Advertisement

Biotechnology of Lignin Degradation

  • A. B. Orth
  • M. Tien
Part of the The Mycota book series (MYCOTA, volume 2)

Abstract

Lignin is second only to cellulose in its abundance as a renewable carbon source. Because it serves to protect cellulose from most forms of microbial attack, its biodegradation also serves as the key to the utilization of cellulose. Lignin is a major waste product of the pulp and paper industry. Its utilization has long been envisioned and investigated. Lignin has been found to be useful as an adhesive, a metal chelator, and an emulsifier (Browning 1975). During the energy crisis of the 1970s, interest in the use of lignin as a chemical feedstock intensified (Drew et al. 1978). Many of the above applications have been patented (Drew et al. 1978). Despite its abundance, lignin has not found its way into the market as a high value product. Its predominant fate is burning for BTU value.

Keywords

Lignin Degradation Lignin Peroxidase Phanerochaete Chrysosporium Manganese Peroxidase Veratryl Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addleman K, Archibald F (1993) Kraft pulp bleaching and delignification by dikaryons and monokaryons of Trametes versicolor. Appl Environ Microbiol 59: 266–273PubMedGoogle Scholar
  2. Akhtar M, Attridge MC, Myers GC, Kirk TK, Blanchette RA (1992) Biomechanical pulping of loblolly pine with different strains of the white rot fungus Ceriporiopsis subvermispora. Tappi J 75: 105–109Google Scholar
  3. Akhtar M, Attridge MC, Myers GC, Blanchette RA (1993) Biomechanical pulping of loblolly pine chips with selected white-rot fungi. Holzforschung 47: 36–40CrossRefGoogle Scholar
  4. Alic M, Kornegay JR, Pribnow D, Gold MH (1989) Transformation by complementation of an adenine auxotrophGoogle Scholar
  5. of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 55:406–411Google Scholar
  6. Ander P, Eriksson KE (1975) Mechanical pulse from predecayed chips an introductory investigation. Sven Papperstidn 78: 641–642Google Scholar
  7. Andrawis A, Pease EA, Kuan I, Holzbaur EL, Tien M (1989) Characterization of two lignin peroxidase clones from Phanerochaete chrysosporium. Biochem Biophys Res Commun 162: 673–680PubMedCrossRefGoogle Scholar
  8. Andrawis A, Pease EA, Tien M (1990) Extracellular peroxidases of Phanerochaete chrysosporium: cDNA cloning and expression. In: Kirk TK, Chang HM (eds) Biotechnology in pulp and paper manufacture. Buttersworth-Heinemann, Boston, MA, pp 601–613Google Scholar
  9. Asada Y, Kimura Y, Kuwahara M, Tsukamoto A, Koide K, Oka A, Takanami M (1988) Cloning and sequencing of a ligninase gene from a lignin-degrading basidiomycete, Phanerochaete chrysosporium. Appl Microbiol Biotechnol 29: 469–473CrossRefGoogle Scholar
  10. Asseffa A, Smith SJ, Nagata K, Gillette J, Gelboin HV, Gonzalez FJ (1989) Novel exogenous heme-dependent expression of mammalian cytochrome P450 using baculovirus. Arch Biochem Biophys 274: 481–490PubMedCrossRefGoogle Scholar
  11. Asther M, Corrieu G, Drapron R, Odier E (1987) Effect of Tween 80 and oleic acid on ligninase production by Phanerochaete chrysosporium INA-12. Enzyme Microb Technol 9: 245–249CrossRefGoogle Scholar
  12. Asther M, Capdevila C, Corrieu G (1988) Control of lignin peroxidase production by Phanerochaete chrysosporium INA-12 by temperature shifting. Appl Environ Microbiol 54: 3194–3196PubMedGoogle Scholar
  13. Black AK, Reddy CA (1991) Cloning and characterization of a lignin peroxidase gene form the white rot fungus Trametes versicolor. Biochem Biophys Res Commun 179: 428–435PubMedCrossRefGoogle Scholar
  14. Blanchette RA, Abad AR, Farrell RL, Leathers TD (1989) Detection of lignin peroxidase and xylanase by immunocytochemical labeling in wood decayed by basidiomycetes. Appl Environ Microbiol 55: 1457–1465PubMedGoogle Scholar
  15. Blanchette RA, Burnes TA, Eermans MM, Akhtar M (1992) Evaluating isolates of Phanerochaete chrysosporium and Ceriporiopsis subvermispora. Holzforschung 46: 109–115CrossRefGoogle Scholar
  16. Bonnarme P, Jeffries TW (1990a) Selective production of extracellular peroxidases from Phanerochaete chrysosporium in an airlift bioreactor. J Ferment Bioeng 70: 158–163CrossRefGoogle Scholar
  17. Bonnarme P, Jeffries TW (1990b) Mn(II) regulation of lignin peroxidases from lignin-degrading white rot fungi. Appl Environ Microbiol 56: 210–217PubMedGoogle Scholar
  18. Boominathan K, Dass SB, Randall TA, Reddy CA (1990) Nitrogen-deregulated mutants of Phanerochaete chrysosporium — a lignin-degrading basidiomycete. Arch Microbiol 153: 521–527PubMedCrossRefGoogle Scholar
  19. Brown A, Sims PAG, Raeder U, Broda P (1988) Multiple ligninase-related genes from Phanerochaete chrysosporium. Gene 73: 77–85PubMedCrossRefGoogle Scholar
  20. Brown JA, Glenn JK, Gold MH (1990) Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium. J Bacteriol 172: 3125–3130PubMedGoogle Scholar
  21. Browning WC (1975) The lignosulfonate challenge. Appl Polymer Symp 28: 109–113Google Scholar
  22. Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228: 1434–1436PubMedCrossRefGoogle Scholar
  23. Buswell JA, Mollet B, Odier E (1984) Ligninolytic enzyme production by Phanerochaete chrysosporium under conditions of nitrogen sufficiency. FEMS Microbiol Lett 25: 295–299CrossRefGoogle Scholar
  24. Cancel AM, Orth AB, Tien M (1993) Lignin and veratryl alcohol are not inducers of the ligninolytic system of Phanerochaete chrysosporium. Appl Environ Microbiol 59: 2909–2913PubMedGoogle Scholar
  25. Capdevila C, Moukha S, Ghyczy M, Theilleux J, Gelie B, Delattre M, Corrieu G, Asther M (1990) Characterization of peroxidase secretion and subcellular organization of Phanerochaete chrysosporium INA-12 in the presence of various soybean phospholipid fractions. Appl Environ Microbiol 56: 3811–3816PubMedGoogle Scholar
  26. Daniel G, Pettersson B, Nilsson T, Volc J (1990) Use of immunogold chemistry to detect Mn(II)-dependent and lignin peroxidases in wood degraded by the white rot fungi Phanerochaete chrysosporium and Lentinula edodes. Can J Bot 68: 920–933CrossRefGoogle Scholar
  27. Dass SB, Reddy CA (1990) Characterization of extracellular peroxidases produced by acetate-buffered cultures of the lignin-degrading basidiomycete Phanerochaete chrysosporium. FEMS Microbiol Lett 69: 221–224CrossRefGoogle Scholar
  28. De Boer HA, Zhang YZ, Collins C, Reddy CA (1987) Analysis of nucleotide sequences of two ligninase cDNAs from a white-rot filamentous fungus, Phanerochaete chrysosporium. Gene 60: 93–102PubMedCrossRefGoogle Scholar
  29. De Jong E, De Vries FP, Field JA, Van der Zwan RP, De Bont JAM (1992) Isolation and screening of basidiomycetes with high peroxidative activity. Mycol Res 96: 1098–1104CrossRefGoogle Scholar
  30. Dey S, Maitim TK, Bhattacharyya BC (1991) Lignin peroxidase production by a brown-rot fungus Polyporus osteiformis. J Ferment Bioeng 72: 402–404CrossRefGoogle Scholar
  31. Drew SW, Kadam KL, Shoemaker SP, Glasser WG, Hall P (1978) Chemical feedstocks and fuels from lignin. AICHE Symp Ser 74: 28–37Google Scholar
  32. Eaton DC (1985) Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium. Enzyme Microb Technol 7: 194–196Google Scholar
  33. Eaton DC, Chang, Kirk TK (1982) Kraft beach plant effluent can be decolorized using synergistic effects of cations solubilized by acidification of waste sludge Tappi 65: 167–170Google Scholar
  34. Eriksson KE, Goodell EW (1974) Pleiotropic mutants of the wood-rotting fungus Polyporous adustus lacking cellulase, mannanase and xylanase. Can J Microbiol 20: 371–378PubMedCrossRefGoogle Scholar
  35. Eriksson KE, Kirk TK (1985) Biopulping, biobleaching, and the treatment of kraft bleaching effluents with white rot fungi. In: Murray M-Y(ed) Comprehensive biotechnology: the principles, applications and regulations of biotechnology in industry, agriculture and medicine, vol 4. Pergamon Press, New York, pp 271–294Google Scholar
  36. Faison BD, Kirk TK (1985) Factors involved in the regulation of a ligninase activity in Phanerochaete chrysosporium. Appl Environ Microbiol 49: 299–304PubMedGoogle Scholar
  37. Faison BD, Kirk TK, Farrell RL (1986) Role of veratryl alcohol in regulating ligninase activity in Phanerochaete chrysosporium. Appl Environ Microbiol 52: 251–254PubMedGoogle Scholar
  38. Farrell RL, Gelep P, Anilionis A, Javaherian K, Maione TE, Rusche JR (1987) European Patent Application No 87810516. 2Google Scholar
  39. Fenn P, Kirk TK (1981) Relationship of nitrogen to the onset and suppression of ligninolytic activity and secondary metabolism in Phanerochaete chrysosporium. Arch Microbiol 130: 59–65CrossRefGoogle Scholar
  40. Fernando T, Bumpus JA, Aust SD (1990) Biodegradation of TNT (2,4,6 trinitrotoluene) by Phanerochaete chrysosporium. Appl Environ Microbiol 56: 1666–1671PubMedGoogle Scholar
  41. Ferrer I, Esposito E, Duran N (1992) Lignin peroxidase from Chrysonilia sitophila: heat denaturation kinetics and pH stability. Enzyme Microb Technol 14: 402–406CrossRefGoogle Scholar
  42. Forney LJ, Reddy CA, Tien M, Aust SD (1982) The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by the white rot fungus Phanerochaete chrysosporium. J Biol Chem 257: 114551–1462Google Scholar
  43. Forrester IT, Grabski AC, Mishra C, Kelley BD, Strickland WN, Leatham GF, Burgess RR (1990) Characteristics and N-terminal amino acid sequence of a manganese peroxidase purified from Lentinula edodes cultures grown on a commercial wood substrate. Appl Microbiol Biotechnol 33: 359–365PubMedCrossRefGoogle Scholar
  44. Galliano H, Gas G, Seris JL, Boudet AM (1991) Lignin degradation by Rigidoporus lignosus involves synergistic action of two oxidizing enzymes: Mn peroxidase and laccase. Enzyme Microb Technol 13: 478–482Google Scholar
  45. Gaskell J, Dieperink E, Cullen D (1991) Genomic organization of lignin peroxidase genes of Phanerochaete chrysosporium. Nucl Acids Res 19: 599–603PubMedCrossRefGoogle Scholar
  46. Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, Gold MH (1983) An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 114: 1077–1083PubMedCrossRefGoogle Scholar
  47. Godfrey BJ, Mayfield MB, Brown JA, Gold MH (1990) Characterization of a gene encoding a manganese peroxidase from Phanerochaete chrysosporium. Gene 93: 119–124PubMedCrossRefGoogle Scholar
  48. Gold MH, Mayfield MB, Cheng TM, Krisnangkura K, Shimada M, Enoki A, Glenn JK (1982) A Phanerochaete chrysosporium mutant defective in lignin degradation as well as several other secondary metabolic functions. Arch Microbiol 132: 115–122CrossRefGoogle Scholar
  49. Gomez-Alarcon G, Saiz-Jimenez C, Lahoz R (1989) Influence of Tween 80 on the secretion of some enzymes in stationary cultures of the white-rot fungus Pycnoporus cinnabarinus. Microbios 60: 183–192Google Scholar
  50. Hammel KE, Tien M, Kalyanaraman B, Kirk TK (1985) Mechanism of oxidative Ca-Cß cleavage of a lignin model dimer by Phanerochaete chrysosporium. J Biol Chem 260: 8348–8353.PubMedGoogle Scholar
  51. Hammel KE, Jensen KA, Mozuch MD, Landucci LL, Tien M, Pease EA (1993) Ligninolysis by a purified lignin peroxidase. J Biol Chem 268: 12274–12281PubMedGoogle Scholar
  52. Holzbaur ELF, Tien M (1988) Structure and regulation of a lignin peroxidase gene from Phanerochaete chrysosporium. Biochem Biophys Res Commun 155: 626–633PubMedCrossRefGoogle Scholar
  53. Houponen K, 0llikka P, Kahn M, Walther I, Mantsala P, Reiser J (1990) Characterization of lignin peroxidaseencoding genes from lignin-degrading basidiomycetes. Gene 89: 145–150CrossRefGoogle Scholar
  54. Jager AG, Wandrey C (1989) Immobilization of the basidiomycete Phanerochaete chrysosporium on sintered glass: production of lignin peroxidases. In: De Bont J, Kisser J, Mathiasson B, Trann J. (eds) Physiology of immobilized cells. Proc Int Symp Wageningen, Netherlands, Elsevier, pp 433–438Google Scholar
  55. Jager A, Croan S, Kirk TK (1985) Production of ligninases and degradation of lignin in agitated submerged cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 50: 1274–1278PubMedGoogle Scholar
  56. James CM, Felipe MSS, Sims PFG, Broda P (1992) Expression of a single lignin peroxidase-encoding geneGoogle Scholar
  57. in Phanerochaete chrysosporium strain ME446. Gene 114:217–222Google Scholar
  58. Janskekar H, Feichter A (1988) Cultivation of Phanerochaete chrysosporium and production of lignin peroxidases on submerged stirred tank reactors. J Biotechnol 8: 97–112CrossRefGoogle Scholar
  59. Jeffries TW, Choi S, Kirk TK (1981) Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl Environ Microbiol 42: 290–296PubMedGoogle Scholar
  60. Johansson T, Welinder KG, Olof Nyman P (1993) Isozymes of lignin peroxidase and manganese(II) peroxidase from the white-rot basidiomycete Trametes versicolor. Arch Biochem Biophys 300: 57–62PubMedCrossRefGoogle Scholar
  61. Johnson TM, Li JKK (1991) Heterologous expression and characterization of an active lignin peroxidase from Phanerochaete chrysosporium using recombinant baculovirus. Arch Biochem Biophys 291: 371–378PubMedCrossRefGoogle Scholar
  62. Johnson TM, Pease EA, Li JKK, Tien M (1992) Production and characterization of recombinant lignin peroxidase isozyme H2 from Phanerochaete chrysosporium using recombinant baculovirus. Arch Biochem Biophys 296: 660–666PubMedCrossRefGoogle Scholar
  63. Jonsson L, Nyman PO (1992) Characterizaton of a lignin peroxidase gene from the white-rot fungus Trametes versicolor. Biochimie 74: 177–182PubMedCrossRefGoogle Scholar
  64. Kaput J, Goltz S, Blobel G (1982) Nucleotide sequence of the yeast nuclear gene for cytochrome c peroxidase precursor. J Biol Chem 257: 15054–15058PubMedGoogle Scholar
  65. Karhunen E, Kantelinen A, Niku-Paavola ML (1990) Mn-dependent peroxidase from the lignin-degrading white rot fungus Phlebia radiata. Arch Biochem Biophys 279: 25–31PubMedCrossRefGoogle Scholar
  66. Kelley RL, Reddy CA (1986) Purification and characterization of glucose oxidase from ligninolytic cultures of Phanerochaete chrysosporium. J Bacteriol 166: 269–274PubMedGoogle Scholar
  67. Kern HW (1989) Improvement in the production of extra-cellular lignin peroxidases by Phanerochaete chrysosporium: effect of solid manganese(IV)oxide. Appl Microbiol Biotechnol 32: 223–234CrossRefGoogle Scholar
  68. Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169: 21952201Google Scholar
  69. Kersten PJ, Tien M, Kalyanaraman B, Kirk TK (1985) The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J Biol Chem 260: 2609–2612PubMedGoogle Scholar
  70. Keyser P, Kirk TK, Zeikus JG (1978) Ligninolytic enzyme system of Phanerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. J Bacteriol 135: 790–797PubMedGoogle Scholar
  71. Kimura Y, Asada Y, Kuwahara M (1990) Screening of basidiomycetes for lignin peroxidase genes using a DNA probe. Appl Microbiol Biotechnol 32: 436–442PubMedCrossRefGoogle Scholar
  72. Kimura Y, Asada Y, Oka T, Kuwahara M (1991) Molecular analysis of a Bjerkandera adusta lignin peroxidase gene. Appl Microbiol Biotechnol 35: 510–514PubMedCrossRefGoogle Scholar
  73. Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41: 465–505PubMedCrossRefGoogle Scholar
  74. Kirk TK, Croan S, Tien M, Murtagh KE, and Farrell RL (1986a) Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enzyme Microb Technol 8: 27–32CrossRefGoogle Scholar
  75. Kirk TK, Tien M, Kersten PJ, Mozuch MD, Kalyanaraman B (1986b) Ligninase of Phanerochaete chrysosporium. Mechanism of its degradation of the non-phenolic arylglycerol ß-aryl ether substructure of lignin. Biochem J 236: 279–287Google Scholar
  76. Kirkpatrick N, Palmer JM (1989) A natural inhibitor of lignin peroxidase activity from Phanerochaete chrysosporium, active at low pH and inactivated by divalent metal ions. Appl Microbiol Biotechnol 30: 305–311CrossRefGoogle Scholar
  77. Kuan IC, Tien M (1993) Stimulation of Mn peroxidase activity: a possible role for oxalate in lignin biodegradation. Proc Natl Acad Sci USA 90: 1242–1246PubMedCrossRefGoogle Scholar
  78. Kurek B, Odier E (1990) Influence of lignin peroxidase concentration and localization in lignin biodegradation by Phanerochaete chrysosporium. Appl Microbiol Biotechnol 34: 264–269CrossRefGoogle Scholar
  79. Kuwahara M, Asada Y (1987) Production of ligninases, peroxidases and alcohol oxidases by mutants of Phanerochaete chrysosporium. In: Odier E (ed) Lignin enzymic and microbial degradation. INRA, Versailles, France, pp 171–176Google Scholar
  80. Leisola MSA, Kozulic B, Meussdoerffer F, Fiechter A (1987) Homology among extracellular peroxidases from Phanerochaete chrysosporium. J Biol Chem 262: 419–424PubMedGoogle Scholar
  81. Leisola MSA, Haemmerli SD, Waldner R, Schoemaker HE, Schmidt HWH, Fiechter A (1988) Metabolism of a lignin model compound, 3,4-dimethoxybenzyl alchol by Phanerochaete chrysosporium. Cell Chem Technol 22: 266–277Google Scholar
  82. Lestan D, Strancar A, Perdih A (1990) Influence of some oils and surfactants on ligninolytic activity, growth and lipid fatty acids of Phanerochaete chrysosporium. Appl Microbiol Biotechnol 34: 426–428Google Scholar
  83. Linko S (1988) Production of lignin peroxidase by immobilized Phanerochaete chrysosporium in an agitated bioreactor. Ann NY Acad Sci 542: 195–203CrossRefGoogle Scholar
  84. Linko S (1992) Production of Phanerochaete chrysosporium lignin peroxidase. Biotech Adv 10: 191–236CrossRefGoogle Scholar
  85. Lundell T, Leonowicz A, Rogalski J, Hatakka A (1990) Formation and action of lignin-modifying enzymes in cultures of Phlebia radiata supplemented with veratric acid. Appl Environ Microbiol 56: 2623–2629PubMedGoogle Scholar
  86. Lundquist K, Kirk TK (1978) De novo synthesis and decomposition of veratryl alcohol by a lignin-degrading basidiomycete. Phytochemistry 17: 1676CrossRefGoogle Scholar
  87. Maltseva OV, Niku-Paavola ML, Leontievsky AA, Myasoedova NM, Golovleva LA (1991) Ligninolytic enzymes of the white rot fungus Pan us tigrinus. Biotechnol Appl Biochem 13: 291–302Google Scholar
  88. Mileski GJ, Bumpus JA, Jurek MA, Aust SD (1988) Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54: 2885–2889PubMedGoogle Scholar
  89. Naidu PS, Reddy CA (1990) Nucleotide sequence of a new lignin peroxidase gene GLG3 from the white-rot fungus, Phanerochaete chrysosporium. Nucl Acids Res 18: 71737176Google Scholar
  90. Naidu PS, Zhang YZ, Reddy CA (1990) Characterization of a new lignin peroxidase gene (GLG6) from Phanerochaete chrysosporium. Biochem Biophys Res Commun 173: 994–1000PubMedCrossRefGoogle Scholar
  91. Nerud F, Misurcova Z (1989) Production of ligninolytic peroxidases by the white-rot fungus Coriolopsis occidentalis. Biotechnol Lett 11: 427–432CrossRefGoogle Scholar
  92. Nerud F, Zouchova Z, Misurcova Z (1991) Ligninolytic properties of different white-rot fungi. Biotechnol Lett 9: 657–660CrossRefGoogle Scholar
  93. Niku-Paavola ML, Karhunen E, Kantelinen A, Viikari L, Lundell T, Hatakka A (1990) The effect of culture conditions on the production of lignin modifying enzymes by the white-rot fungus Phlebia radiata. J Biotech 13: 211–211CrossRefGoogle Scholar
  94. Orth AB, Denny M, Tien M (1991) Overproduction of lignin degrading enzymes by an isolate of Phanerochaete chrysosporium. Appl Environ Microbiol 57: 2591–2596PubMedGoogle Scholar
  95. Orth AB, Royse DJ, Tien M (1993a) Ubiquity of lignin-degrading peroxidases among various white-and brown-rot fungi. Appl Environ Microbiol 59: 4017–4023PubMedGoogle Scholar
  96. Orth AB, Rzketshaya M, Pease EA, Cullen D, Tien M (1993b) Characterization of a cDNA encoding a manganese peroxidase from Phanerochaete chrysosporium: Genomic organization of lignin and manganese peroxidase genes. Gene (in press).Google Scholar
  97. Paszczynski A, Huynh VB, Crawford R (1985) Comparison of ligninase-I and peroxidase-M2 from the white rot fungus Phanerochaete chrysosporium. FEMS Microbiol Lett 29: 37–41CrossRefGoogle Scholar
  98. Paszczynski A, Huynh VB, Crawford R (1986) Comparison of ligninase-I and peroxidase M-2 from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys 244: 750–765PubMedCrossRefGoogle Scholar
  99. Pease EA, Tien M (1992) Heterogeneity and regulation of manganese peroxidases from Phanerochaete chrysosporium. J Bacteriol 174: 3532–3540PubMedGoogle Scholar
  100. Pease EA, Andrawis A, Tien M (1989) Manganese-dependent peroxidase from Phanerochaete chrysosporium: primary structure deduced from cDNA sequence. J Biol Chem 264: 13531–13535PubMedGoogle Scholar
  101. Pease EA, Aust SD, Tien M (1991) Heterologous expression of active manganese peroxidase from Phanerochaete chrysosporium using the baculovirus expression system. Biochem Biophys Res Commun 179: 897–903PubMedCrossRefGoogle Scholar
  102. Perez J, Jeffries TW (1990) Mineralization of 14C-ringlabeled synthetic lignin correlates with the production of lignin peroxidase, not of manganese peroxidase or laccase. Appl Environ Microbiol 56: 1806–1812PubMedGoogle Scholar
  103. Perie FH, Gold MH (1991) Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl Environ Microbiol 57: 2240–2245PubMedGoogle Scholar
  104. Poulos TL, Kraut J (1980) The steriochemistry of peroxidase catalysis. J Biol Chem 255: 8199–8205PubMedGoogle Scholar
  105. Pribnow D, Mayfield MB, Nipper VJ, Brown JA, Gold MH (1989) Characterization of a cDNA encoding a manganese peroxidase, from the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Biol Chem 264: 5036–5040PubMedGoogle Scholar
  106. Raeder U, Thompson W, Broda P (1989) RFLP-based genetic map of Phanerochaete chrysosporium ME446: Lignin peroxidase genes occur in clusters. Mol Microbiol 3: 911–918Google Scholar
  107. Ramachandra M, Crawford DL, Hertel G (1988) Characterization of an extracellular lignin peroxidase of the ligninolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol 54: 3057–3963PubMedGoogle Scholar
  108. Ritch TG, Gold MH (1992) Characterization of a highly expressed lignin peroxidase gene from the basidiomycete Phanerochaete chrysosporium. Gene 118: 73–80PubMedCrossRefGoogle Scholar
  109. Roch P, Buswell JA, Cain RB, Odier E (1989) Lignin peroxidase production by strains of Phanerochaete chrysosporium grown on glycerol. Appl Microbiol Biotechnol 31: 587–591CrossRefGoogle Scholar
  110. Ruttimann C, Schwember E, Salas L, Cullen D, Vicuna R (1992) Ligninolytic enzymes of the white rot basidiomycetes Phlebia brevispora and Ceriporiopsis subvermispora. Biotechnol Appl Biochem 16: 64–76Google Scholar
  111. Sachs IB, Leatham GF, Myers GC (1989) Biomechanical pulping of aspen chips by Phanerochaete chrysosporium. Wood Fiber Sci 21: 331–342Google Scholar
  112. Sachs IB, Leatham GF, Myers GC, Wegner TH (1990) Distinguishing characteristics of biomechanical pulp. Tappi J 73: 249–254Google Scholar
  113. Saloheimo M, Barajas V, Niko-Paavola ML, Knowles JKC (1989) A lignin peroxidase-encoding cDNA from the white-rot fungus Phlebia radiata: characterization and expression in Trichoderma reesei. Gene 85: 343–351PubMedCrossRefGoogle Scholar
  114. Sarkanen S, Razal RA, Piccariello T, Yamamoto E, Lewis NG (1991) Lignin peroxidase: toward a clarification of its role in vivo. J Biol Chem 266: 3636–3643PubMedGoogle Scholar
  115. Schalch H, Gaskell J, Smith TL, Cullen D (1989) Molecular cloning and sequences of lignin peroxidase genes of Phanerochaete chrysosporium. Mol Cell Biol 9: 27432747Google Scholar
  116. Smith TL, Schlach H, Gaskell J, Covert S, Cullen D (1988) Nucleotide sequence of a ligninase gene from Phanerochaete chrysosporium. Nucl Acids Res 16: 12191223Google Scholar
  117. Stewart P, Kersten P, Vanden Wymelenberg A, Gaskell J, Cullen D (1992) Lignin peroxidase family of Phanerochaete chrysosporium: complex regulation by carbon and nitrogen limitation and identification of a second dimorphic chromosome. J Bacteriol 174: 5036–5042PubMedGoogle Scholar
  118. Sugiura J, Sakaino M, Kojima Y, Tsujioka K, Mutou Y, Shinohara Y, Koide K (1987) Purification and properties of phenol oxidose produced by white rot fungi and molecular cloning of phenol oxidose gene, In: Int Sem lignin enzymic and microbial degradation, Int Symp Wood and Pulping Chem, Paris, pp 317–320. Vol. 2Google Scholar
  119. Tien M (1987) Properties of ligninase from Phanerochaete chrysosporium and their possible applications. CRC Crit Rev Microbiol 15: 141–168CrossRefGoogle Scholar
  120. Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium. Science 221: 661–663PubMedCrossRefGoogle Scholar
  121. Tien M, Myer, SB (1990) Selection and characterization of mutants of Phanerochaete chrysosporium exhibiting ligninolytic activity under nutrient-rich conditions. Appl Environ Microbiol 56: 2540–2544PubMedGoogle Scholar
  122. Tien M, Tu CPD (1987) Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium. Nature 326: 520–523PubMedCrossRefGoogle Scholar
  123. Tien M, Kersten PJ, Kirk TK (1987) Selection and improvement of lignin-degrading microorganisms: potential strategy based on lignin model-amino acid adducts. Appl Environ Microbiol 53: 242–245PubMedGoogle Scholar
  124. Tonon F, Odier E (1988) Influence of veratryl alcohol and hydrogen peroxide on ligninase activity and ligninase production by Phanerochaete chrysosporium. Appl Environ Microbiol 54: 466–472PubMedGoogle Scholar
  125. Tonon F, de Castro CP, Odier E (1990) Nitrogen and carbon catabolite regulation on lignin peroxidase and enzymes of nitrogen metabolism in Phanerochaete chrysosporium. Exp Mycol 14: 243–254CrossRefGoogle Scholar
  126. Valli K, Gold MH (1991) Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. J Bacteriol 173: 345–352PubMedGoogle Scholar
  127. Venkatadri R, Irvine R (1990) Effect of agitation on ligninase activity and ligninase production by Phanerochaete chrysosporium. Appl Environ Microbiol 56: 2684–2691PubMedGoogle Scholar
  128. Waldner, R, Leisola MSA, Fiechter A (1988) Comparison of ligninolytic activities of selected white-rot fungi. Appl Microbiol Biotechnol 29: 400–407CrossRefGoogle Scholar
  129. Walther I, Kälin M, Reiser J, Suter F, Fritsche B, Saloheimo M, Leisola M, Teeri T, Knowles JKC, Feichter A (1988) Molecular analysis of a Phanerochaete chrysosporium lignin peroxidase gene. Gene 70: 127137Google Scholar
  130. Wang Z, Bleakley BH, Crawford DL, Hertel G, Rafii F (1990) Cloning and expression of a lignin peroxidase gene from Streptomyces viridosporus in Streptomyces lividans. J Biotechnol 13: 131–144PubMedCrossRefGoogle Scholar
  131. Wariishi H, Dunford HB, MacDonald ID, Gold MH (1989) Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Biol Chem 264: 3335–3340PubMedGoogle Scholar
  132. Wariishi H, Valli K, Gold MH (1991) in vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun 176: 269–275Google Scholar
  133. Wegner TH, Myers GC, Kirk TK (1991) Biological treatments as an alternative to chemical pretreatments in a high-yield wood pulping. Tappi J 74: 189–193Google Scholar
  134. Welinder KG (1976) Covalent structure of the glycoprotein horseradish peroxidase. FEBS Lett 72: 19–23PubMedCrossRefGoogle Scholar
  135. Welinder KG, Mazza G (1977) Amino acid sequences of heme-linked histidine-containing peptides of five peroxidases from horseradish and turnip. Eur J Biochem 73: 353–358PubMedCrossRefGoogle Scholar
  136. Zhang YZ, Reddy CA, Rasooly A (1991) Cloning of several lignin peroxidase (LIP)-encoding genes: sequence analysis of the LIP6 gene from the white rot basidiomycete, Phanerochaete chrysosporium. Gene 97: 191–198PubMedCrossRefGoogle Scholar
  137. Zhong LC, Linko S, Lindholm N, Linko YY (1988) Lignin peroxidase production by immobilized Phanerochaete chrysosporium. Ann NY Acad Sci 542: 153–157CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • A. B. Orth
    • 1
  • M. Tien
    • 2
  1. 1.Discovery ResearchDowElancoIndianapolisUSA
  2. 2.Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations