Skip to main content

Molecular Strategies for Agaricus Breeding

  • Chapter
Genetics and Biotechnology

Part of the book series: The Mycota ((MYCOTA,volume 2))

Abstract

Although at least 25 species of the Basidiomycotina and Ascomycotina, collectively known as “mushrooms”, are grown as food crop, Agaricus bisporus (Lange) Imbach (= A. brunnescens Peck), the common button mushroom, is the major fungus cultivated on a large commercial scale as a significant vegetable crop. In the United States only lettuce and tomatoes, and in Canada only potatoes, command higher cash values (Horgen and Anderson 1992). Worldwide, A. bisporus production reached 1.4 million tons in 1989/90, and in the United States, the total yield of 715 million pounds was valued (farm gate) at $645 million (Chang and Miles 1991; US Department of Agriculture).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alic M, Kornegay JR, Pribnow D, Gold MH (1989) Transformation by complementation of an adenine auxotroph of the lignin-degrading basidiomycete Phanerochete chryosporium. Appl Environ Microbiol 55: 406–411

    PubMed  CAS  Google Scholar 

  • Allen JJ, Moore D, Elliott TJ (1992) Persistent meiotic arrest in basidia of Agaricus bisporus. Mycol Res 96: 125–127

    Article  Google Scholar 

  • Anderson JB, Petsche DM, Herr FB, Horgen PA (1984) Breeding relationships among several species of Agaricus. Can J Bot 62: 1884–1889

    Article  Google Scholar 

  • Binninger DM, Skrzynia C, Pukklia PJ, Casselton LA (1986) DNA-mediated transformation of the basidiomycete Coprinus cinereus. EMBO J 6: 835–840

    Google Scholar 

  • Bretzloff CW, Curme JH, Robbins WA (1962) Observations on multisporous isolates from the cultivated mushroom, Agaricus bisporus ( Lange) Sing. Mushroom Sci 5: 188–196

    Google Scholar 

  • Burr B, Burr FA (1991) Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. Trends Genet 7: 55–60

    PubMed  CAS  Google Scholar 

  • Burton KS (1988a) The effects of storage and development on Agaricus bisporus proteases. J Hortic Sci 63: 103–108

    Google Scholar 

  • Burton KS (1988b) The effects of pre-and post-harvest development on mushroom tyrosinase. J Hortic Sci 63: 255–260

    CAS  Google Scholar 

  • Castle AJ, Horgen PA, Anderson JB (1987) Restriction fragment length polymorphisms in the mushrooms Agaricus brumnnescens and Agaricus bitorquis. Appl Environ Microbiol 53: 816–822

    PubMed  CAS  Google Scholar 

  • Castle AJ, Horgen PA, Anderson JB (1988) Crosses among homokaryons from commercial and wild-collected strains of the mushroom Agaricus brunnescens (= A. bisporus). Appl Environ Microbio! 54: 1643–1648

    CAS  Google Scholar 

  • Challen MP, Elliott TJ (1987) Production and evaluation of fungicide-resistant mutants in the cultivated mushroom Agaricus bisporus. Trans Br Mycol Soc 88: 433–439

    Article  CAS  Google Scholar 

  • Challen MP, Wilson KL, Elliott TJ (1989) Fungicide resistance in Agaricus bisporus I. in vitro production and assessment of resistance mutants. Mushroom Sci 12: 37–45

    Google Scholar 

  • Challen MP, Rao BG, Elliott TJ (1991) Transformation strategies for Agaricus. In: Van Griensven LJLD (ed) Genetics and breeding of Agaricus. Pudoc, Wageningen, pp 129–134

    Google Scholar 

  • Chang ST, Miles PG (1991) Recent trends in world production of cultivated edible mushrooms. Mushroom J 504: 15–18

    Google Scholar 

  • Colson B (1935) The cytology of the mushroom Psalliota campestris Quel. Ann Bot 49: 1–17

    Google Scholar 

  • Durrant AJ, Wood DA, Cain RB (1991) Ligncoellulose biodegradation by Agaricus bisporus during solid substrate fermentation. J Gen Microbiol 137: 751–755

    CAS  Google Scholar 

  • Elliott TJ (1972) Sex and the single spore. Mushroom Sci 8: 11–18

    Google Scholar 

  • Elliott TJ (1979) Breeding strategies in Agaricus bisporus. Mushroom Sci 10: 73–81

    Google Scholar 

  • Elliott TJ, Langton FA (1981) Strain improvement in the cultivated mushroom Agaricus bisporus. Euphytica 30: 175–182

    Article  Google Scholar 

  • Evans HJ (1959) Nuclear behaviour in the cultivated mushroom. Chromosoma 10: 115–135

    Article  PubMed  CAS  Google Scholar 

  • Fermor TR, Wood DA, Lincoln SP, Fenlon JS (1991) Bacteriolysis by Agaricus bisporus. J Gen Microbiol 137: 15–22

    CAS  Google Scholar 

  • Flegg PB (1979) Effect of temperature on sporophore initiation and development. Mushroom Sci 10: 195–204

    Google Scholar 

  • Fritsche G (1972) Beispiel der Wirkung der Einsporkulturauslese als züchterische Methode beim Kulturchampignon. Theor Appl Genet 42: 62–64

    Article  Google Scholar 

  • Fritsche G (1981) Some remarks on the breeding, maintenance of strains and spawn of Agaricus bisporus and A. bitorquis. Mushroom J 11: 367–385

    Google Scholar 

  • Fritsche G (1983) Breeding.Agaricus bisporus at the mushroom experimental station, Horst. Mushroom J 122: 49–53

    Google Scholar 

  • Fritsche G, Sonnenberg ASM (1988) Mushroom strains. In: Van Griensven LJLD (ed) The cultivation of mushrooms. Interlingua, Sussex

    Google Scholar 

  • Harmsen MC, Schuren FHJ, Moukha SM, van Zuilen CM, Punt PJ, Wessels JGH (1992) Sequence analysis of the glyceraldehyde-3-phosphate dehydrogenase genes from the basidiomycetes Schizophyllum commune, Phanerochaete chryosporium and Agaricus bisporus. Curr Genet 22: 447–454

    Article  PubMed  CAS  Google Scholar 

  • Hintz W, Mohan M, Anderson JB, Horgen PA (1985) The mitochondrial DNAs of Agaricus: heterogeneity in A. bitorquis and homogeneity in A. brunnescens. Curr Genet 9: 127–132

    Article  CAS  Google Scholar 

  • Hintz WE, Anderson JB, Horgen PA (1988a) Physical mapping of the mitochondrial genome of the cultivated mushroom Agaricus brunnescens (= A. bisporus). Curr Genet 14: 43–49

    Article  CAS  Google Scholar 

  • Hintz WE, Anderson JB, Horgen PA (1988b) Nuclear migration and mitochondrial inheritance in the mushroom Agaricus bitorquis. Genetics 119: 35–41

    PubMed  CAS  Google Scholar 

  • Holtz RB, Schisler LC (1986) Utilization of fatty acids by Agaricus bisporus in commercial culture. Mycologia 78: 722–727

    Article  CAS  Google Scholar 

  • Horgen PA (1992) The application of biotechnology to the button mushroom, Agaricus bisporus. In: Applied Mol ecuear Genetics of Filamentous Fungi. Blackie amp; Sons Ltd., pp 191–200

    Google Scholar 

  • Horgen PA, Anderson JB (1989) Biotechnological advances in mushroom science. Mushroom Sci 12: 63–73

    Google Scholar 

  • Horgen PA, Anderson JB (1992) Biotechnology and edible mushrooms. In: Finkelstein D, Ball C (eds )

    Google Scholar 

  • Biotechnology and filamentous fungi. Butterworth, Boston, pp 447–462

    Google Scholar 

  • Horgen PA, Kokurewicz KF, Anderson JB (1989) The germination of basidiospores from commercial and wild-collected isolates of Agaricus bisporus (= A. brunnescens). Can J Microbiol 35: 492–498

    Article  Google Scholar 

  • Horgen PA, Jin T, Anderson JB (1991) The use of protoplast production, protoplast regeneration and restriction fragment length polymorphisms in developing a systematic and highly reproducible breeding strategy for Agaricus bisporus. In: Van Griensven LJLD (ed) Genetics and breeding of Agaricus. Pudoc, Wageningen, pp 62–72

    Google Scholar 

  • Jin T (1993) Mitochondrial inheritance and further studies on the mitochondrial genome of the cultivated mushroom Agaricus bisporus (= A. brunnescens). PhD Thesis, Univ Toronto

    Google Scholar 

  • Jin T, Horgen PA (1993) Further characterization of a large inverted repeat in the mitochondrial genomes of Agaricus bisporus (= A. brunnescens) and related species. Curr Genet 23: 228–233

    Article  PubMed  CAS  Google Scholar 

  • Jin T, Sonnenberg ASM, van Griensven LJLD, Horgen PA (1992) Investigation of mitochondrial transmission in selected matings between homokaryons from commercial and wild-collected isolates of Agaricus bisporus (= Agaricus brunnescens). Appl Environ Microbiol 58: 3553–3560

    PubMed  CAS  Google Scholar 

  • Jiri H (1967) Cytological studies in the genus Agaricus. Mushroom Sci 6: 77–81

    Google Scholar 

  • Kerrigan RW (1987) What’s in a name?: the chaetaceous case of the chaste champignon. In: Wuest PJ, Royse DJ, Beelman RB (eds) Cultivating edible fungi. Elsevier, Amsterdam, pp 155–162

    Google Scholar 

  • Kerrigan RW (1990) Evidence of genetic divergence in two populations of Agaricus bisporus. Mycol Res 94: 721–733

    Article  Google Scholar 

  • Kerrigan RW, Ross IK (1989) Allozymes of a wild Agaricus bisporus populations: new alleles, new genotypes. Mycologia 81: 433–443

    Article  Google Scholar 

  • Kerrigan RW, Baller LM, Horgen PA, Anderson JB (1992) Strategies for the efficient recovery of Agaricus bisporus homokaryons. Mycologia 84: 575–579

    Article  Google Scholar 

  • Kerrigan RW, Horgen PA, Anderson JB (1993a) The California population of Agaricus bisporus comprises at least two ancestral elements. Syst Bot 18: 123–136

    Article  Google Scholar 

  • Kerrigan RW, Royer JC, Baller LM, Kohli Y, Horgen PA, Anderson JB (1993b) Meiotic behaviour and linkage relationships in the secondarily homothallic fungus Agaricus bisporus. Genetics 133: 225–236

    PubMed  CAS  Google Scholar 

  • Kerrigan RW, Carvalho D, Horgen PA, Anderson JB (1993c) Mitochondrial DNA polymorphisms and divergence in the subdivided global population of Agaricus bisporus. Book of abstracts Fungal Genetics Conf, Asilomar, California, March 1993

    Google Scholar 

  • Khush RS, Morgan L, Becker E, Wach M (1991) Use of the polymerase reaction (PCR) in A. bisporus breeding programs. In: Van Griensven LJLD (ed) Genetics and breeding of Agaricus. Pudoc, Wageningen, pp 73–80

    Google Scholar 

  • Khush RS, Becker E, Wach M (1992) DNA amplification polymorphisms of the cultivated mushroom Agaricus bisporus. Appl Environ Microbiol 58: 2971–2977

    PubMed  CAS  Google Scholar 

  • Kligman AM (1943) Some cultural and genetic problems in the cultivation of the mushroom, Agaricus campestris Fr. Am J Bot 30: 745–763

    Article  Google Scholar 

  • Kligman AM (1950) In: Swayne JB (ed) Handbook of mushroom culture. Business Press, Lancaster, Pennsylvania, p 356

    Google Scholar 

  • Kneebone LR, Schultz PG, Patton TG (1972) Strain selection and development by means of mycelial anastomoses. Mushroom Sci 8: 19–25

    Google Scholar 

  • Kneebone LR, Patton TG, Schultz PG (1976) Improvement of the brown variety of Agaricus bisporus by single-spore selection. Mushroom Sci 9: 237–243

    Google Scholar 

  • Lambert EB (1929) The production of normal sporophores from monosporous cultures of Agaricus bisporus. Mycologia 21: 333–335

    Article  Google Scholar 

  • Lambert EB (1941) Studies on the preparation of mushroom compost. J Agric Res 62: 415–422

    Google Scholar 

  • Lambert EB (1960) Improving spawn cultures of cultivated mushrooms. Mushroom Sci 4: 33–51

    Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199

    PubMed  CAS  Google Scholar 

  • Langton FA, Elliott TJ (1980) Genetics of secondarily homothallic basidiomycetes. Heredity 45: 99–106

    Article  Google Scholar 

  • Loftus MG, Moore D, Elliott TJ (1988) DNA polymorphisms in commercial and wild strains of the cultivated mushroom, Agaricus bisporus. Theor Appl Genet 76: 714–718

    Article  Google Scholar 

  • Malloch D (1976) Agaricus brunnescens,the cultivated mushroom. Mycologia 68:910–919

    Google Scholar 

  • Malloch D, Castle Ai, Hintz WE (1987) Further evidence for Agaricus brunnescens (Peck) as the preferred name for the cultivated A. bisporus. Mycologia 79: 839–846

    Article  Google Scholar 

  • May B, Royse DJ (1981) Application of the electrophoretic methodology to the elucidation of genetic life histories of edible mushrooms. Mushroom Sci 11: 799–817

    CAS  Google Scholar 

  • May B, Royse DJ (1982) Confirmation of crosses between lines of Agaricus brunnescens by isozyme analysis. Exp Mycol 6: 283–292

    Article  Google Scholar 

  • Meyer R, Hintz W, Mohan M, Robison M, Anderson JB, Horgen PA (1988) Homology of Agaricus mitochondrial plasmids with mitochondrial DNA. Genome 30: 710–716

    Article  CAS  Google Scholar 

  • Miller RE (1971) Evidence of sexuality in the cultivated mushroom, Agaricus bisporus. Mycologia 63: 630–634

    Article  Google Scholar 

  • Miller RE, Robbins WA, Kananen DL (1976) Inheritance of sporophore color and “wild” morphology in Agaricus bisporus. Mushroom Sci 9: 39–45

    Google Scholar 

  • Moessner EJ (1962) Preliminary studies of the possibility of obtaining improved cultures through mycelial fusion (anastomoses). Mushroom Sci 5: 197–203

    Google Scholar 

  • Mohan M, Meyer RJ, Anderson JB, Horgen PA (1984) Plasmid-like DNAs in the commercially important genus, Agaricus. Curr Genet 8: 615–619

    Article  CAS  Google Scholar 

  • Munoz-Rivas A, Specht CA, Drummond BJ, Froeliger E, Novotny CP, Ullrich RC (1986) Transformation of the basidiomycete, Schizophyllum commune. Mol Gen Genet 205: 103–106

    Article  PubMed  CAS  Google Scholar 

  • Osborne TC, Alexander DC, Fobes JF (1987) Identification of restriction fragment length polymorphisms linked to genes controlling soluble solids content in tomato fruit. Theor Appl Genet 73: 350–356

    Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete RFLP linkage map. Nature 335: 721–726

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124: 735–742

    PubMed  CAS  Google Scholar 

  • Pelham J (1967) Techniques for mushroom genetics. Mushroom Sci 6: 49–64

    Google Scholar 

  • Perry CR, Matcham SE, Wood DA, Thurston CF (1993) The structure of laccase protein and its synthesis by the commercial mushroom Agaricus bisporus. J Gen Microbiol 139: 171–178

    PubMed  CAS  Google Scholar 

  • Raguz S, Yague E, Wood DA, Thurston CF (1992) Isolation and chracterization of a cellulose-growth-specific gene from Agaricus bisporus. Gene 119: 183–190

    Article  PubMed  CAS  Google Scholar 

  • Raper CA (1974) The biology and breeding potential of Agaricus bitorquis. Mushroom Sci 9: 1–9

    Google Scholar 

  • Raper CA (1985) Strategies for mushroom breeding. In: Moore D (ed) Developmental biology of higher fungi. Br Mycol Soc Symp #10, Cambridge Univ Press, Cambridge, pp 513–528

    Google Scholar 

  • Raper CA, Raper JR, Miller RE (1972) Genetic analysis of the life cycle of Agaricus bisporus. Mycologia 63: 1088–1117

    Article  Google Scholar 

  • Robison MM, Royer JC, Horgen PA (1991) Homology between mitochondrial DNA of Agaricus bisporus and an internal portion of a linear mitochondrial plasmid of Agaricus bitorquis. Curr Genet 19: 495–502

    Article  PubMed  CAS  Google Scholar 

  • Royer J, Horgen PA (1991) Towards a transformation system for Agaricus bisporus. In: Van Griensven (ed) Genetics and breeding of Agaricus. Pudoc, Wageningen, pp 135–139

    Google Scholar 

  • Royer J, Hintz WE, Horgen PA (1991) Efficient protoplast formation and regeneration and electrophoretic karyotype analysis of Agaricus bisporus. In: Van Griensven (ed) Genetics and breeding of Agaricus. Pudoc, Wageningen, pp 52–56

    Google Scholar 

  • Royer J, Hintz WE, Kerrigan RW, Horgen PA (1992) Electrophoretic karyotype analysis of the button mushroom Agaricus bisporus. Genome 35: 694–698

    Article  Google Scholar 

  • Royse DJ, May B (1982a) Use of isozyme variation to identify genotypic classes of Agaricus brunnescens. Mycologia 74: 93–102

    Article  CAS  Google Scholar 

  • Royse DJ, May B (1982b) Genetic relatedness and its application in selective breeding of Agaricus brunnescens. Mycologia 74: 569–575

    Article  Google Scholar 

  • Sass JE (1929) A cytological study of a bi-spored form of Psalliota campestris. Pap Mich Acad Sci 9: 287–289

    Google Scholar 

  • Sass JE (1936) Cytology of spore germination in the bispored form of Psalliota campestris. Mycologia 28: 431–432

    Article  Google Scholar 

  • Selker EU (1990) Premeiotic instability of repeated sequences in Neurospora crassa. Annu Rev Genet 24: 579–613

    Article  PubMed  CAS  Google Scholar 

  • Sinden JW (1937) Mushroom experiments. Bull Pa Agric Exp Stn 352: 38

    Google Scholar 

  • Sinden JW (1992) Possible future developments growing and marketing. Mushroom J 511: 12–13

    Google Scholar 

  • Sinden JW, Hauser E (1950) The short method of mushroom composting. Mushroom Sci 1: 52–59

    Google Scholar 

  • Singer R (1984) Agaricus brunnescens Peck and Agaricus bisporus (Lange) Imbach. Mycotaxon 20:479–482

    Google Scholar 

  • Smith JF, Love ME (1989) A tropical Agaricus with commercial potential. Mushroom Sci 12: 305–315

    Google Scholar 

  • Sonnenberg AS, Wessels JG, van Griensven LJ (1988) An efficient protoplasting/regeneration system for Agaricus bisporus and Agaricus bitorquis. Curr Microbiol 17: 285–291

    Article  CAS  Google Scholar 

  • Sonnenberg ASM, den Hollander K, van de Munckhof APJ, van Griensven LJLD (1991a) Chromosome separation and assignment of DNA probes in Agaricus bisporus. In: Van Griensven LJLD (ed) Genetics and breeding of Agaricus. Pudoc, Wageningen, pp 57–61

    Google Scholar 

  • Sonnenberg ASM, van Loon PCC, van Griensven LJLD (199 lb) The occurrence of mitochondrial genotypes and inheritance of mitochondria in the cultivated mushroom Agaricus bisporus. Mushroom Sci 13:85–92

    Google Scholar 

  • Spear MC, Royse DJ, May B (1983) Atypical meiosis and joint segregation of biochemical loci in Agaricus brunnescens. J Hered 74: 417–420

    Google Scholar 

  • Summerbell RC, Castle AJ, Horgen PA, Anderson JB (1989) Inheritance of restriction fragment length polymorphisms in Agaricus brunnescens. Genetics 123: 293–300

    PubMed  CAS  Google Scholar 

  • Tanksley SD, Hewitt J (1988) Use of molecular markers in breeding for soluble solids content in tomato — a reexamination. Theor Appl Genet 75: 811–823

    Article  CAS  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7: 257–264

    Article  CAS  Google Scholar 

  • Van Griensven LJLD (1988) History and development. In: Van Griensven JLD (ed) History and development. The cultivation of mushrooms. Interlingua. TTI, Sussex

    Google Scholar 

  • Wang ZS, Liao JH, Li FG, Wang HC (1991) Studies on genetic basis of esterase isozyme loci Est A, B, and C in Agaricus bisporus. Mushroom Sci 13: 3–9

    Google Scholar 

  • Wicking C, Williamson B (1991) From linked marker to gene. Trends Genet 7: 289–293

    Google Scholar 

  • Williams J, Kubeliki A, Livat K, Rafalski J, Tinge S (1991) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 22: 6531–6535

    Google Scholar 

  • Wood D (1989) Mushroom biotechnology. Int Indust Biotechnol 9: 5–8

    Google Scholar 

  • Xu JP, Kerrigan RW, Horgen PA, Anderson JB (1993) Localization of the mating-type gene in Agaricus bisporus. Appl Environ Microbiol 59: 3044–3049

    PubMed  CAS  Google Scholar 

  • Callac P, Billette C, Imbernon M, Kerrigan RW (1993) Morphological, genetic, and interfertility analyses reveal a novel, tetrasporic variety of Agaricus bisporus from the Sonoran desert of California. Mycologia 85: 835–851

    Article  Google Scholar 

  • Kerrigan RW, Imbernon M, Callac P, Billette C, Olivier J-M (1994) The heterothallic life cycle of Agaricus bisporus var. burnettii and the inheritance of its tetrasporic trait. Experimental Mycology 18: 193–210

    Article  Google Scholar 

  • van de Rhee M, Graça P, Mooibroek H (1994) Transformation of Common Mushroom, Agaricus bisporus. 5th International Mycological Congress Abstract, p 228

    Google Scholar 

  • Xu J, Horgen P, Anderson J (1994) Somatic recombination in Agaricus bisporus. 5th International Mycological Congress Abstract, p 247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khush, R.S., Wach, M.P., Horgen, P.A. (1995). Molecular Strategies for Agaricus Breeding. In: Kück, U. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10364-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10364-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10366-1

  • Online ISBN: 978-3-662-10364-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics