Skip to main content

Reverse Transcriptase Activities in Mycelial Fungi

  • Chapter

Part of the book series: The Mycota ((MYCOTA,volume 2))

Abstract

Reverse transcriptases (RT) are RNA-dependent DNA polymerases which were discovered in retroviruses more than 20 years ago by Baltimore (1970) and Temin and Mitzutami (1970). During the life cycle of retroviruses, the viral RNA genome in copied to a double-stranded DNA by the viral encoded RT. Subsequently, the DNA copy of the virus is incorporated into the host genomic DNA of infected cells. The transcription of the integrated viral DNA can be considered an amplification step, generating multiple copies of RNA containing the viral genome. Retroviruses have been found only in vertebrates. Since the discovery of RTs in retroviruses, many other genetic elements encoding RTs have been identified in a great variety of organisms. They have been designated retroelements mainly on their sequence similarity to retroviral reverse transcriptases (Doolittle et al. 1989; Xiong and Eickbush 1990). Retroelements include hepanoviruses from animals, caulimoviruses from plants, transposable elements from animals, plants and fungi, as well as group II introns and plasmids found in eukaryotic organelles. A comprehensive survey was published recently by Xiong and Eickbush (1990). According to Temin (1989), four different retroelements can be distinguished: retrotransposons, retroposons, retrons and retrosequences (Fig. 1). Retrotransposons and retroposons have been found in a great number of eukaryotes. Usually they carry two protein-encoding genes. The pol-gene encodes a multifunctional polypeptide with reverse transcriptase as well as a protease and endonuclease activity. The second gene, the gag-gene, encodes a DNA-binding group specific antigen (gag). In contrast to retroposons, retrotransposons are flanked by two long terminal repeats (LTRs) (for review see Boeke and Corces 1989). In addition to the pol- and gag-genes, retroviruses possess the env-gene which encodes an envelope polypeptide. This polypeptide is responsible for the infectivity of viruses, a property not found in retrotransposons and retroposons (reviewed by Varmus and Brown 1989).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akins RA, Kelley RL, Lambowitz AM (1986) Mitochondrial plasmids of Neurospora: integration into mitochondrial DNA and evidence for reverse transcription in mitochondria. Cell 47: 505–516

    PubMed  CAS  Google Scholar 

  • Akins RA, Grant DM, Strohl LL, Bottroff DA, Nargang FE, Lambowitz AM (1988) Nucleotide sequence of Varkud mitochondrial plasmid of Neurospora and synthesis of a hybrid transcript with a 5’ leader derived from mitochondrial RNA. J Mol Biol 204: 1–25

    PubMed  CAS  Google Scholar 

  • Akins RA, Kelley RL, Lambowitz AM (1989) Characterization of mutant mitochondrial plasmids of Neuro-spora ssp. that have incorporated tRNAs by reverse transcription. Mol Cell Biol 9: 678–691

    PubMed  CAS  Google Scholar 

  • Augustin S, Müller MW, Schweyen RJ (1990) Reverse self-splicing of group II intron RNAs in vitro. Nature 343: 383–386

    PubMed  CAS  Google Scholar 

  • Baltimore D (1970) Viral RNA-dependent DNA polymerase. Nature 226: 1209–1211

    PubMed  CAS  Google Scholar 

  • Belfort M (1990) Phage T4 introns: self-splicing and mobility. Annu Rev Genet 24: 363–385

    PubMed  CAS  Google Scholar 

  • Belfort M (1991) Self-splicing introns in prokaryotes: migrant fossils? Cell 64: 9–11

    PubMed  CAS  Google Scholar 

  • Bingham PM, Zacher Z (1989) Retrotransposons and the FB transposon from Drosophila melanogaster. In: Berg DE, Howe MM (eds) Mobile DNA. Am Soc Microbiol, Washington, DC, pp 485–502

    Google Scholar 

  • Boeke JD, Corces VG (1989) Transcription and reverse tanscription of retrotransposons. Annu Rev Microbiol 43: 403–434

    PubMed  CAS  Google Scholar 

  • Boer HP, Gray MW (1988) Genes encoding a subunit of respiratory NADH dehydrogenase (ND1) and a reverse transcriptase-like protein (RTL) are linked to ribosomal RNA gene pieces in Chlamydomonas reinhardtii mitochondrial DNA. EMBO J 7: 3501–3508

    PubMed  CAS  Google Scholar 

  • Bonitz SG, Coruzzi G, Thalenfeld B, Tzagoloff A, Macino G (1980) Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrome oxidase. J Biol Chem 255: 11927–11941

    PubMed  CAS  Google Scholar 

  • Bryk M, Belfort M (1990) Spontaneous shuffling of domains between introns of phage T4. Nature 346: 394–396

    PubMed  CAS  Google Scholar 

  • Burke JM (1988) Molecular genetics of group I introns: RNA structures and protein factors required for splicing — a review. Gene 73: 273–294

    PubMed  CAS  Google Scholar 

  • Cappello J, Handelsman K, Lodish H (1985) Sequence of Dictyostelium DIRS-1: an apparent retrotransposon with inverted terminal repeats and an internal circle junction sequence. Cell 43: 105–115

    PubMed  CAS  Google Scholar 

  • Carignani G, Groudinsky O, Frezza D, Schiavon E, Bergantino E, Slonimski PP (1983) An mRNA maturase is encoded by the first intron of the mitochondrial gene for the subunit I of cytochrome oxidase in S. cerevisiae. Cell 35: 733–742

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1985) Selfish DNA and the origin of introns. Nature 315: 283–284

    PubMed  CAS  Google Scholar 

  • Cech TR (1985) Self-splicing RNA: implications for evolution. Int Rev Cytol 93: 3–22

    PubMed  CAS  Google Scholar 

  • Cech TR (1989) Ribozyme self-replication? Nature 339: 507–508

    PubMed  CAS  Google Scholar 

  • Chapdelaine Y, Bonen L (1991) The wheat mitochondrial gene for subunit I of the NADH dehydrogenase complex: a trans-splicing model for this gene-in-pieces. Cell 65: 465–472

    PubMed  CAS  Google Scholar 

  • Chumley G, Valent B, Orbach MJ, Sweigard JA, Farrall L, Walter A (1991) Repeated DNA sequences and the analysis of host specificity in the rice blast fungus. Plant Mol Biol 2: 167–178

    Google Scholar 

  • Clare J, Farabaugh P (1985) Nucleotide sequence of yeast Ty element: evidence for an unusual mechanism of gene expression. Proc Natl Acad Sci USA 82: 2829–2833

    PubMed  CAS  Google Scholar 

  • Collins AR, Reynolds CA, Olive J (1981) The self-splicing intron in the Neurospora apocytochrome b gene contains a long open reading frame in frame with the upstream exon. Nucl Acids Res 16: 1125–1134

    Google Scholar 

  • Cummings DJ, Belcour L, Grandchamps C (1979) Mitochondrial DNA from Podospora anserina. II. Properties of mutant DNA and multimeric circular DNA from senescent cultures. Mol Gen Genet 171: 239–250

    Google Scholar 

  • Cummings DJ, MacNeil IA, Domenico JM, Matsuura ET (1985) Excision-amplification of mitochondrial DNA during senescence in Podospora anserina. DNA sequence of three unique “plasmids”. J Mol Biol 185: 659–680

    Google Scholar 

  • Cummings DJ, Michel F, Domenico JM, MacNally KL (1990) DNA sequence analysis of the mitochondrial ND4L-ND5 gene complex from Podospora anserina. J Mol Biol 212: 269–286

    PubMed  CAS  Google Scholar 

  • Deleu C, Turcq B, Begueret J (1990) Repa, a repetitive and dispersed DNA sequence of the filamentous fungus Podospora anserina. Nucl Acids Res 18: 4901–4903

    PubMed  CAS  Google Scholar 

  • Doolittle RF, Feng DF, Johnson MS, McClure MA (1989) Origins and evolutionary relationships of retroviruses. Q Rev Biol 64: 1–30

    PubMed  CAS  Google Scholar 

  • Dounda JA, Szostak JW (1989) RNA-catalysed synthesis of complementary-strand RNA. Nature 339: 519–522

    Google Scholar 

  • Esser K, Kück U, Lang-Hinrichs C, Lemke P, Osiewacz HD, Stahl U, Tudzynski P (1986) Plasmids of eukaryotes. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fassbender S (1993) Intron-kodierte Polypeptide aus Chloroplasten und Mitochondrien. Bibliotheca Mycologica, Vol. 152. Cramer, Berlin

    Google Scholar 

  • Fassbender S, Brichl KH, Ciriacy M, Kück U (1994) Reverse transcriptase activity of an intron encoded polypeptide. EMBO J 13: 2075–2083

    PubMed  CAS  Google Scholar 

  • Ferat JL, Michel F (1993) Group II self-splicing introns in bacteria. Nature 364: 358–361

    PubMed  CAS  Google Scholar 

  • Field D, Sommerfield A, Saville BJ, Collins RA (1989) A group II intron in the Neurospora mitochondrial col gene: nucleotide sequence and implications for splicing and molecular evolution. Nucl Acids Res 17: 9087–9099

    PubMed  CAS  Google Scholar 

  • Gabriel A, Yen TJ, Schwartz DC, Smith CL, Boeke JD, Sollner-Webb B, Cleveland DW (1990) A rapidly rearranging retrotransposon within the miniexon gene locus of Crithidia fasciculata. Mol Cell Biol 10: 615–624

    PubMed  CAS  Google Scholar 

  • Gargouri A, Lazowska J, Slonimski PP (1983) DNA-splicing of introns in the gene: a general way of reverting intron mutations. In: Schweyen R, Wolf K, Kaudewitz F (eds) Mitochondria 1983. Nucleo-mitochondrial interactions. De Gruyter, Berlin, pp 259–268

    Google Scholar 

  • Gilbert W (1978) Why genes in pieces? Nature 271:501 Gilbert W (1986) Origin of life. The RNA world. Nature 319: 618

    Google Scholar 

  • Gilbert W, Marchionni M, McKnight G (1986) On the antiquity of introns. Cell 46: 151–154

    PubMed  CAS  Google Scholar 

  • Gray MW, Cedergreen R, Abel Y, Sankoff D (1989) On the evolutionary origin of the plant mitochondrion and its genome. Proc Natl Acad Sci USA 86: 2267–2271

    PubMed  CAS  Google Scholar 

  • Grivell LA (1992) Trailing the itinerant intron. Nature 344: 110–111

    Google Scholar 

  • Hall DH, Liu Y, Shub DA (1989) Exon shuffling by recombination between self-splicing introns of bacteriophage T4. Nature 340: 574–576

    CAS  Google Scholar 

  • Hamer JE, Farrall L, Orbach MJ, Valent B, Chumley FG (1989) Host species-specific conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen. Proc Natl Acad Sci USA 86: 9981–9985

    PubMed  CAS  Google Scholar 

  • Hardy CM, Clark-Walker GD (1991) Nucleotide sequence of the COX/ gene in Kluyveromyces lactis mitochondrial DNA: evidence for recent horizontal transfer of a group II intron. Curr Genet 20: 99–114

    PubMed  CAS  Google Scholar 

  • Hattori MS, Kuhara O, Takenaka O, Sakaki Y (1986) Ll family of repetitive sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein. Nature 321: 625–627

    PubMed  CAS  Google Scholar 

  • Hsu MY, Inouye M, Inouye S (1990) Retron from the 67-base multicopy single-stranded DNA from Escherichia coli: a potential transposable element encoding both reverse transcriptase and Dam methylase functions. Proc Natl Acad Sci USA 87: 9454–9458

    PubMed  CAS  Google Scholar 

  • Inouye S, Hsu MY, Eagle S, Inouye M (1989) Reverse transcriptase associated with the biosynthesis of branched RNA-linked msDNA in Myxococcus xanthus. Cell 56: 709–717

    PubMed  CAS  Google Scholar 

  • Inouye S, Herzer PJ, Inouye M (1990) Two independent retrons with highly diverse reverse transcriptases in Myxococcus xanthus. Proc Natl Acd Sci USA 87: 942–945

    CAS  Google Scholar 

  • Inouye M, Inouye S (1993a) The retron: a bacterial retro-element required for the synthesis of msDNA. Curr Opin Genet Dev 3: 713–718

    PubMed  CAS  Google Scholar 

  • Inouye M, Inouye S (1993b) Bacterial reverse transcriptase. In: Goff S, Skalka A (eds) Reverse Transcriptase. Cold Spring Harbor Press, New York, pp 391–410

    Google Scholar 

  • Julien J, Poirier-Hamon S, Brygoo Y (1992) Foretl, a reverse transcriptase-like sequence in the filamentous fungus Fusarium oxysporum. Nucl Acids Res 20: 3933–3937

    Google Scholar 

  • Kennell JC, Moran VJ, Perlman PS, Butow RA, Lambowitz AM (1993) Reverse transcriptase activity associated with maturase-encoding group II introns in yeast mitochondria. Cell 73: 133–146

    PubMed  CAS  Google Scholar 

  • Kingsman AJ, Adams SE, Burns NR, Kingsman SM (1991) Retroelement particles as purification, presentation and targeting vehicles. TIBTECH 9: 303–309

    CAS  Google Scholar 

  • Kinsey JA (1989) Restricted distribution of the Tad transposon in strains of Neurospora. Curr Genet 15: 271–275

    PubMed  CAS  Google Scholar 

  • Kinsey JA (1990) Tad,a LINE-like transposable element of Neurospora,can transpose between nuclei in heterokaryons. Genetics 126:317–323

    Google Scholar 

  • Kinsey JA, Helber J (1989) Isolation of a transposable element fron Neurospora crassa. Proc Natl Acad Sci USA 86: 1929–1933

    PubMed  CAS  Google Scholar 

  • Kono M, Satoh H, Okabe Y, Abe Y, Nakayama K, Okada M (1991) Nucleotide sequence of the large subunit of ribulose-l,5-bisphosphate carboxylase/oxygenase from the green alga Bryopsis maxima. Plant Mol Biol 17: 505–508

    PubMed  CAS  Google Scholar 

  • Kück U (1989a) Mitochondrial DNA rearrangements in Podospora anserina. Exp Mycol 13: 111–120

    Google Scholar 

  • Kück U (1989b) The intron from a plastid gene from a green alga contains an open reading frame for a reverse transcriptase-like enzyme. Mol Gen Genet 218: 257–266

    PubMed  Google Scholar 

  • Kück U, Stahl U, Esser K (1981) Plasmid-like DNA is part of mitochondrial DNA in Podospora anserina. Curr Genet 3: 151–156

    Google Scholar 

  • Kück U, Osiewacz HD, Schmidt U, Kappelhoff B, Schulte E, Stahl U, Esser K (1985) The onset of senescence is affected by DNA rearrangements of a discontinuous mitochondrial gene in Podospora anserina. Curr Genet 9: 373–382

    PubMed  Google Scholar 

  • Kuiper MTR, Lambowitz AM (1988) A novel reverse transcriptase activity associated with mitochondrial plasmids of Neurospora. Cell 55: 693–704

    PubMed  CAS  Google Scholar 

  • Kuiper MTR, Sabourin JR, Lambowitz AM (1990) Identification of the reverse transcriptase encoded by the Mauriceville and Varkud mitochondrial plasmids of Neurospora. J Biol Chem 265: 6936–6943

    PubMed  CAS  Google Scholar 

  • Lambowitz AM (1989) Infectious introns. Cell 56: 323–326

    PubMed  CAS  Google Scholar 

  • Lambowitz AM, Belfort M (1993) Introns as mobile genetic elements. Annu Rev Biochem 62: 587–622

    PubMed  CAS  Google Scholar 

  • Lambowitz AM, Perlman PS (1990) Involvement of aminoacyl-tRNA synthetases and other proteins in group I and group II intron splicing. Trends Biochem 15: 440–444

    Google Scholar 

  • Lampson BC, Inouye M, Inouye S (1989a) Reverse transkriptase with concominant ribonuclease H activity in a cell-free system of branched RNA-linked msDNA of Myxococcus xanthus. Cell 56: 701–707

    PubMed  CAS  Google Scholar 

  • Lampson BC, Sun J, Hsu MY, Valletjo-Ramirez J, Inouye S, Inouye M (1989b) Reverse transcriptase in a clinical strain of Escherichia coli: production of branched RNA-linked msDNA. Science 243: 1033–1038

    PubMed  CAS  Google Scholar 

  • Lampson BC, Viswanathan M, Inouye M, Inouye S (1990) Reverse transcriptase from Escherichia coli exists as a complex with msDNA and is able to synthesize double-stranded DNA. J Biol Chem 265: 8490–8496

    PubMed  CAS  Google Scholar 

  • Lang BF, Ahne F, Bonen L (1985) The mitochondrial genome of the fission yeast Schizosaccharomyces pombe. J Mol Biol 184: 353–366

    PubMed  CAS  Google Scholar 

  • Levra-Juillet E, Boulet A, Seraphin B, Simon M, Faye G (1989) Mitochondrial introns all and/or a12 are needed for the in vivo deletion of intervening sequences. Mol Gen Genet 217: 168–171

    PubMed  CAS  Google Scholar 

  • Lim D, Maas WK (1989) Reverse transkriptase-dependent synthesis of of a covalently linked, branched DNA-RNA compound in E. coli B. Cell 56: 891–904

    PubMed  CAS  Google Scholar 

  • Marcou D (1961) Notion de longévité et nature cytoplasmique du déterminant de la sénescence chez quelques champignons. Ann Sci Nat Bot Sér 12 (2): 653–764

    Google Scholar 

  • Matsuura ET, Domenico JM, Cummings DJ (1986) An additional class II intron with homology to reverse transcriptase in rapidly senescing Podospora anserina. Curr Genet 10: 915–922

    PubMed  CAS  Google Scholar 

  • McHale MT, Roberts IN, Noble SM, Beaumont C, Whitehead MP, Seth D, Oliver RP (1992) CfT-I: an LTR-retrotransposon in Cladosporium fulvum, a fungal pathogen of tomato. Mol Gen Genet 233: 337–347

    PubMed  CAS  Google Scholar 

  • Meunier B, Tian GL, Macadre C, Slonimski PP, Lazowska J (1990) Group II introns transpose in yeast mitochondria. In: Quagliariello E, Papa S, Palmieri F, Saccone C (eds) Structure, function and biogenesis of energy transfer systems. Elsevier, Amsterdam, pp 169–173

    Google Scholar 

  • Michel F, Lang FB (1985) Mitochondrial class II introns encode proteins related to reverse transcriptases of retroviruses. Nature 316: 641–642

    PubMed  CAS  Google Scholar 

  • Mohr G, Lambowitz AM (1992) Integration of a group I intron into a ribosomal RNA sequence promoted by a tyrosyl-tRNA synthetase. Nature 354: 164–167

    Google Scholar 

  • Mörl M, Schmelzer C (1990) Group II intron RNA-catalyzed recombination of RNA in vitro. Nucl Acids Res 18: 6545–6551

    PubMed  Google Scholar 

  • Nargang FE, Bell JB, Stohl LL, Lambowitz AM (1984) The DNA sequence and genetic organisation of a Neurospora mitochondrial plasmid suggest a relationship to introns and mobile elements. Cell 38: 441–453

    PubMed  CAS  Google Scholar 

  • North G (1987) Back to the RNA world — and beyond. Nature 328: 18–19

    PubMed  CAS  Google Scholar 

  • Oda K, Yamato K, Ohta E, Nakamura Y, Tekemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T, Ohyama K (1992a) Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. J Mol Biol 223: 1–7

    PubMed  CAS  Google Scholar 

  • Oda K, Yamato K, Ohta E, Nakamura Y, Tekemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T, Ohyama K (1992b) Complete nucleotide sequence of the mitochondrial DNA from liverwort, Marchantia polymorpha. Plant Mol Biol Rep 10: 105–163

    CAS  Google Scholar 

  • Oliver R (1992) Transposons in Filamentous Fungi. In: Stahl U, Tudzynski P (eds) Molecular biology of filamentous fungi. VCH, Weinheim, pp 3–11

    Google Scholar 

  • Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284: 604–607

    PubMed  CAS  Google Scholar 

  • Osiewacz HD, Esser K (1984) The mitochondrial plasmid of Podospora anserina: a mobile intron of a mitochondrial gene. Curr Genet 8: 299–305

    CAS  Google Scholar 

  • Osiewacz HD, Hermanns J (1992) The role of mitochondrial DNA rearrangements in aging and human diseases. Aging Clin Exp Res 4: 273–286

    CAS  Google Scholar 

  • Perlman PS, Butow RA (1989) Mobile introns and intronencoded proteins. Science 246: 1106–1109

    PubMed  CAS  Google Scholar 

  • Rice SA, Bieber J, Chun JY, Stacey G, Lampson BC (1993) Diversity of retron elements in a population of Rhizobia and other Gram-negative bacteria. J Bacteriol 175: 4250–4254

    PubMed  CAS  Google Scholar 

  • Rizet G (1957) Les modifications qui conduisent à la sénescence chez Podospora anserina: sont-elles de nature plasmique? CR Acad Sci Paris 244: 663–665

    CAS  Google Scholar 

  • Schechtman MG (1987) Isolation of telomere DNA from Neurospora crassa. Mol Cell Biol 7: 3168–3177

    PubMed  CAS  Google Scholar 

  • Schechtman MG (1990) Characterization of telomere DNA from Neurospora crassa. Gene 88: 159–165

    PubMed  CAS  Google Scholar 

  • Schmidt U, Kosack M, Stahl U (1987) Lariat RNA of a group II intron in a filamentous fungus. Curr Genet 12: 291–295

    CAS  Google Scholar 

  • Schuster W, Brennicke A (1987) Plastid, nuclear and reverse transcriptase sequences in the mitochomdrial genome of Oenothera: is genetic information transferred between organelles via RNA? EMBO J 6: 2857–2863

    PubMed  CAS  Google Scholar 

  • Seiki M, Hattori S, Hirayama Y, Yoshida M (1983) Human adult T-cell leukemia virus: complete nucleotide sequence of the proviral genome integrated in leukemia cell DNA. Proc Natl Acad Sci USA 80: 3618–3622

    PubMed  CAS  Google Scholar 

  • Sellem CH, Sainsard-Chanet A, Belcour L (1990) Detection of a protein encoded by a class II mitochondrial intron of Podospora anserina. Curr Genet 224: 232–240

    CAS  Google Scholar 

  • Sharp PA (1985) On the origin of RNA splicing and introns. Cell 42: 397

    PubMed  CAS  Google Scholar 

  • Shinnick TM, Lerner RA, Sutclife JG (1981) Nucleotide sequence of Moloney murine leukaemia virus. Nature 293: 543–548

    PubMed  CAS  Google Scholar 

  • Skelly PJ, Hardy CM, Clark-Walker GD (1991) A mobile group II intron of a naturally occurring rearranged mitochondrial genome in Kluyveromyces lactis. Curr Genet 20: 115–120

    PubMed  CAS  Google Scholar 

  • Stahl U, Lemke PA, Tudzynski P, Kück U, Esser K (1978) Evidence for plasmid-like DNA in a filamentous fungus, the ascomycete Podospora anserina. Mol Gen Genet 162: 341–343

    PubMed  CAS  Google Scholar 

  • Steinhilber W, Cummings DJ (1986) A DNA polymerase activity with characteristics of a reverse transcriptase in Podospora anserina. Curr Genet 10: 389–392

    PubMed  CAS  Google Scholar 

  • Sun J, Herzer PJ, Weinstein MP, Lampson BC, Inouye M, Inouye S (1989) Extensive diversity of branched-RNAlinked multicopy single-stranded DNAs in clinical strains of Escherichia coli. Proc Natl Acad Sci USA 86: 7208–7212

    PubMed  CAS  Google Scholar 

  • Temin HM (1989) Retrons in bacteria. Nature 339: 254–255

    PubMed  CAS  Google Scholar 

  • Temin HM, Mitzutani S (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226: 1211–1213

    PubMed  CAS  Google Scholar 

  • Toh H, Hayasiada H, Miayata T (1983) Sequence homology between retroviral reverse transcriptase and putative polymerase of hepatitis B virus and cauliflower mosaic virus. Nature 305: 827–829

    PubMed  CAS  Google Scholar 

  • Toh H, Kikuno R, Hayashida T, Miyata T, Kugimiya W, Inouye S, Yuki S, Saigo K (1985) Close structural resemblance between putative polymerase of a Drosophila transposable genetic element 17.6 and pol gene product of Moloney murine leukaemia virus. EMBO J 4: 1267–1272

    PubMed  CAS  Google Scholar 

  • Valent B, Chumley FG (1991) Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annu Rev Phytopathol 29: 443–467

    PubMed  CAS  Google Scholar 

  • Varmus H, Brown P (1989) Retroviruses. In: Berg DE, Howe MM (eds) Mobile DNA. Am Soc Microbiol, Washington, DC, pp 53–108

    Google Scholar 

  • Walbot V (1992) Strategies for mutagenesis and gene cloning using transposon tagging and t-DNA insertional mutagenesis. Annu Rev Plant Physiol 43: 49–82

    CAS  Google Scholar 

  • Waldrop MM (1992) Finding RNA makes proteins gives “RNA world” a big boost. Science 256: 1396–1397

    PubMed  CAS  Google Scholar 

  • Wahleithner JA, MacFarlalane JL, Wolstenholme DR (1990) A sequence encoding a maturase-related protein in a group II intron of a plant mitochondrial nadl gene. Proc Natl Acad Sci USA 87: 548–552

    PubMed  CAS  Google Scholar 

  • Wang H, Kennell JC, Kuiper MTR, Sabourin JR, Saladanha R, Lambowitz AM (1992) The Mauriceville plasmid of Neurospora crassa: characterization of a novel reverse transcriptase that begins cDNA synthesis at the 3’ end of template RNA. Mol Cell Biol 12: 5131–5144

    PubMed  CAS  Google Scholar 

  • Wilson C, Fukuhara H (1991) Distribution of mitochondria) r1-type introns and associated open reading frame in the yeast genus Kluyveromyces. Curr Genet 19: 163–167

    PubMed  CAS  Google Scholar 

  • Wissinger B, Schuster W, Brennicke A (1991) Trans-splicing in Oenothera mitochondria: nad) mRNAs are edited in exon and trans-splicing group II intron sequences. Cell 65: 473–482

    Google Scholar 

  • Woodson SA, Cech TR (1989) Reverse splicing of the Tetrahymena group I intron: implication for the directionality of splicing and for intron transposition. Cell 57: 335–345

    PubMed  CAS  Google Scholar 

  • Xiong Y, Eickbush TH (1988) Similarity of reverse transcriptase-like sequences of virus, transposable elements and mitochondria) introns. Mol Biol Evol 5: 675–690

    PubMed  CAS  Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9: 3353–3362

    PubMed  CAS  Google Scholar 

  • Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondria) origins. Proc Natl Acad Sci USA 82: 4443–4447

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fassbender, S., Kück, U. (1995). Reverse Transcriptase Activities in Mycelial Fungi. In: Kück, U. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10364-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10364-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10366-1

  • Online ISBN: 978-3-662-10364-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics