Plasmid DNA in Mycelial Fungi

  • F. Kempken
Part of the The Mycota book series (MYCOTA, volume 2)


The plasmid of Podospora anserina, discovered more than a decade ago (Stahl et al. 1978; Cummings et al. 1979) was the first to be found in a mycelial or filamentous fungus. Since then a large number of plasmids were described and characterized from fungi. Most plasmids are linear, but several are circular, similar to those found in bacteria. Eukaryotic plasmids were paid great attention, mainly based on two assumptions: (1) eukaryotic plasmids were thought to be valuable tools for vector development, based on the widespread use in bacteria (e.g. Esser et al. 1983), and (2) plasmids were believed to be responsible for a number of phenotypes, e.g. senescence in P. anserina. However, a successful vector system has yet to be developed, because most fungal plasmids are mitochondrially localized and mitochondrial transformation is still an obstacle in most species. The second assumption indeed was proven to be correct in some cases (e.g. senescence in P. anserina, for a review see Kück 1989; Osiewacz 1990), while mostly an association of plasmids and a particular phenotype are circumstantial only (e.g. Düve11 et al. 1988). Yet plasmids in mycelial fungi are still promising candidates to work with. Most of them are related to other mobile genetic elements, such as introns, retrotransposons or viruses. Examples are circular plasmids of Neurospora and Podospora, which exhibit similarities to or even resemble introns (Nargang et al. 1984; Osiewacz and Esser 1984; Michel and Lang 1985; Akins et al. 1988). Circular plasmids nevertheless do not form a uniform group. They are apparently of different origin and appear to have unique sequences. In contrast to the circular type, most linear plasmids exhibit viral characteristics with respect to struc­ture, replication and function, and form a much more uniform group, with respect to structure, function and sequence similarity (Kempken et al. 1989; Oeser and Tudzynski 1989; Chan et al. 1991; Court et al. 1991; Rohe et al. 1991; Hermanns and Osiewacz 1992). This fact un­doubedly reflects a common origin of these plasmids, which will be considered in this chapter.


Mycelial Fungus Neurospora Crassa Linear Plasmid Circular Plasmid Terminal Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akins RA, Lambowitz AM (1990) Analysis of large deletions in the Mauriceville and Varkud mitochondrial plasmids of Neurospora. Curr Genet 18: 365–369PubMedGoogle Scholar
  2. Akins RA, Kelley RL, Lambowitz AM (1986) Mitochondrial plasmids of Neurospora: integration into mitochondrial DNA and evidence for reverse transcription in mitochondria. Cell 47: 505–516PubMedGoogle Scholar
  3. Akins RA, Grant DM, Stohl LL, Bottorff DA, Nargang FA, Lambowitz AM (1988) Nucleotide sequence of the Varkud mitochondrial plasmid of Neurospora and synthesis of a hybrid transcript with a 5’-leader derived from mitochondrial RNA. J Mol Biol 204: 1–25PubMedGoogle Scholar
  4. Akins RA, Kelley RL, Lambowitz AM (1989) Characterization of mutant mitochondrial plasmids of Neurospora ssp. that have incorporated tRNAs by reverse transcription. Mol Cell Biol 9: 678–691PubMedGoogle Scholar
  5. Almasan A, Mishra NC (1990) Characterization of a novel plasmid-like element in Neurospora crassa derived mostly from the mitochondrial DNA. Nucl Acids Res 18: 5871–5877PubMedGoogle Scholar
  6. Arrand JR, Roberts RJ (1979) The nucleotide sequences at the termini of adenovirus-2 DNA. J Mol Biol 128: 577–594PubMedGoogle Scholar
  7. Bernad A, Blanco L, Lazaro JM, Martin G, Salas M, (1989) A conserved 3’-5’exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59: 219–228PubMedGoogle Scholar
  8. Bertrand H, Griffith AJF (1989) Linear plasmids that integrate into mitochondrial DNA in Neurospora. Genome 31: 155–159Google Scholar
  9. Bertrand H, Collins RA, Stohl LL, Goewert RR, Lambowitz AM (1980) Deletion mutants of Neurospora crassa, mitochondrial DNA and their relationship to the “start-stop” growth phenotype. Proc Natl Acad Sci USA 77: 6032–6036PubMedGoogle Scholar
  10. Bertrand H, Chan BSS, Griffith AJF (1985) Insertion of a foreign nucleotide sequence into mitochondrial DNA causes senescence in Neurospora intermedia. Cell 41: 877–884PubMedGoogle Scholar
  11. Bertrand H, Griffiths AJF, Court DA, Cheng CK (1986) An extrachromosomal plasmid is the ethiological precursor of kaIDNA insertion sequences in the mitochondrial chromosome of senescence in Neurospora intermedia. Cell 47: 829–837PubMedGoogle Scholar
  12. Blanco L, Bernad A, Blasco MA, Salas M (1991) A general structure for DNA-dependent DNA polymerases. Gene 100: 27–38PubMedGoogle Scholar
  13. Böckelmann B (1985) Genetische Untersuchungen zur Seneszenz bei Hyphenpilzen. Dissertation, Ruhr-Universität BochumGoogle Scholar
  14. Bonitz SG, Coruzzi G, Thalenfeld BE, Tzagoloff A, Macino G (1980) Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit I of the yeast cytochrome ocidase. J Biol Chem 255: 11927–11941Google Scholar
  15. Carusi EA (1977) Evidence for blocked 5’-termini in human adenovirus DNA. Virology 76: 380–394PubMedGoogle Scholar
  16. Challberg MD, Kelly TJ Jr (1982) Eucaryotic DNA replication: viral and plasmid model systems. Annu Rev Biochem 51: 901–934PubMedGoogle Scholar
  17. Challberg MD, Ostrove JM, Kelly TJ Jr (1982) Initiation of adenovirus DNA replication: detection of covalent complexes between nucleotid and 80-kilodalton terminal protein. J Virol 41: 265–270PubMedGoogle Scholar
  18. Chan BSS, Court DA, Vierula JP, Bertrand H (1991) The Kalilo linear senescence-inducing plasmid of Neurospora is an invertron and encodes DNA and RNA polymerases. Curr Genet 20: 225–237PubMedGoogle Scholar
  19. Collins RA, Saville BJ (1990) Independent transfer of mitochondrial chromosomes and plasmids during unstable vegetative fusion in Neurospora. Nature 345: 177–179PubMedGoogle Scholar
  20. Collins RA, Stohl LL, Cole MD, Lambowitz AM (1981) Characterization of a novai plasmid DNA found in mitochondria of Neurospora crassa. Cell 24: 443–452PubMedGoogle Scholar
  21. Court DA, Bertrand H (1992) Genetic organization and structural features of Maranhar, a senescence-inducing linear mitochondrial plasmid of Neurospora crassa. Curr Genet 22: 385–397PubMedGoogle Scholar
  22. Court DA, Griffiths AJF, Kraus SR, Russell PJ, Bertrand H (1991) A new senescence-inducing mitochondrial linear plasmid in field-isolated Neurospora crassa strains from India. Curr Genet 19: 129–137PubMedGoogle Scholar
  23. Cullen D, Budde A, Kistler H, Samac D, Leong S (1985) Analysis of mitochondrial genome and plasmid-like DNA from Fusarium species. J Cell Biochem 9C: 169Google Scholar
  24. Cummings DJ, Belcour L, Grandchamp C (1979) Mitochondrial DNA from Podospora anserina. II. Properties of mutant DNA and multimeric circular DNA from senescent cultures. Mol Gen Genet 171: 239–250Google Scholar
  25. Dasgupta J, Chan BS, Keith MA, Bertrand H (1988) Kalilo insertion sequences from the senescent strains of Neurospora intermedia are flanked by long inverted repeats of mitochondrial DNA. Genome 30 (Suppl. 1): 318Google Scholar
  26. De Vries H, de Jonge JC, Van’t Sant P, Agsteribbe E, Amberg A (1981) A “stopper” mutant of Neurospora crassa containing two populations of aberrant mitochondrial DNA. Curr Genet 3: 205–211Google Scholar
  27. Düvell A, Hessberg-Stutzke H, Oeser B, RogmannBackwinkel P, Tudzynski P (1988) Structural and functional analysis of mitochondrial plasmids in Claviceps purpurea. Mol Gen Genet 214: 128–134PubMedGoogle Scholar
  28. Esser K (1985) Genetic control of aging. The mobile intron model. In: Bergener M, Ermini M, Stähelin HB (eds) The 1984 Sandoz lectures in gerontology. Thresholds in aging. Academic Press, London, pp 3–20Google Scholar
  29. Esser K, Kück U, Stahl U, Tudzynski P (1983) Cloning vectors of mitochondrial origin for eukaryotes: a new concept in genetic engeneering. Curr Genet 7: 239–243Google Scholar
  30. Faßbender S (1993) Intron-kodierte Polypeptide aus Chloroplasten und Mitochondrien. Dissertation, Fakultät für Biologie, Ruhr-Universität BochumGoogle Scholar
  31. Field J, Gronostajski RM, Hurwitz J (1984) Properties of the adenovirus DNA polymerase. J Biol Chem 259: 9487–9495PubMedGoogle Scholar
  32. Francou F (1981) Isolation and characterization of a linear DNA molecule in the fungus Ascobolus immersus. Mol Gen Genet 184: 440–444Google Scholar
  33. Gargber RC, Turgeon BG, Yoder OC (1984) A mitochondrial plasmid from the plant pathogenic fungus Cochliobolus heterostrophus. Mol Gen Genet 196: 301–310Google Scholar
  34. Gessner-Ulrich K, Tudzynski P (1992) Transcripts and translation products of a mitochondrial plasmid of Claviceps purpurea. Curr Genet 21: 249–254PubMedGoogle Scholar
  35. Giasson L, Lalonde M (1987) Analysis of a linear plasmid isolated from the pathogenic fungus Ceratocystis fimbriata Ell.andHalst. Curr Genet 11: 331–334Google Scholar
  36. Giese H, Christiansen SK, Jensen HP (1990) Extrachromosomal plasmid-like DNA in the obligate parasitic fungus Erysiphe graminis f. sp. hordei. Theor Appl Genet 79: 56–64Google Scholar
  37. Griffiths AJF, Bertrand H (1984) Unstable cytoplasms in Hawaiian strains of Neurospora intermedia. Curr Genet 8:387— 398Google Scholar
  38. Griffiths JF, Kraus SR, Barton R, Court DA, Myers CJ, Bertrand H (1990) Heterokaryotic transmission of senescence plasmid DNA in Neurospora. Curr Genet 17: 139–145Google Scholar
  39. Gunge N, Taman’ A, Ozawa F, Sakaguchi K (1981) Isolation and characterization of linear desoxyribonucleic acid plasmids from Kluyveromyces lactis and the plasmid-associated killer character. J Bacteriol 159: 533–539Google Scholar
  40. Hall JD (1988) Modeling functional sites in DNA polymerase(. TIG 4: 42–46PubMedGoogle Scholar
  41. Hashiba T, Homma Y, Hyakumachi M, Matsuda I (1984) Isolation of a DNA plasmid in the fungus Rhizoctonia solani. J Gen Microbiol 130: 2067–2070PubMedGoogle Scholar
  42. Hay RT (1985a) The origin of adenovirus DNA replication: minimal DNA sequence requirement in vivo. EMBO J 4: 421–426PubMedGoogle Scholar
  43. Hay RT (1985b) Origin of adenovirus DNA replication. Role of the nuclear factor I binding site in vivo. J Mol Biol 186: 129–136PubMedGoogle Scholar
  44. Hermanns J, Osiewacz HD (1992) The linear mitochondrial plasmid pAL2–1 of long-lived Podospora anserina mutant AL2 is an invertron encoding a DNA and RNA polymerase. Curr Genet 22: 491–500PubMedGoogle Scholar
  45. Hermanns J, Osiewacz HD (1994) Three mitochondrial unassigned open reading frames of Podospora anserina represent remnants of a viral-type RNA polymerase gene. Curr Genet 25: 150–157PubMedGoogle Scholar
  46. Honeyman AL, Currier TC (1986) Isolation and characterization of linear DNA elements from the mitochondria of Gaeumannomyces graminis. Appl Environ Microbiol 52: 924–929PubMedGoogle Scholar
  47. Inciarte MR, Lazaro JM, Salas M, Vinuela E (1976) Structure of replicating DNA molecules of Bacillus subtilis bacteriophage ¢29. J Virol 34: 187–199Google Scholar
  48. Ito J, Braithwaite DK (1991) Compilation and alignment of DNA polymerase sequences. Nucl Acids Res 19: 4045–4057PubMedGoogle Scholar
  49. Jamet-Vierney C, Begel O, Belcour L (1980) Senescence in Podospora anserina: amplification of a mitochondrial DNA sequence. Cell 21: 189–194Google Scholar
  50. Katayose Y, Kajiwara S, Shishido K (1990) The basidiomycete Lentinus edodes linear mitochondrial DNA plasmid contains a segment exhibiting a high autonomously replicating sequence activity in Saccharomyces cerevisiae. Nucl Acids Res 18: 1395–1400PubMedGoogle Scholar
  51. Kellner M, Burmester A, Wöstemeyer A, Wöstemeyer J (1993) Transfer of genetic information from the mycoparasite Parasitella parasitica to its host Absidia glauca. Curr Genet 23: 334–337PubMedGoogle Scholar
  52. Kempken F (1989) Evolution mobiler genetischer Elemente: Lineare, extrachromosomale DNA bei dem Ascomyceten Ascobolus immersus. Bibi Mycol 128, Gramer, Berl in StuttgartGoogle Scholar
  53. Kempken F (1994) Unique features of a linear plasmid of Ascobolus immersus and its implications for plasmid evolution in general. Current topics in molecular genetics. (in press)Google Scholar
  54. Kempken F, Meinhardt F, Esser K (1989) In organello replication and viral affinity of linear, extrachromosomal DNA of the ascomycete Ascobolus immersus. Mol Gen Genet 218: 523–530PubMedGoogle Scholar
  55. Kempken F, Hermanns J, Osiewacz HD (1992) Evolution of linear plasmids. J Mol Evol 35: 502–513PubMedGoogle Scholar
  56. Kim WK, Whitmore E, Klassen GR (1990) Homologous linear plasmids in mitochondria of three species of wheat bunt fungi, Tilletia caries, T. laevis and T. controversa. Curr Genet 17: 229–233Google Scholar
  57. Kistler HC, Leong SA (1986) Linear plasmidlike DNA in the plant pathogenic fungus Fusarium oxysporum f. sp. conglutinans. J Bacteriol 167: 587–593PubMedGoogle Scholar
  58. Kück U (1989) Mitochondrial DNA rearrangements in Podospora anserina. Exp Mycol 13: 111–120Google Scholar
  59. Kück U, Faßbender S (1991) Zur Verwandtschaft mobiler Genelemente. BIUZ 21: 31–36Google Scholar
  60. Kück U, Osiewacz HD, Schmidt U, Kappelhoff B, Schulte E, Stahl U, Esser K (1985) The onset of senescence is affected by DNA rearrangements of a discontinous mitochondrial gene in Podospora anserina. Curr Genet 9:373— 382Google Scholar
  61. Kuiper MTR, Lambowitz AM (1988) A novel reverse transcriptase activity associated with mitochondrial plasmids of Neurospora. Cell 55: 693–704PubMedGoogle Scholar
  62. Kuiper MTR, Sabourin JR, Lambowitz AM (1990) Identification of the reverse transcriptase encoded by the Mauriceville and Varkud mitochondrial plasmids of Neurospora. J Biol Chem 265: 6936–6943PubMedGoogle Scholar
  63. Kuzmin EV, Levchenko JV (1987) S1 plasmid from cms-S-maize mitochondria encodes a viral type DNA polymerase. Nucl Acids Res 15: 6758PubMedGoogle Scholar
  64. Kuzmin EV, Levchenko JV, Zaitseva GN (1988) S2 plasmid from cms-S-maize mitochondria potentially encodes a specific RNA polymerase. Nucl Acids Res 16: 4177PubMedGoogle Scholar
  65. Lambowitz AM (1989) Infectious introns. Cell 56: 323–326PubMedGoogle Scholar
  66. Lazarus CM, Earl AJ, Turner G, Küntzel H (1980) Amplification of a mitochondrial DNA sequence in the cytoplasmically inherited “ragged” mutant of Aspergillus amstelodami. Eur J Biochem 106: 633–641PubMedGoogle Scholar
  67. Leon P, O’Brian-Vedder C, Walbot V (1992) Expression of ORF1 of the linear 2.3 kb plasmid of maize mitochondria: product localization and similarities to the 130 kDa protein encoded by the S2 episom. Curr Genet 22: 61–67PubMedGoogle Scholar
  68. Li Q, Nargang FE (1993) Two Neurospora mitochondrial plasmids encode DNA polymerases containing motifs characteristic of family B DNA polymerases but lack the sequence asp-thr-asp. Proc Natl Acad Sci USA 90: 4299–4303PubMedGoogle Scholar
  69. Manson JC, Lidedell AD, Leaver CJ, Murray K (1986) A protein specific to mitochondria from S-type male-sterile cytoplasm of maize is encoded by an episomal DNA. EMBO J 5: 2775–2780PubMedGoogle Scholar
  70. Marcou (1961) Notion de longévité et nature cytoplasmique du déterminant de la sénescence chez quelques champignons. Ann Sci Nat Bot 12: 653–764Google Scholar
  71. Meinhardt F, Esser K (1984) Linear extrachromosomal DNA in the morel Morchella conica. Curr Genet 8: 15–18Google Scholar
  72. Meinhardt F, Esser K (1987) The plasmids of the morels: characterization and prerequisites for vector development. Appl Mircrobiol Biotechnol 27: 276–282Google Scholar
  73. Meinhardt F, Rohe M (1992) Extranuclear inheritance: linear protein-primed replicating genomes in plants and microorganisms. Prog Bot 54: 334–357Google Scholar
  74. Meinhardt F, Kempken F, Esser K (1986) Proteins are bound to the termini of a linear plasmid in the filamentous fungus Ascobolus immersus. Curr Genet 11: 243–246Google Scholar
  75. Meinhardt F, Kempken F, Kämper J, Esser K (1990) Linear plasmids among eukaryotes: fundamentals and applications. Curr Genet 17: 89–95PubMedGoogle Scholar
  76. Michel F, Lang F (1985) Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature 316: 641–643PubMedGoogle Scholar
  77. Minuth W, Tudzynski P, Esser K (1982) Extrachromosomal genetics of Cephalosporium acremonium. I. Characterization and mapping of mitochondria DNA. Curr Genet 5: 227–231Google Scholar
  78. Miyashita S, Hirochika H, Ikeda J, Hashiba T (1990) Linear plasmid DNAs of the plant pathogenic fungus Rhizoctonia solani with unique terminal structures. Mol Gen Genet 220: 165–171PubMedGoogle Scholar
  79. Mogen KL, Siegel MR, Schardl CL (1991) Linear DNA plasmids of the perennial ryegrass choke pathogen, Epichloe typhina ( Clavicipitaceae ). Curr Genet 20: 519–526Google Scholar
  80. Mohan M, Meyer RJ, Anderson JB, Horgan PA (1984) Plasmid-like DNAs in the commercially important mushroom genus Agaricus. Curr Genet 8: 615–619Google Scholar
  81. Müller F, Brühl KH, Freidel K, Kowallik KV, Ciriacy M (1987) Processing of the Tyl proteins and formation of Tyl virus-like particles in Saccharomyces cerevisiae. Mol Gen Genet 226: 145–153Google Scholar
  82. Nargang FE, Bell JB, Stohl LL, Lambowitz AM (1984) The DNA sequence and genetic organization of a Neurospora mitochondrial plasmid suggest a relationship to introns and mobile elements. Cell 38: 441453Google Scholar
  83. Nargang FE, Pande S, Kennell JC, Akins RA, Lambowitz AM (1992) Evidence that a 1,6 kilobase region of Neurospora mtDNA was derived by insertion of the LaBelle mitochondrial plasmid. Nucl Acids Res 20: 1101–1108PubMedGoogle Scholar
  84. Normand P, Simonet P, Giasson L, Ravel-Chapius P, Fortin JA, Lalonde M (1987) Presence of a linear plasmidlike DNA molecule in the fungal pathogen Ceratocystis fimbriata Ell.andHalst. Curr Genet 11: 335–338Google Scholar
  85. Oeser B (1988) S2 plasmid from Zea mays probably encodes a specific RNA polymerase: an alternative alignment. Nucl Acids Res 16: 8729PubMedGoogle Scholar
  86. Oeser B, Tudzynski P (1989) The linear mitochondrial plasmid pCIK1 of the phytopathogenic fungus Claviceps purpurea may code for a DNA polymerase and an RNA polymerase. Mol Gen Genet 217: 132–140PubMedGoogle Scholar
  87. Oeser B, Rogmann-Backwinkel P, Tudzynski P (1993) Interactions between mitochondrial DNA and mitochondrial plasmids in Claviceps purpurea: analysis of plasmid-homologous sequences upstream of the IrRNAgene. Curr Genet 23: 315–322PubMedGoogle Scholar
  88. Osiewacz HD (1990) Molecular analysis of aging processes in fungi. Mutat Res 237: 1–8PubMedGoogle Scholar
  89. Osiewacz HD, Esser K (1984) The mitochondrial plasmid of Podospora anserina: a mobile intron of a mitochondrial gene. Curr Genet 8: 299–305Google Scholar
  90. Osiewacz HD, Hermanns J, Marcou D, Triffi M, Esser K (1989) Mitochondrial DNA rearrangements are correlated with a delayed amplification of the mobile intron (p1DNA) in a long-lived mutant of Podospora anserina. Mutat Res 219: 9–15PubMedGoogle Scholar
  91. Pande S, Lemire EG, Nargang FE (1989) The mitochondrial plasmid from Neurospora intermedia strain Labelle-lb contains a long open reading frame with blocks of amino acids characteristic of reverse transcriptases and related proteins. Nucl Acids Res 17: 2023–2042PubMedGoogle Scholar
  92. Plummer KM, Howlett BJ (1993) Major chromosomal length polymorphisms are evident after meiosis in the phytopathogenic fungus Leptosphaeria maculons. Curr Genet 24: 107–113PubMedGoogle Scholar
  93. Pring DR, Levings III CS, Hu WWL, Timothy DH (1977) Unique DNA associated with mitochondria in the “S”-type cytoplasm of male-sterile maize. Proc Natl Acad Sci USA 7: 2904–2908Google Scholar
  94. Qin H, Welker DL, Youssef NN (1993) Isolation and characterization of a linear plasmid from the entomopathogenic fungus Ascosphaera apis. Plasmid 29: 19–30PubMedGoogle Scholar
  95. Rekosh DMK, Russel WC, Bellet AJD, Robinson AJ (1977) Identification of a protein linked to the ends of adenovirus DNA. Cell 11: 283–295PubMedGoogle Scholar
  96. Rizet G (1953) Sur l’impossibilité d’obtenir la multiplication végétative ininterrompue et illimitée de l’ascomycète Podospora anserina. CR Acad SCI Paris 237: 838–855Google Scholar
  97. Robison MM, Royer JC, Horgen PA (1991) Homology between mitochondrial DNA of Agaricus bisporus and an internal portion of a linear mitochondrial plasmid of Agaricus bitorquis. Curr Genet 19: 495–502PubMedGoogle Scholar
  98. Rohe M, Meinhardt F (1992) Both open reading frames of the linear plasmid pMC3–2 from the ascomycete Morchella conica are transcribed in vivo. Curr Genet 22: 507–509PubMedGoogle Scholar
  99. Rohe M, Schrage K, Meinhardt F (1991) The linear plasmid pMC3–2 from Morchella conica is structurally related to adenoviruses. Curr Genet 20: 527–533PubMedGoogle Scholar
  100. Rohe M, Schründer J, Tudzynski P, Meinhardt F (1992) Phylogenetic relationships of linear, protein-primed replicating genomes. Curr Genet 21: 173–176PubMedGoogle Scholar
  101. Rubidge T (1986) Survey of Fusarium species for plasmidlike DNA and some evidence for its occurrence in a strain of F. merismoides. Trans Br Mycol Soc 87: 463–466Google Scholar
  102. Samac DA, Leong SA (1986) Plasmid-like DNAs from Fusarium solani. J Cell Biochem 19c: 27Google Scholar
  103. Samac DA, Leong SA (1988) Two linear plasmids in mitochondria of Fusarium solani f. sp. cucurbitae. Plasmid 19: 57–67PubMedGoogle Scholar
  104. Savilahti H, Bamford DH (1987) The complete nucleotide sequence of the left very early region of Escherichia coli bacteriophage PRD1 coding for the terminal protein and the DNA polymerase. Gene 57:121–130 Google Scholar
  105. Schründer J, Debaud JC, Meinhardt F (1991) Adenovirallike genetic elements in Hebeloma circinans. Abstr 3rd Eur Symp Mycorrhizas, SheffieldGoogle Scholar
  106. Schründer J, Rohe M, Debaud JC, Meinhardt F (1992) Characterization of a linear DNA-molecule from the ectomycorrhizal fungus Hebeloma circinans and its relationship to other protein primed replicating genomes. Abstr VAAM Meet 1992, DüsseldorfGoogle Scholar
  107. Schulte E, Lambowitz AM (1991) The LaBelle mitochondrial plasmid of Neurospora intermedia encodes a novel DNA polymerase that may be derived from a reverse transcriptase. Mol Cell Biol 11: 1996–1706Google Scholar
  108. Schulte E, Kück U, Esser K (1988) Extrachromosomal mutants from Podospora anserina: permanent vegetative growth in spite of multiple recombination events in the mitochondrial genome. Mol Gen Genet 211: 342–349Google Scholar
  109. Seeger C, Summers J, Manson WS (1991) Viral DNA synthesis. Curr Top Microbiol Immunol 168: 41–59PubMedGoogle Scholar
  110. Sellem CH, Sainsard-Chanet A, Belcour L (1990) Detection of a protein encoded by a class II mitochondrial intron of Podospora anserina. Mol Gen Genet 224: 232–240PubMedGoogle Scholar
  111. Sheperd HS (1992) Linear, non-mitochondrial plasmids of Alternaria alternata. Curr Genet 21: 169–172Google Scholar
  112. Sor F, Wesolowski M, Fukuhara H (1983) Inverted terminal repetitions of the two linear DNA associated with the killer character of the yeast Kluyveromyces lactis. Nucl Acids Res 11: 5037–5044PubMedGoogle Scholar
  113. Stahl U, Lemke PA, Tudzynski P, Kück U, Esser K (1978) Evidence for plasmid-like DNA in a filamentous fungus, the ascomycete Podospora anserina. Mol Gen Genet 162: 341–343PubMedGoogle Scholar
  114. Steinhilber W, Cummings DJ (1986) A DNA polymerase activity with characteristics of a reverse transcriptase in Podospora anserina. Curr Gen Genet 10: 389–392Google Scholar
  115. Stohl LL, Collins RA, Cole MD, Lambowitz AM (1982) Characterization of two new plasmid DNAs found in mitochondria of wild-type Neurospora intermedia strains. Nucl Acids Res 10: 1439–1458PubMedGoogle Scholar
  116. Takano H, Kawano S, Kuroiwa T (1991) Telomeric structures in a linear mitochondrial plasmid from Physarum polycephalum. Curr Genet 20: 315–317Google Scholar
  117. Tudzynski P, Düvell A (1985) Molecular aspects of mitochondrial plasmids in Claviceps purpurea. In: Quaglianello E, Slater EC, Palmieri F, Saccone C, Kroon AN (eds) Achievements and perspectives of mitochondrial research. Vol II. Biogenesis. Elsevier, Amsterdam, pp 249–256Google Scholar
  118. Tudzynski P, Esser K (1986) Extrachromosomal genetics of Claviceps purpurea. II. Plasmids in various wild strains and integrated plasmid sequences in mitochondrial genomic DNA. Curr Genet 10: 463–467Google Scholar
  119. Tudzynski P, Stahl U, Esser K (1980) Transformation to senescence with plasmid-like DNA in the ascomycete Podospora anserina. Curr Genet 2: 181–184Google Scholar
  120. Tudzynski P, Düvell A, Esser K (1983) Extrachromosomal genetics of Claviceps purpurea. I. Mitochondrial DNA and mitochondrial plasmids. Curr Genet 7: 145–150Google Scholar
  121. Vartapetian AB, Bogdanov AA (1987) Proteins covalently linked to viral genomes. In: Cohn WE, Moldave K (eds) Progress in nucleic acid research and molecular biology. Academic Press, New york, 34: 209–230Google Scholar
  122. Vierula PJ, Bertrand H (1992) A deletion derivative of the Kalilo senescence plasmid forms hairpin and duplex DNA structures in the mitochondria of Neurospora. Mol Gen Genet 234: 361–368PubMedGoogle Scholar
  123. Vierula PJ, Cheng CK, Court DA, Humphrey RW, Thomas DY, Bertrand H (1990) The kalilo senescence plasmid of Neurospora intermedia has covalently-linked 5’-terminal proteins. Curr Genet 17: 195–201Google Scholar
  124. Wang K, Pearson GD (1985) Adenovirus sequences required for replication in vivo. Nucl Acids Res 13: 5173–5187PubMedGoogle Scholar
  125. Wang GH, Seeger C (1992) The reverse transcriptase of Hepatitis B Virus Acts as a protein primer for viral DNA synthesis. Cell 633–670Google Scholar
  126. Wang H, Kennell JC, Kuiper MTR, Sabourin JR, Saladanha R, Lambowitz AM (1992) The Mauriceville plasmid of Neurospora crassa: characterization of a novel reverse transcriptase that begins cDNA synthesis at the 3’ end of template RNA. Mol Cell Biol 12: 5131–5144PubMedGoogle Scholar
  127. Wright RW, Horrum MA, Cummings DJ (1982) Are mitochondrial structural genes selectively amplified during senescence in Podospora anserina. Cell 29: 505–515PubMedGoogle Scholar
  128. Xiong Y, Eickbusch TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9: 3353–3362PubMedGoogle Scholar
  129. Yang X, Griffiths AJF (1993) Plasmid diversity in senescent and nonsenescent strains of Neurospora. Mol Gen Genet 237: 177–186PubMedGoogle Scholar
  130. Yoshikawa H, Ito J (1982) Nucleotide sequence of the major early region of bacteriophage PHI29. Gene 17: 323–335PubMedGoogle Scholar
  131. Yui Y, Katayose Y, Shishido K (1988) Two linear plasmidlike DNA elements simultaneously maintained in Pleurotus ostreatus. Biochem Biophy Acta 951: 53–60Google Scholar
  132. Zabala G, Walbot V (1988) An S1 episomal gene of maize mitochondria is expressed in male sterile and fertile plants of the S-type cytoplasm. Mol Gen Genet 211: 386–392Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • F. Kempken
    • 1
  1. 1.Lehrstuhl für Allgemeine BotanikRuhr-UniversitätBochumGermany

Personalised recommendations