Skip to main content
  • 449 Accesses

Abstract

Transposable elements are interspersed repeats of DNA that have the ability to move to new positions within the genome of a host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atwood A, Lin J, Levin HL (1996) The retrotransposon Tfl assembles virus-like particles with excess Gag relative to integrase because of a regulated degradation process. Mol Cell Biol 16: 338–346

    PubMed  CAS  Google Scholar 

  • Atwood A, Choi J, Levin HL (1998) The application of a homologous recombination assay revealed amino acid residues in an LTR-retrotransposon that were critical for integration. J Virol 72: 1324–1333

    PubMed  CAS  Google Scholar 

  • Balasundaram D, Benedik MJ, Morphew M et al. (1999) Nup124p Is a nuclear pore factor of Schizosaccharomyces pombe that is important for nuclear import and activity of retro-transposon Tfl. Mol Cell Biol 19: 5768–5784

    PubMed  CAS  Google Scholar 

  • Bannister AJ, Miska EA, Gorlich D, Kouzarides T (2000) Acetylation of importin-a nuclear import factors by CBP/p300. Curr Biol 10: 467–470

    Article  PubMed  CAS  Google Scholar 

  • Behrens R, Hayles J, Nurse P (2000) Fission yeast retrotransposon Tfl integration is targeted to 5’ ends of open reading frames. Nucleic Acids Res 28: 4709–4716

    Article  PubMed  CAS  Google Scholar 

  • Butler M, Goodwin T, Simpson M et al. (2001) Vertebrate LTR retrotransposons of the Tfl/ Sushi group. J Mol Evol 52: 260–274

    PubMed  CAS  Google Scholar 

  • Cobrinik D, Aiyar A, Ge Z et al. (1991) Overlapping retrovirus U5 sequence elements are required for efficient integration and initiation of reverse transcription. J Virol 65: 38643872

    Google Scholar 

  • Dang VD, Levin HL (2000) Nuclear import of the retrotransposon Tfl is governed by a nuclear localization signal that possesses a unique requirement for the FXFG nuclear pore factor Nup124p. Mol Cell Biol 20: 7798–7812

    Article  PubMed  CAS  Google Scholar 

  • Dang VD, Benedik MJ, Ekwall K et al. (1999) A new member of the sin3 family of corepressors is essential for cell viability and required for retroelement propagation in fission yeast. Mol Cell Biol 19: 2351–2365

    PubMed  CAS  Google Scholar 

  • Devine SE, Boeke JD (1996) Integration of the yeast retrotransposon Tyl is targeted to regions upstream of genes transcribed by RNA polymerase III. Genes Dev 10: 620–633

    Article  PubMed  CAS  Google Scholar 

  • Farabaugh PJ (1997) Programmed alternative reading of the genetic code. RG Landes, Aus-tin

    Book  Google Scholar 

  • Fouchier R, Meyer B, Simon JH et al. (1998) Interaction of the human immunodeficiency virus type 1 Vpr protein with the nuclear pore complex. J Virol 72: 6004–6013

    PubMed  CAS  Google Scholar 

  • Hoff EF, Levin HL, Boeke JD (1998) Schizosaccharomyces pombe retrotransposon Tf2 mobi- lizes primarily through homologous cDNA recombination. Mol Cell Biol 18: 6839–6852

    Google Scholar 

  • Kim JM, Vanguri S, Boeke JD et al. (1998) Transposable elements and genome organization: A comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8: 464–478

    PubMed  CAS  Google Scholar 

  • Lanchy JM, Isel C, Ehresmann C et al. (1996) Structural and functional evidence that initiation and elongation of HIV-1 reverse transcription are distinct processes. Biochimie 78: 1087–1096

    Article  PubMed  CAS  Google Scholar 

  • Levin HL (1995) A novel mechanism of self-primed reverse transcription defines a new family of retroelements. Mol Cell Biol 15: 3310–3317

    PubMed  CAS  Google Scholar 

  • Levin HL (1996) An unusual mechanism of self-primed reverse transcription requires the RNase H domain of reverse transcriptase to cleave an RNA duplex. Mol Cell Biol 16: 5645–5654

    PubMed  CAS  Google Scholar 

  • Levin HL Boeke JD (1992) Demonstration of retrotransposition of the Tfl element in fission yeast. EMBO J 11: 1145–1153

    PubMed  Google Scholar 

  • Levin HL, Weaver DC, Boeke JD (1990) Two related families of retrotransposons from Schizosaccharomyces pombe. Mol Cell Biol 10: 6791–6798

    PubMed  CAS  Google Scholar 

  • Levin HL, Weaver DC, Boeke JD (1993) Novel gene expression mechanism in a fission yeast retroelement: Tfl proteins are derived from a single primary translation product. EMBO J 12: 4885–4895

    PubMed  CAS  Google Scholar 

  • Lin JH, Levin HL (1997a) A complex structure in the mRNA of Tfl is recognized and cleaved to generate the primer of reverse transcription. Genes Dev 11: 270–285

    Article  PubMed  CAS  Google Scholar 

  • Lin JH, Levin HL (1997b) Self-primed reverse transcription is a mechanism shared by several LTR-containing retrotransposons. RNA 3: 952–953

    PubMed  CAS  Google Scholar 

  • Lin JH, Levin HL (1998) Reverse transcription of a self-primed retrotransposon requires an RNA structure similar to the U5-IR stem-loop of retroviruses. Mol Cell Biol 18: 6859–6869

    PubMed  CAS  Google Scholar 

  • Malik HS, Eickbush TH (1999) Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol 73: 5186–5190

    PubMed  CAS  Google Scholar 

  • Malik HS, Henikoff S, Eickbush TH (2000) Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res 10: 1307–1318

    Article  PubMed  CAS  Google Scholar 

  • Noma K, Allis CD, Grewal SI (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293: 1150–1155

    Article  PubMed  CAS  Google Scholar 

  • Ryan KJ, Wente SR (2000) The nuclear pore complex: a protein machine bridging the nucleus and cytoplasm. Curr Opin Cell Biol 12: 361–371

    Article  PubMed  CAS  Google Scholar 

  • Sandmeyer S (1998) Targeting transposition: at home in the genome. Genome Res 8: 416418

    Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK et al. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768

    Article  PubMed  CAS  Google Scholar 

  • Singleton TL, Levin HL (2002) A long terminal repeat retrotransposon of fission yeast has strong preferences for specific sites of insertion. Eukaryotic Cell 1: 44–55

    Article  PubMed  CAS  Google Scholar 

  • Trotman LC, Mosberger N, Fornerod M et al. (2001) Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nature Cell Biol 3: 10921100

    Google Scholar 

  • Weaver DC, Shpakovski GV, Caputo E et al. (1993) Sequence analysis of closely related retrotransposon families from fission yeast. Gene 131: 135–139

    Article  PubMed  CAS  Google Scholar 

  • Zou S, Voytas DF (1997) Silent chromatin determines target preference of the Saccharomyces retrotransposon TyS. Proc Natl Acad Sci USA 94: 7412–7416

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Levin, H.L. (2004). The Retrotransposons of S. pombe . In: Egel, R. (eds) The Molecular Biology of Schizosaccharomyces pombe . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10360-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10360-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05631-4

  • Online ISBN: 978-3-662-10360-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics