (1991) Preparation of polyunsaturated phospholipids by lipase catalysed transesterification. J Am Oil Chem Soc 68 (11): 848–851CrossRefGoogle Scholar
  368. Totani N, Oba K (1988) A simple method for production of arachidonic acid by Mortierella alpina. Appl Microbiol Biotechnol 28 (2): 135–137CrossRefGoogle Scholar
  369. Touraine F, Drapron R (1987) Activity of lipase from Rhizopus arrhizus in water glycerol and water glycol media. Sci Aliments 7 (3): 411–431Google Scholar
  370. Toyoshima T, Hara S, Toani Y (1993) Preparation of polyunsaturated triacylglycerols via transesterification catalysed by immobilized lipase. J Jpn Oil Chem Soc 42 (1): 30–35CrossRefGoogle Scholar
  371. Tulloch AP (1990) Glycosides of hydroxy fatty acids. In: Kates M (ed) Handbook of lipid research, vol 6. Plenum Press, New York, pp 463–488Google Scholar
  372. Tung BS, Unger ER, Levin B, Brastius TA, Getz G (1991) Use of an unsaturated fatty acid auxotroph of Saccharomyces cerevisiae to modify the lipid composition and function of mitochondrial membranes. J Lipid Res 32: 1025–1038PubMedGoogle Scholar
  373. Turcotte G, Kosaric N (1988) Biosynthesis of lipids by Rhodosporidium toruloides ATCC 10788. J Biotechnol 8 (3): 221–238CrossRefGoogle Scholar
  374. Turcotte G, Kosaric N (1989a) The effect of C/N ratio on lipid production by Rhodosporidium toruloides ATCC 10788. Biotechnol Lett 11 (9): 637–642CrossRefGoogle Scholar
  375. Turcotte G, Kosaric N (1989b) Lipid biosynthesis in oleaginous yeasts. Biotechnology 40: 73–92Google Scholar
  376. Turner WB, (1971) Fungal metabolites. Academic Press, LondonGoogle Scholar
  377. Turner WB, Aldridge DG (1983) Fungal metabolites, vol 2. Academic Press, LondonGoogle Scholar
  378. Tyagi SR, Burnham DN, Lambeth JD (1989) On the biological occurrence and regulation of 1-acyl and 1–0alkyldiacylglycerols in human neutrophils: selective destruction of diacyl species using Rhizopus lipase. J Biol Chem 264 (22): 12977–12982PubMedGoogle Scholar
  379. Uyttenbroeck W, Hendriks D, Vriend G, De Baere I, Moens L, Scharpe S (1993) Molecular characterization of an extracellular acid resistant lipase produced by Rhizopus javanicus. Biol Chem Hoppe-Seyler 374 (4): 245–254PubMedCrossRefGoogle Scholar
  380. Valadon LRG (1976) Carotenoids as additional taxonomic markers in fungi. Trans Br Mycol Soc 67: 1–15CrossRefGoogle Scholar
  381. Valero F, Del Rio JL, Poch M, Sola C (1991a) Fermentation behaviour of lipase production by Candida rugosa growing on different mixtures of glucose and olive oil. J Ferment Bioeng 72 (5): 399–401CrossRefGoogle Scholar
  382. Valero F, Poch M, Sola C, Santos Lapa RA, Costa Lima JLF (1991b) On-line monitoring of lipase production in fermentation process. Biotechnol Tech 5 (4): 251–254CrossRefGoogle Scholar
  383. Valivety R, Hailing PJ, Macrae AR (1992) Rhizomucor miehei lipase remains highly active at water activity below 0.0001. FEBS Lett 301(3):258–260Google Scholar
  384. Van Den Ende H (1968) Relationship between sexuality and carotene synthesis in Blakeslea trispora. J Bacteriol 96: 1298–1303PubMedGoogle Scholar
  385. Van Den Ende H (1984) Sexual interactions in the lower filamentous fungi. In: Liskens JF, Heslop-Harrison J (eds) Encyclopedia of plant physiology, vol 17. Cellular interactions. Springer, Berlin Heidelberg New York, pp 333–349Google Scholar
  386. Van Der Padt A, Edema MJ, Sewalt JJW, Van’t Riet K (1990) Enzymatic acylglycerol synthesis in a membrane bioreactor. J Am Oil Chem Soc 67 (6): 347–352CrossRefGoogle Scholar
  387. Van Dyk MS, Kock JLF, Coetzee DJ, Augustyn OPH, Nigam S (1991) Isolation of a novel arachidonic acid metabolite 3-hydroxy-5,8,11,14-eicosatetraenoic acid (3-HETE) from the yeast Dipodascopsis uninucleata UOFs-Y128. FEBS Lett 283 (2/3): 195–198PubMedGoogle Scholar
  388. Van Dyk MS, Kock JLF, Botha A, Coetzee DJ, Botes PJ, Augustyn OPH, Nigam S (1993) 3-Hydroxy-5,8,11,14 (11 cis)-eicosatetraenoic acid (3-HETE): a new aspirin-sensitive arachidonic acid metabolite from yeast. Dev Oncol 71: 67–70Google Scholar
  389. Vase B, Hecht HJ, Dieter R, Schomburg SD (1993) 3D-structures of the lipase from Rhizomucor miehei at different temperatures and computer modelling of a complex of the lipase with trilauryglycerol. J Biotechnol 28(1):99–115Google Scholar
  390. Veeraragavan K (1990) A simple and sensitive method for the estimation of microbial lipase activity. Anal Biochem 186 (2): 301–305PubMedCrossRefGoogle Scholar
  391. Viegas CA, Sa-Correia I (1991) Activation of plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid. J Gen Microbiol 137: 645–651PubMedCrossRefGoogle Scholar
  392. Viljoen BC, Kock JLF, Lategan PM (1986) The influence of culture age on the cellular fatty acid composition of four selected yeasts. J Gen Microbiol 132 (7): 1895–1898Google Scholar
  393. Vorderwülbecke T, Kieslich K, Erdmann H (1992) Comparison of lipases by different assays. Enzyme Microb technol 14: 631–639CrossRefGoogle Scholar
  394. Wainwright M (1992) An introduction to fungal biotechnology. John Wiley, ChichesterGoogle Scholar
  395. Wang YJ, Wang FF, Sheu JY, Tsai YC, Shaw JF (1992) Changes of lipase catalysed lipolytic rates in a batch reactor. Biotechnol Bioeng 39 (11): 1128–1132PubMedCrossRefGoogle Scholar
  396. Wardle KS, Schisler LC (1969) The effects of various lipids on the growth of the mycelium of Agaricus bisporus. Mycologia 61: 305–314PubMedCrossRefGoogle Scholar
  397. Weete JD (1974) Fungal lipid biochemistry. Plenum Press, New YorkCrossRefGoogle Scholar
  398. Weete JD (1980) Lipid biochemistry of fungi and other organisms. Plenum Press, New YorkCrossRefGoogle Scholar
  399. Weete JD, Gandhi S (1992) Potential for fungal lipids in biotechnology. In: Arora DK, Elander RP, Mukherjee KD (eds) Handbook of Applied Mycology, vol 4. Marcel Dekker, New York, pp 377–400Google Scholar
  400. Weiss A (1990) Enzymatic preparation of solid fatty acid monoglycerides. Fettwiss Technol 92 (10): 392–400Google Scholar
  401. Welsh FW, Williams RE, Dawson KH (1990) Lipase mediated synthesis of low molecular weight flavor esters. J Food Sci 55 (6): 1679–1682CrossRefGoogle Scholar
  402. Welsh FW, Williams RE, Chang SC, Dicaire CJ (1991) Production of low molecular weight esters using vegetable oils or butter oil as reaction media. J Chem Technol Biotechnol 52 (2): 201–210CrossRefGoogle Scholar
  403. Wijeyaratne SC, Ohta K, Chavanich S, Mahamontri V, Nilubol N, Hayashida S (1986) Lipid composition of a thermotolerant yeast Hansenula polymorpha. Agric Biol Chem 50 (4): 827–832CrossRefGoogle Scholar
  404. Wisdom RA, Dunnill P, Lilly MD (1987) Enzymic interesterification of fats laboratory and pilot scale studies with immobilized lipase from Rhizopus arrhizus. Biotechnol Bioeng 29 (9): 1081–1085PubMedCrossRefGoogle Scholar
  405. Wood DA, Fermor TR (1985) Nutrition of Agaricus bisporus. In: Flegg PB, Spencer DM, Wood DA (eds) The biology and technology of the cultivated mushroom. John Wiley, New York, pp 43–62Google Scholar
  406. Wu GP, Xu Bian ZN, Xiong Zp (1990a) Studies on the fermentation and purification of lipase from Candida rugosa. Chin J Pharm 21 (4): 145–149Google Scholar
  407. Wu GP, Xu JD, Bian ZN, Xiong ZP (1990b) Studies on lipase from Candida rugosa. I. Characters of enzyme. Chin J Pharm 21 (8): 337–340Google Scholar
  408. Wylie TD, Woodhouse LG (1977) Mycotoxic fungi and mycotoxicoses. Marcel Dekker, New YorkGoogle Scholar
  409. Yadwad VB, Ward OP, Noronha LC (1991) Application of lipase to concentrate the docosahexaenoic acid DHA fraction of fish oil. Biotechnol Bioeng 38 (8): 956–959PubMedCrossRefGoogle Scholar
  410. Yagi T, Nakanishi T, Yoshizawa Y, Fukui F (1990) The enzymatic acyl exchange of phospholipids with lipases. J Ferment Bioeng 69 (1): 23–25CrossRefGoogle Scholar
  411. Yamaguchi S, Mase T (1991a) Purification and characterization of monoacylglycerol and diacylglycerol lipase isolated from Penicillium camemberti U 150. Appl Microbiol Biotechnol 34 (6): 720–725CrossRefGoogle Scholar
  412. Yamaguchi S, Mase T (1991b) High yield synthesis of monoglyceride by monoacylglycerol and diacylglycerol lipase from Penicillium camemberti U 150. J Ferment Bioeng 72 (3): 162–167CrossRefGoogle Scholar
  413. Yang D, Rhee JS (1991) Stability of the lipase immobilized on DEAE Sephadex for continuous lipid hydrolysis in organic solvent. Biotechnol Lett 13 (8): 553–558CrossRefGoogle Scholar
  414. Yang D, Rhee JS (1992) Continuous hydrolysis of olive oil by immobilized lipase in organic solvent. Biotechnol Bioeng 40 (6): 748–752PubMedCrossRefGoogle Scholar
  415. Ykema A, Kater MM, Smit H (1989) Lipid production in whey permeate by an unsaturated fatty acid mutant of the oleaginous yeast Apiotrichum curvatum. Biotechnol Lett 11 (7): 477–482CrossRefGoogle Scholar
  416. Ykema A, Verbree EC, Verwoert HGS, Linden KH, Van Der Nijkamp HJJ, Smit H (1990) Lipid production of revertants of Ufa mutants from the oleaginous yeast Apiotrichum curvatum. Appl Microbiol Biotechnol 3: 176–183Google Scholar
  417. Zanka DM, Martin JF (1983) Carbon catabolite regulation of the conversion of penicillin N into cephalosporin C. J Antibiotics 36: 700–708CrossRefGoogle Scholar
  418. Zhelifonova VA, Krilova NI, Dedyukhina EG, Eroshin VK (1983) The study of oleaginous yeasts grown in a medium with ethanol. Mikrobiologiya 52: 219–224Google Scholar
  419. Zhou QH, Kosaric N (1993) Effect of lactose and olive oil on intra and exracellular lipids of Torulopsis bombicola. Biotechnol Lett 15 (5): 477–482CrossRefGoogle Scholar
  420. Zichenko GA, Belov AP (1990) Topography of the enzymes of acylglycerol biosynthesis in yeast membranes. IZV Timiryazev S-KH Akad 0: 123–129Google Scholar
  421. Zu-Yi L, Ward OP (1993a) Enzyme catalysed production of vegetable oils containing w-3-polyunsaturated fatty acid. Biotechnol Lett 15 (2): 185–188CrossRefGoogle Scholar
  422. Zu-Yi L, Ward OP (1993b) Lipase catalysed esterification of glycerol and n-3 polyunsaturated fatty acid concentrate in organic solvent. J Am Oil Chem Soc 70 (8): 745–748CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • M. Sancholle
    • 1
  • D. Lösel
    • 2
  1. 1.Laboratoire de Cryptogamie/Phytopathologie (I.C.L.P.)Université du Littoral, Centre Universitaire de la Mi-VoixCalais CedexFrance
  2. 2.Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK

Personalised recommendations