Skip to main content

Viral RNA and the Killer Phenomenon of Saccharomyces

  • Chapter
Book cover Genetics and Biotechnology

Part of the book series: The Mycota ((MYCOTA,volume 2))

Abstract

The yeast Saccharomyces cerevisiae harbors two families of dsRNA viruses (L-A and its satellites, and L-BC), two ssRNA replicons (20S RNA and 23S RNA) and at least five retrovirus-like elements (Tyl,..., Ty5), referred to as retro-transposons. Most strains carry all of these elements in spite of the fact that none is known to have a natural extracellular route of infection. This may be a reflection of the fact that Saccharomyces, like many other fungi, mate frequently in nature so that these viruses become widely distributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ball SG, Tirtiaux C, Wickner RB (1984) Genetic control of L-A and L-BC dsRNA copy number in killer systems of Saccharomyces cerevisiae. Genetics 107: 199–217

    PubMed  CAS  Google Scholar 

  • Boone C, Bussey H, Greene D, Thomas DY, Vernet T (1986) Yeast killer toxin: site-directed mutations implicate the precursor protein as the immunity component. Cell 46: 105–113

    Article  PubMed  CAS  Google Scholar 

  • Boone C, Sommer SS, Hensel A, Bussey H (1990) Yeast KRE genes provide evidence for a pathway of cell wall ß-glucan assembly. J Cell Biol 110: 1833–1843

    Article  PubMed  CAS  Google Scholar 

  • Bostian KA, Bussey H, Elliott Q, Burn B, Smith A, Tipper DJ (1984) Sequence of the preprotoxin dsRNA gene of type I killer yeast: multiple processing events produce a two component toxin. Cell 36: 741–751

    Article  PubMed  CAS  Google Scholar 

  • Bozarth RF, Koltin Y, Weissman MB, Parker RL, Dalton RE, Stenlauf R (1981) The molecular weight and packaging of dsRNAs in the mycovirus from Ustilago maydis killer strains. Virology 113: 492–502

    Article  PubMed  CAS  Google Scholar 

  • Brown JL, Kossaczka Z, Jiang B, Bussey H (1993) A mutational analysis of killer toxin resistance in S. cerevisiae identifies new genes involved in cell wall (1.6)-ßglucan synthesis. Genetics 133: 837–849

    PubMed  CAS  Google Scholar 

  • Bruenn JA (1980) Virus-like particles of yeast. Annu Rev Microbiol 34: 49–68

    Article  PubMed  CAS  Google Scholar 

  • Buck KW (1979) Replication of double-stranded RNA mycoviruses. In: Lemke AP (ed) Viruses and plasmids in fungi. Marcel Dekker, New York, pp 93–160

    Google Scholar 

  • Buck KW, Lhoas P, Street BK (1973) Virus particles in yeast. Biochem Soc Trans 1: 1141–1142

    CAS  Google Scholar 

  • Bussey H (1988) Proteases and the processing of precursors to secreted proteins in yeast. Yeast 4: 17–26

    Article  PubMed  CAS  Google Scholar 

  • Bussey H (1991) K1 killer toxin, a pore-forming protein from yeast. Mol Microbiol 5: 2339–2343

    Article  PubMed  CAS  Google Scholar 

  • Bussey H, Saville D, Greene D, Tipper DJ, Bostian KA (1983) Secretion of Saccharomyces cerevisiae killer toxin: processing of the glycosylated precursor. Mol Cell Biol 3: 1362–1370

    PubMed  CAS  Google Scholar 

  • Bussey H, Boone, C, Zhu H, Vernet T, Whiteway M, Thomas DY (1990) Genetic and molecular approaches to synthesis and action of yeast killer toxin. Experientia 46: 193–200

    Article  PubMed  CAS  Google Scholar 

  • Cooper A, Bussey H (1989) Characterisation of the yeast KEX1 gene product: a carboxypeptidase involved in processing secreted precursor proteins. Mol Cell Biol 9: 2706–2714

    PubMed  CAS  Google Scholar 

  • Cooper A, Bussey H (1992) Yeast Kexlp is a Golgi-associated membrane protein: deletions in a cytoplasmic targeting domain result in mislocalization to the vacuolar membrane. J Cell Biol 119: 1459–1468

    Article  PubMed  CAS  Google Scholar 

  • De la Pena PF, Barros F, Gascon S, Ramos S, Lazo P (1980) Primary effects of yeast killer toxin. Biochem Biophys Res Commun 96: 544–550

    Article  PubMed  Google Scholar 

  • De la Pena PF, Barros F, Gascon S, Lazo PS, Ramos S (1981) Effect of yeast killer toxin on sensitive cells of Saccharomyces cerevisiae. J Biol Chem 256: 10420–10425

    Google Scholar 

  • Dignard D, Whiteway M, Germain D, Tessier D, Thomas DY (1991) Expression in yeast of a cDNA copy of the K2 killer toxin gene. Mol Gen Genet 227: 127–136

    Article  PubMed  CAS  Google Scholar 

  • Dihanich M, Van Tuinen E, Lambris JD, and Marshallsay B (1989) Accumulation of viruslike particles in a yeast mutant lacking a mitochondrial pore protein. Mol Cell Biol 9: 1100–1108

    PubMed  CAS  Google Scholar 

  • Dinman JD, Wickner RB (1992) Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M1 double-stranded RNA virus propagation. J Virol 66: 3669–3676

    PubMed  CAS  Google Scholar 

  • Dinman JD, Icho T, Wickner RB (1991) A-1 ribosomal frameshift in double-stranded RNA virus of yeast forms a gag-pol fusion protein. Proc Natl Acad Sci USA 88: 174–178

    Article  PubMed  CAS  Google Scholar 

  • Dmochowska A, Dignard D, Henning D, Thomas DY, Bussey H (1987) Yeast KEX1 gene encodes a putative carboxypeptidase b-like protein involved in killer toxin and a-factor precursor processing. Cell 50: 573–584

    Article  PubMed  CAS  Google Scholar 

  • Esteban R, Wickner RB (1986) Three different M1 RNA-containing viruslike particle types in Saccharomyces cerevisisae: in vitro M1 dsRNA synthesis. Mol Cell Biol 6: 1552–1561

    PubMed  CAS  Google Scholar 

  • Esteban R, Wickner RB (1987) A new non-Mendelian genetic element of yeast that increases cytopathology produced by M1 double-stranded RNA in ski strains. Genetics 117: 399–408

    PubMed  CAS  Google Scholar 

  • Esteban R, Wickner RB (1988) A deletion mutant of L-A dsRNA replicates like M1 dsRNA. J Virol 62: 12781285

    Google Scholar 

  • Esteban R, Fujimura T, Wickner RB (1988) Site-specific binding of viral plus single-stranded RNA to replicasecontaining open virus-like particles of yeast. Proc Natl Acad Sci USA 85: 4411–4415

    Article  PubMed  CAS  Google Scholar 

  • Esteban R, Fujimura T, Wickner RB (1989) Internal and terminal cis-acting sites are necessary for in vitro replication of the L-A double-stranded RNA virus of yeast. EMBO J 8: 947–954

    PubMed  CAS  Google Scholar 

  • Fujimura T, Wickner RB (1987) L-A double-stranded RNA viruslike particle replication cycle in Saccharomyces cerevisiae: particle maturation in vitro and effects of mak10 and pet18 mutations. Mol Cell Biol 7: 420–426

    PubMed  CAS  Google Scholar 

  • Fujimura T, Wickner RB (1988a) Gene overlap results in a viral protein having an RNA-binding domain and a major coat protein domain. Cell 55: 663–67

    Article  PubMed  CAS  Google Scholar 

  • Fujimura T, Wickner RB (1988b) Replicase of L-A virus-like particles of Saccharomyces cerevisiae. In vitro conversion of exogenous L-A and M1 single-stranded RNAs to double-stranded form. J Biol Chem 263: 454–460

    Google Scholar 

  • Fujimura T, Wickner RB (1989) Reconstitution of template-dependent in vitro transcriptase activity of a yeast double-stranded RNA virus. J Biol Chem 264: 10872–10877

    PubMed  CAS  Google Scholar 

  • Fujimura T, Wickner RB (1992) Interaction of two cis sites with the RNA replicase of the yeast L-A virus. J Biol Chem 267: 2708–2713

    PubMed  CAS  Google Scholar 

  • Fujimura T, Esteban R, Wickner RB (1986) In vitro L-A dsRNA synthesis in virus-like particles from Saccharomyces cerevisiae. Proc Natl Acad Sci USA 83: 44334437

    Google Scholar 

  • Fujimura T, Esteban R, Esteban, LM, Wickner RB (1990) Portable encapsidation signal of the L-A double-stranded RNA virus of S. cerevisiae. Cell 62: 819–828

    Article  PubMed  CAS  Google Scholar 

  • Fujimura T, Ribas JC, Makhov AM, Wickner RB (1992) Pol of gag-pol fusion protein required for encapsidation of viral RNA of yeast L-A virus. Nature 359: 746749

    Google Scholar 

  • Fuller RS, Brake AJ, Thorner J (1989) Intracellular targeting and structural conservation of a prohormoneprocessing endopeptidase. Science 246: 482–486

    Article  PubMed  CAS  Google Scholar 

  • Hannig EM, Leibowitz MJ (1985) Structure and expression of the M2 genomic segment of the type 2 killer virus of yeast. Nucl Acids Res 13: 4379–4400

    Article  PubMed  CAS  Google Scholar 

  • Hatfield DL, Lavin JG, Rein A, Oroszlan S (1992) Translational supression in retroviral gene expression. Adv Virus Res 41: 193–239

    Article  PubMed  CAS  Google Scholar 

  • Hausler A, Ballou L, Ballou CE, Robbins PW (1992) Yeast glycoprotein biosynthesis: MNT1 encodes an a1,2-mannosyltransferase involved in O-glycosylation. Proc Natl Acad Sci USA 89: 6846–6850

    Article  PubMed  CAS  Google Scholar 

  • Herring AJ, Bevan AE (1974) Virus-like particles associated with the double-stranded RNA species found in killer and sensitive strains of the yeast Saccharomyces cerevisiae. J Gen Virol 22: 387–394

    Article  PubMed  CAS  Google Scholar 

  • Hill K, Boone C, Goebl M, Puccia R, Sdicu A M, Bussey H (1992) Yeast KRE2 defines a new gene family encoding probable secretory proteins, and is required for the correct N-glycosylation of proteins. Genetics 130: 273–283

    PubMed  CAS  Google Scholar 

  • Hopper JE, Bostian KA, Rowe LB, Tipper DJ (1977) Translation of the L-species dsRNA found in killer and sensitive strains of the yeast Saccharomyces cerevisiae. J Biol Chem 252: 9010–9017

    PubMed  CAS  Google Scholar 

  • Huan B, Shen Y, Bruenn JA (1991) In vivo mapping of a sequence required for interference with the yeast killer virus. Proc Natl Acad Sci USA 88: 1271–1275

    Article  PubMed  CAS  Google Scholar 

  • Hutchins K, Bussey H (1983) Cell wall receptor for yeast killer toxin: involvement of a (1.6)-ß-D-glucan. J Bacteriol 154: 161–169

    PubMed  CAS  Google Scholar 

  • Icho T, Wickner RB (1988) The MAK11 protein is essential for cell growth and replication of M double-stranded RNA and is apparently a membrane-associated protein. J Biol Chem 263: 1467–75

    PubMed  CAS  Google Scholar 

  • Icho T, Wickner RB (1989) The double-stranded RNA genome of yeast virus L-A encodes its own putative RNA polymerase by fusing two open reading frames J Biol Chem 264: 6716–6723

    CAS  Google Scholar 

  • Jacks T, Madhani HD, Masiarz FR, Varmus HE (1988) Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55: 447–458

    Article  PubMed  CAS  Google Scholar 

  • Janda M, Ahlquist P (1993) RNA-dependent replication, transcription and persistence of Brome Mosaic virus RNA replicons in S. cerevisiae. Cell 72: 961–970

    Article  PubMed  CAS  Google Scholar 

  • Julius D, Brake A, Blair L, Kunisawa R, Thorner J (1984) Isolation of the putative structural gene for the lysinearginine-cleaving endopeptidase required for the processing of yeast prepro-alpha factor. Cell 36: 309318

    Google Scholar 

  • Koltin Y (1988) The killer system of Ustilago maydis: secreted polypeptides encode by viruses. In: Koltin Y, Leibowitz MJ (eds) Viruses of fungi and simple eukaryotes. Marcel Dekker, New York, pp 209–242

    Google Scholar 

  • Lee Y, Wickner RB (1992) MAK10, a glucose-repressible gene necessary for replication of a dsRNA virus of Saccharomyces cerevisiae, has T cell receptor a-subunit motifs. Genetics 132: 87–96

    PubMed  CAS  Google Scholar 

  • Leibowitz MJ, Wickner RB (1976) A chromosomal gene required for killer plasmid expression, mating, and spore maturation in Saccharomyces cerevisiae. Proc Natl Acad Sci 73: 2061–2065

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Dieckmann CL (1989) Overproduction of yeast virus-like particle coat protein genome in strains deficient in a mitochondrial nuclease. Mol Cell Biol 9: 3323–3331

    PubMed  CAS  Google Scholar 

  • Lolle SJ, Bussey H (1986) In vivo evidence of post-translational translocation and signal cleavage of the killer preprotoxin of S. cerevisiae. Mol Cell Biol 6: 42744280

    Google Scholar 

  • Lussier M, Camirand A, Sdicu A M, Bussey H (1993) KTR2: a new member of the KRE2 mannosyltransferase gene family. Yeast 9: 1057–1063

    Google Scholar 

  • Martinac B, Zhu H, Kubalski A, Zhou X, Culbertson M, Bussey H, Kung C (1990) Yeast K1 killer toxin forms ion channels in sensitive yeast spheroplasts and in artificial liposomes. Proc Natl Acad Sci USA 87: 62286232

    Google Scholar 

  • Matsumoto, Y, Fishel R, Wickner RB (1990) Circular single-stranded RNA replicon in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 87: 7628–32

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, Y, Sarkar G, Sommer SS, Wickner RB (1993) A yeast antiviral protein, SKIE, shares a repeated amino acid sequence pattern with beta-subunits of G proteins and several other proteins. Yeast 8: 43–51

    Article  Google Scholar 

  • Meaden P, Hill K, Wagner J, Slipetz D, Sommer SS, Bussey H (1990) The yeast KRE5 gene encodes a probable endoplasmic reticulum protein required for (1.6)-ßD-glucan synthesis and normal cell growth. Mol Cell Biol 10: 3013–3019

    PubMed  CAS  Google Scholar 

  • Meskauskas A (1990) Nucleotide sequence of cDNA to yeast M2–1 dsRNA segment. Nucl Acids Res 18: 67206720

    Google Scholar 

  • Meskauskas A, Citivicius D (1992) The K2-killer toxin and immunity-encoding region from Saccharomyces cerevisiae: structure and expression in yeast. Gene 111: 135–139

    Article  PubMed  CAS  Google Scholar 

  • Neville DM, Hudson TH (1986) Transmembrane transport of diphtheria toxin, related toxins, and colicins. Annu Rev Biochem 55: 195–224

    Article  PubMed  CAS  Google Scholar 

  • Newman AM, Elliot SG, McLaughlin CS, Sutherland PA, Warner RC (1981) Replication of dsRNA of the virus-like particles in Saccharomyces cerevisiae. J Virol 38: 263–271

    PubMed  CAS  Google Scholar 

  • Pattus F, Massotte D, Wilmsen J, Lakey D, Tsernoglou D, Tucker A, Parker MW (1990) Colicins: prokaryotic killer-pores. Experientia 46: 180–192

    PubMed  CAS  Google Scholar 

  • Pfeiffer P, Radler F (1982) Purification and characterization of extracellular and intracellular killer toxin of Saccharomyces cerevisiae strain 28. J Gen Microbiol 128: 2699–2706

    CAS  Google Scholar 

  • Pfeiffer P, Radler F (1984) Comparison of the killer toxin of several yeasts and the purification of a toxin of type K2. Arch Microbiol 137: 357–361

    Article  PubMed  CAS  Google Scholar 

  • Ratti G, Buck KW (1978) Semiconservative transcription in particles of a double-stranded RNA mycovirus. Nucl Acids Res 5: 3843–3854

    Article  PubMed  CAS  Google Scholar 

  • Redding K, Holcomb C, Fuller RS (1991) Immunolocalization of Kex2 protease identifies a putative late Golgi compartment in Saccharomyces cerevisiae. J Cell Biol 113: 527–538

    Article  PubMed  CAS  Google Scholar 

  • Rhee SK, Icho T, Wickner RB (1989) Structure and nuclear localization signal of the SKI3 antiviral protein of Saccharomyces cerevisiae. Yeast 5: 149–58

    Article  PubMed  CAS  Google Scholar 

  • Ridley SP, Sommer SS, Wickner RB (1984) Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 double-stranded RNA by L-A-HN and confer cold sensitivity in the presence of M and L-AHN. Mol Cell Biol 4: 761–770

    PubMed  CAS  Google Scholar 

  • Roemer T, Bussey H (1991) Yeast ß-glucan synthesis: KRE6 encodes a predicted type II membrane protein required for glucan synthesis in vivo and for glucan synthase activity in vitro. Proc Natl Acad Sci USA 88: 11295–11299

    Article  PubMed  CAS  Google Scholar 

  • Roemer T, Delaney S, Bussey H (1993) SKN1 and KRE6 define a pair of functional homologs encoding putative membrane proteins involved in ß-glucan synthesis. Mol Cell Biol 13: 4039–4048

    PubMed  CAS  Google Scholar 

  • Rogers DT (1976) The genetic and phenotypic characterization of killer strains of yeast isolated from different sources. PhD Thesis, Queen Mary College, University of London, UK

    Google Scholar 

  • Rogers D, Bevan EA (1978) Group classification of killer yeasts based on cross-reactions between strains of different species and origin. J Gen Microbiol 105: 199202

    Google Scholar 

  • Russell PJ, Hambidge SJ, Kirkegaard K (1991) Direct introduction and transient expression of capped and non-capped RNA in Saccharomyces cerevisiae. Nucl Acids Res 19: 4949–4953

    Article  PubMed  CAS  Google Scholar 

  • Schmitt MJ, Pfeiffer PC (1990) Immunochemical analysis of the carbohydrate moiety of the yeast killer toxin K28. Antonie Leeuwenhoek 58: 277–282

    Article  PubMed  CAS  Google Scholar 

  • Schmitt M, Radler F (1987) Mannoprotein of the yeast cell wall as a primary receptor for the killer toxin of Saccharomyces cerevisiae strain 28. J Gen Microbiol 133: 3347–3354

    PubMed  CAS  Google Scholar 

  • Schmitt M, Radler F (1988) Molecular structure of the cell wall receptor for killer toxin K28 in Saccharomyces cerevisiae. J Bacteriol 170: 2192–2196

    PubMed  CAS  Google Scholar 

  • Schmitt M, Tipper DJ (1990) K28, a unique double-stranded RNA killer virus of Saccharomyces cerevisiae. Mol Cell Biol 10: 4807–4815

    PubMed  CAS  Google Scholar 

  • Schmitt M, Brendel M, Schwarz R, Radler F (1989) Inhibition of DNA synthesis in Saccharomyces cerevisiae by yeast killer toxin KT28. J Gen Microbiol 135: 15291535

    Google Scholar 

  • Sclafani RA, Fangman WL (1984) Conservative replication of dsRNA in Saccharomyces cerevisiae by displacement of progenie single strands. Mol Cell Biol 4: 1618–1626

    PubMed  CAS  Google Scholar 

  • Shatkin AJ, Kozak M (1983) Biochemical aspects of reovirus transcription and translation. In: Joklik WK (ed) The reoviridae. Plenum, New York, pp 79–106

    Google Scholar 

  • Sikorski RS, Boguski MS, Goebl M, Hieter P (1990) A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60: 307–317

    Article  PubMed  CAS  Google Scholar 

  • Skipper N, Thomas DY, Lau PCK (1984) Cloning and sequencing of the preprotoxin-coding region of the yeast M1 double-stranded RNA. EMBO J 3: 107–111

    PubMed  CAS  Google Scholar 

  • Sommer SS, Wickner RB (1982) Yeast L dsRNA consists of at least three distinct RNAs; evidence that the non-Mendelian genes [HOK], [NEX] and [EXL] are on one of these dsRNAs. Cell 31: 429–441

    Article  PubMed  CAS  Google Scholar 

  • Sommer SS, Wickner RB (1987) Gene disruption indicates that the only essential function of the SKI8 chromosomal gene is to protect Saccharomyces cerevisiae from viral cytopathology. Virology 157: 252–6

    Article  PubMed  CAS  Google Scholar 

  • Steiner DF, Smeekens SP, Ohagi S, Chan SJ (1992) The new enzymology of precursor processing endoproteases. J Biol Chem 267: 23435–23438

    PubMed  CAS  Google Scholar 

  • Streisinger G, Enrich J, Stahl MM (1967) Chromosome structure in phage T4. IV. Terminal redundancy and length determination. Proc Natl Acad Sci USA 57: 292–295

    Google Scholar 

  • Sturley SL, Elliot Q, LeVitre J, Tipper DJ, Bostian KA (1986) Mapping of functional domains within the Saccharomyces cerevisiae type 1 killer preprotoxin. EMBO J 5: 3381–3389

    PubMed  CAS  Google Scholar 

  • Tercero JC, Wickner RB (1992) MAK3 encodes an Nacetyltransferase whose modification of the L-A gag N-terminus is necessary for virus particle assembly. J Biol Chem 267: 20277–20281

    Google Scholar 

  • Tercero JC, Riles LE, Wickner RB (1992) Localized mutagenesis and evidence for post-transcriptional regulation of MAK3, a putative N-acetyltransferase required for dsRNA virus propagation in Saccharomyces cerevisiae. J Biol Chem 267: 20270–20276

    PubMed  CAS  Google Scholar 

  • Tercero JC, Dinman JD, Wickner RB (1993) Yeast MAK3 N-acetyltransferase recognizes the N-terminal four amino acids of the major coat protein (gag) of the L-A double-stranded RNA virus. J Bacteriol 175: 3192–3194

    PubMed  CAS  Google Scholar 

  • Thomas L, Cooper A, Bussey H, Thomas G (1990) Yeast KEX1 protease excises mature peptides from POMC in mammalian cells. J Biol Chem 265: 10821–10824

    PubMed  CAS  Google Scholar 

  • Thrash C, Voelkel K, DiNardo S, Sternglanz R (1984) Identification of Saccharomyces cerevisiae mutants deficient in DNA topoisomerase I. J Biol Chem 259: 1375–1379

    PubMed  CAS  Google Scholar 

  • Toh-e A, Guerry P, Wickner RB (1978) Chromosomal superkiller mutants of Saccharomyces cerevisiae. J Bacteriol 136: 1002–1007

    CAS  Google Scholar 

  • Van Etten JL, Burbank DE, Cupels DA, Lane LA, Vidaver AK (1980) Semiconservative synthesis of single-stranded RNA by bacteriophage Phi6 RNA polymerase. J Virol 33: 769–73

    PubMed  Google Scholar 

  • Weinstein LA, Capaldo-Kimball F, Leibowitz MJ (1993) Genetics of heat curability of killer virus of yeast. Yeast 9: 411–418

    Article  PubMed  CAS  Google Scholar 

  • Wesolowski M, Wickner RB (1984) Two new double-stranded RNA molecules showing non-Mendelian inheritance and heat inducibility in Saccharomyces cerevisiae. Mol Cell Biol 4: 181–187

    PubMed  CAS  Google Scholar 

  • Wickner RB (1980) Plasmids controlling exclusion of the K2 killer double-stranded RNA plasmid of yeast. Cell 21: 217–226

    Article  PubMed  CAS  Google Scholar 

  • Wickner RB (1983) Killer systems in Saccharomyces cerevisiae: three distinct modes of exclusion of M2 double-stranded RNA by three species of double-stranded RNA, M1, L-A-E, and L-A-HN. Mol Cell Bio13: 654–61

    Google Scholar 

  • Wickner RB (1987) MKT1, a nonessential Saccharomyces cerevisiae gene with a temperature-dependent effect on replication of M2 double-stranded RNA. J Bacteriol 169: 4941–5

    PubMed  CAS  Google Scholar 

  • Wickner RB, Leibowitz MJ (1976) Two chromosomal genes required for killing expression in killer strains of Saccharomyces cerevisiae. Genetics 82: 429–442

    PubMed  CAS  Google Scholar 

  • Wickner RB, Ridley SP, Fried HM, Ball SG (1982) Ribosomal protein L3 is involved in replication or maintenance of the killer double-stranded RNA genome of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 79: 4706–8

    Article  PubMed  CAS  Google Scholar 

  • Wickner RB, Koh TJ, Crowley JC, O’Neil J, Kaback DB (1987) Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: isolation of the MAK16 gene and analysis of an adjacent gene essential for growth at low temperatures. Yeast 3: 51–7

    Article  PubMed  CAS  Google Scholar 

  • Wickner RB, Icho T, Fujimura T, Widner WR (1991) Expression of yeast L-A double-stranded RNA virus proteins produces derepressed replication: a skiphenocopy. J Virol 65: 155–161

    PubMed  CAS  Google Scholar 

  • Widner WR, Wickner RB (1993) Evidence that the SKI antiviral system of Saccharomyces cerevisiae acts by blocking expression of viral mRNA. Mol Cell Biol 13: 4331–4341

    PubMed  CAS  Google Scholar 

  • Williams TL, leibowitz MJ (1987) Conservative mechanism of the in vitro transcription of killer virus of yeast. Virology 158: 231–234

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Bussey H (1991) Mutational analysis of the functional domains of yeast K1 killer toxin. Mol Cell Biol 11: 175–181

    PubMed  CAS  Google Scholar 

  • Zhu H, Bussey H, Thomas DY, Gagnon J, Bell AW (1987) Determination of the carboxyl termini of the a and b subunits of yeast K1 killer toxin: requirement of a carboxypeptidase b-like activity for maturation. J BiolChem 262: 10728–10732

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wickner, R.B., Bussey, H., Fujimura, T., Esteban, R. (1995). Viral RNA and the Killer Phenomenon of Saccharomyces . In: Kück, U. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10364-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10364-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10366-1

  • Online ISBN: 978-3-662-10364-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics