Skip to main content

Abstract

The concept of checkpoint controls was first applied to biological systems by Weinert and Hartwell (Weinert and Hartwell 1988), when they observed that a rad9 mutant of S. cerevisiae was sensitive to DNA damage because it could not arrest the cell cycle before entering mitosis to allow time for the damage to be repaired. Subsequently, the checkpoint concept has been applied to many other biological processes, for example the monitoring of chromosome segregation during mitosis (Chap. 11). Checkpoints that respond directly to changes in DNA structure have become known as DNA-integrity checkpoints and encompass a number of related biological phenomena. In this chapter, we will run through the different DNA-integrity checkpoint sub-pathways, concentrating mainly on the DNA damage checkpoint about which the most is known. We will discuss the different checkpoint-protein complexes and how they might function in signal generation as well as in DNA repair and DNA replication. While checkpoint pathways were defined in terms of the induced delay they cause in cell cycle progression (Chap. 3), it has subsequently become clear that checkpoint pathways and proteins also participate in the coordination of repair with DNA replication and may regulate the choice of repair pathways for certain types of DNA damage (Chap. 7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcasabas AA, Osborn AJ, Bachant J et al. (2001) Mrcl transduces signals of DNA replication stress to activate Rad53. Nat Cell Biol 3: 958–965

    Article  PubMed  CAS  Google Scholar 

  • Baber-Furnari BA, Rhind N, Boddy MN et al. (2000) Regulation of mitotic inhibitor Mikl helps to enforce the DNA damage checkpoint. Mol Biol Cell 11: 1–11

    PubMed  CAS  Google Scholar 

  • Barbet NC, Carr AM (1993) Fission yeast Weel protein kinase is not required for DNA damage-dependent mitotic arrest. Nature 364: 824–827

    Article  PubMed  CAS  Google Scholar 

  • Bashkirov VI, King JS, Bashkirova EV et al. (2000) DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints. Mol Cell Biol 20: 4393–4404

    Article  PubMed  CAS  Google Scholar 

  • Bentley NJ, Holtzman DA, Flaggs G et al. (1996) The Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J 15: 6641–6651

    CAS  Google Scholar 

  • Boddy MN, Furnari B, Mondesert O, Russell, P (1998) Replication checkpoint enforced by kinases Cdsl and Chkl. Science 280: 909–912

    Article  PubMed  CAS  Google Scholar 

  • Boddy MN, Gaillard PH, McDonald WH et al. (2001) Mus81-Emel are essential components of a Holliday junction resolvase. Cell 107: 537–548

    Article  PubMed  CAS  Google Scholar 

  • Boddy MN, Lopez-Girona A, Shanahan P et al. (2000) Damage tolerance protein Mus81 associates with the FHA1 domain of checkpoint kinase Cdsl. Mol Cell Biol 20: 8758–8766

    Article  PubMed  CAS  Google Scholar 

  • Caspari T, Carr AM (1999) DNA structure checkpoint pathways in chizosaccharomyces pombe. Biochimie 81: 173–181

    Article  PubMed  CAS  Google Scholar 

  • Caspari T, Dahlen M, Kanter-Smoler G et al. (2000 a) Characterization of Schizosaccharomyces pombe Hus l: a PCNA-related protein that associates with Radl and Rad9. Mol Cell Biol 20: 1254–1262

    Google Scholar 

  • Caspari T, Davies C, Carr AM (2000 b) Analysis of the fission yeast checkpoint Rad proteins. Cold Spring Harbor Symp Quant Biol 65: 451–456

    Google Scholar 

  • Caspari T, Murray JM, Carr AM (2002) Cdc2-cyclin B kinase activity links Crb2 and Rqhltopoisomerase III. Genes Dev 16: 1195–208

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Liu TH, Walworth NC (1999) Association of Chkl with 14–3–3 proteins is stimulated by DNA damage. Genes Dev 13: 675 – 685

    Article  PubMed  CAS  Google Scholar 

  • Christensen PU, Bentley NJ, Martinho R.G et al. (2000) Mikl levels accumulate in S phase and may mediate an intrinsic link between S phase and mitosis. Proc Natl Acad Sci USA 97: 2579–2584

    Article  PubMed  CAS  Google Scholar 

  • Edwards RJ, Bentley NJ, Carr AM (1999) A Rad3-Rad26 complex responds to DNA damage independently of other checkpoint proteins. Nat Cell Biology 1: 393–398

    Article  CAS  Google Scholar 

  • Esashi F, Yanagida M (1999) Cdc2 phosphorylation of Crb2 is required for reestablishing cell cycle progression after the damage checkpoint. Mol Cell 4: 167–174

    Article  PubMed  CAS  Google Scholar 

  • Fenech M, Carr AM, Murray JM et al. (1991) Cloning and characterisation of the rad4 gene of Schizosaccharomyces pombe. Nucleic Acids Res 19: 6737–6741

    Article  PubMed  CAS  Google Scholar 

  • Ford JC, Al–Khodairy F, Fotou E et al. (1994) 14–3–3 protein homologs required for the DNA damage checkpoint in fission yeast. Science 265: 533 – 535

    Google Scholar 

  • Fousteri MI, Lehmann AR (2000) A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein. EMBO J 19: 1691–1702

    Article  CAS  Google Scholar 

  • Friedberg EC, Walker GC, Siede W (1995) DNA Repair and Mutagenesis. ASM Press, Washington, USA

    Google Scholar 

  • Green CM, Erdjument-Bromage H, Tempst P, Lowndes NF (2000) A novel Rad24 checkpoint protein complex closely related to replication factor C. Curr Biol 10: 39–42

    Article  PubMed  CAS  Google Scholar 

  • Greenwell PW, Kronmal SL, Porter SE et al. (1995) TELI, a gene involved in controlling telo-mere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82: 823–829

    Google Scholar 

  • Griffiths DJF, Uchiyama M, Nurse P, Wang TS (2000) A novel mutant allele of the chromatin-bound fission yeast checkpoint protein Rad17 separates the DNA structure checkpoints. J Cell Sci 113: 1075–1088

    PubMed  CAS  Google Scholar 

  • Griffiths DJF, Barbet NC, McCready S et al. (1995) Fission yeast rad17: a homologue of budding yeast RAD24 that shares regions of sequence similarity with DNA polymerase accessory proteins. EMBO J 14: 5812–5823

    CAS  Google Scholar 

  • Hu F, Wang Y, Liu D et al. (2001) Regulation of the Bub2/Bfal GAP Complex by Cdc5 and Cell Cycle Checkpoints. Cell 107: 655–665

    Article  PubMed  CAS  Google Scholar 

  • Kaliraman V, Mullen JR, Fricke WM et al. (2001) Functional overlap between Sgsl-Top3 and the Mms4-Mus81 endonuclease. Genes Dev 15: 2730–3740

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Wakayama T, Naiki T et al. (2001) Recruitment of Mecl and Ddcl checkpoint proteins to double-strand breaks through distinct mechanisms. Science 294: 867–870

    Article  PubMed  CAS  Google Scholar 

  • Lamb JR, Petit-Frère C, Broughton BC et al. (1989) Inhibition of DNA replication by ionizing radiation is mediated by a trans-acting factor. Int J Radiat Biol 56: 125–130

    Article  PubMed  CAS  Google Scholar 

  • Lehmann AR (1993) Duplicated region of sequence similarity to the human XRCC1 DNA repair gene in the Schizosaccharomyces pombe rad4/cut5 gene. Nucleic Acids Res 21: 52745274

    Google Scholar 

  • Lehmann AR, Walicka M, Griffiths DJF et al. (1995) The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol Cell Biol 15: 7067–7080

    PubMed  CAS  Google Scholar 

  • Lindsay HD, Griffiths DJ, Edwards RJ et al. (1998) S-phase-specific activation of Cdsl kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev 12: 382–395

    Article  PubMed  CAS  Google Scholar 

  • Lopez–Girona A, Furnari B, Mondesert O, Russell P (1999) Nuclear localisation of Cdc25 is regulated by DNA damage and a 14–3–3 protein. Nature 397: 172 – 175

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Girona A, Kanoh J, Russell P (2001) Nuclear exclusion of Cdc25 is not required for the DNA damage checkpoint in fission yeast. Curr Biol 11: 50–54

    Article  PubMed  CAS  Google Scholar 

  • Makiniemi M, Hillukkala T, Tuusa J et al. (2001) BRCT domain-containing protein TopBP1 functions in DNA replication and damage response. J Biol Chem 276: 30399–30406

    Article  PubMed  CAS  Google Scholar 

  • Masumoto H, Sugino A, Araki H (2000) Dpbll controls the association between DNA polymerases alpha and epsilon and the autonomously replicating sequence region of budding yeast. Mol Cell Biol 20: 2809–2817

    Article  PubMed  CAS  Google Scholar 

  • McFarlane RJ, Carr AM, Price C (1997) Characterisation of the Schizosaccharomyces pombe rad4/cut5 mutant phenotypes: dissection of DNA replication and G2 checkpoint control function. Mol Gen Genet 255: 332–340

    Article  PubMed  CAS  Google Scholar 

  • Melo JA, Cohen J, Toczyski DP (2001) Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev 15: 2809–2821

    PubMed  CAS  Google Scholar 

  • Morrow DM, Tagle DA, Shiloh Y et al. (1995) TELI, an S. cerevisiae homologue of the human gene mutated in Ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1. Cell 82: 831–840

    Google Scholar 

  • Murakami H, Nurse P (1999) Meiotic DNA replication checkpoint control in fission yeast. Genes Dev 13: 2581–2593

    Article  PubMed  CAS  Google Scholar 

  • Murakami H, Okayama H (1995) A kinase from fission yeast responsible for blocking mitosis in S phase. Nature 374: 817–819

    Article  PubMed  CAS  Google Scholar 

  • Muris DFR, Vreeken K, Carr AM et al. (1996) Isolation of the Schizosaccharomyces pombe RAD54 homolog, rhp54 +, a gene involved in the repair of radiation damage and replication fidelity. J Cell Science 109: 73–81

    PubMed  CAS  Google Scholar 

  • Murray JM, Lindsay HD, Munday CA, Carr AM (1997) Role of Schizosaccharomyces pombe RecQ homolog, recombination, and checkpoint genes in UV damage tolerance. Mol Cell Biol 17: 6868–6875

    PubMed  CAS  Google Scholar 

  • Muslin AJ, Tanner JW, Allen PM, Shaw AS (1996) Interaction of 14–3–3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84: 889 – 897

    Article  PubMed  CAS  Google Scholar 

  • O’Connell MJ, Raleigh JM, Verkade HM, Nurse P (1997) Chkl is a Weel kinase in the G2 DNA damage checkpoint inhibiting Cdc2 by Y15 phosphorylation. EMBO J 16: 545–554

    Article  Google Scholar 

  • O’Connell MJ, Walworth NC, Carr AM (2000) The G2-phase DNA-damage checkpoint. Trends Cell Biol 10: 296–303

    Article  Google Scholar 

  • Peng CY, Graves PR, Thoma RS et al. (1997) Mitotic and G2 checkpoint control: regulation of 14–3–3 protein binding by phosphorylation of Cdc25C on serine–216. Science 277: 1501 – 1505

    Article  PubMed  CAS  Google Scholar 

  • Raleigh JM, O’Connell MJ (2000) G2 DNA damage checkpoint targets both Weel and Cdc25. J Cell Sci 113: 1727–1736

    PubMed  CAS  Google Scholar 

  • Rhind N, Russell P (1998) The Schizosaccharomyces pombe S-phase checkpoint differentiates between different types of DNA damage. Genetics 149: 1729–1737

    PubMed  CAS  Google Scholar 

  • Rhind N, Russell P (2000) Roles of the mitotic inhibitors Weel and Mikl in the G(2) DNA damage and replication checkpoints. Mol Cell Biol 21: 1499–1508

    Article  Google Scholar 

  • Rouse J, Jackson SP (2002) Lcdlp recruits Meclp to DNA lesions in vitro and in vivo. Mol Cell 9: 857–869

    Article  PubMed  CAS  Google Scholar 

  • Saka Y, Esashi F, Matsusaka T et al. (1997) Damage and replication checkpoint control in fission yeast is ensured by interactions of Crb2, a protein with BRCT motif, with Cut5 and Chkl. Genes Dev 11: 3387–3400

    Article  PubMed  CAS  Google Scholar 

  • Sheldrick KS, Carr AM (1993) Feedback controls and G2 checkpoints: fission yeast as a model system. BioEssays 15: 775–782

    CAS  Google Scholar 

  • Shimada M, Okuzaki D, Tanaka S et al. (1999) Replication factor C3 of Schizosaccharomyces pombe, a small subunit of replication factor C complex, plays a role in both replication and damage checkpoints. Mol Biol Cell 10: 3991–4003

    PubMed  CAS  Google Scholar 

  • Sogo JM, Lopes M, Foiani M (2002) Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297: 599–602

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Russell P (2001) Mrcl channels the DNA replication arrest signal to checkpoint kinase Cdsl. Nat Cell Biol 3: 966–972

    Article  PubMed  CAS  Google Scholar 

  • Tercero JA, Diffley JF (2001) Regulation of DNA replication fork progression through damaged DNA by the Mecl/Rad53 checkpoint. Nature 412: 553–557

    Article  PubMed  CAS  Google Scholar 

  • Thelen MP, Venclovas C, Fidelis K (1999) A sliding clamp model for the Radl family of cell cycle checkpoint proteins. Cell 19: 769–70

    Article  Google Scholar 

  • Verkade HM, Bugg SJ, Lindsay HD et al. (1999) Rad18 is required for DNA repair and checkpoint responses in fission yeast. Mol Biol Cell 10: 2905–2918

    PubMed  CAS  Google Scholar 

  • Wahl GM, Carr AM (2001) The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nature Cell Biol 3: E277 - E286

    Article  PubMed  CAS  Google Scholar 

  • Walworth N, Bernards R (1996) rad-dependent responses of the chkl-encoded protein kinase at the DNA damage checkpoint. Science 271: 353–356

    Google Scholar 

  • Weinert TA, Hartwell LH (1988) The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241: 317–322

    Article  PubMed  CAS  Google Scholar 

  • Wilson J, Wilson S, Warr N, Watts FZ (1997) Isolation and characterization of the Schizosaccharomyces pombe rhp9 gene: a gene required for the DNA damage checkpoint but not the replication checkpoint. Nucleic Acids Res 25:2138–2146

    Google Scholar 

  • Zou L, Cortez D, Elledge SJ (2002) Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dey 16: 198–208

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carr, A.M., Caspari, T. (2004). Checkpoint Controls Halting the Cell Cycle. In: Egel, R. (eds) The Molecular Biology of Schizosaccharomyces pombe . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10360-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10360-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05631-4

  • Online ISBN: 978-3-662-10360-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics