Skip to main content

Abstract

Most protein-encoding genes in eukaryotes are interrupted by intervening sequences that must be precisely removed to assure correct gene expression. The process by which these intervening sequences, the introns, are excised from a pre-mRNA and the flanking sequences, the exons, are joined to generate a functional mRNA is called pre-mRNA splicing. Pre-mRNA splicing is executed by a large ribonucleoprotein (RNP) machinery, the spliceosome, which consists of five small nuclear RNAs (snRNAs), U1, U2, U4, U5, and U6, and more than 80 proteins (Burge et al. 1999). The spliceosome is a highly dynamic complex, and extensive RNA-RNA and RNA-protein interactions are involved in the recognition of an intron and its removal from the pre-mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajuh P, Sleeman J, Chusainow J, Lamond AI (2001) A direct interaction between the carboxyl-terminal region of CDC5L and the WD40 domain of PLRG1 is essential for pre-mRNA splicing. J Biol Chem 276: 42370–42381

    Article  PubMed  CAS  Google Scholar 

  • Alahari SK, Schmidt H, Käufer NF (1993) The fission yeast prp4 + gene involved in premRNA splicing codes for a predicted serine/threonine kinase and is essential for growth. Nucleic Acids Res 21: 4079–4083

    Article  PubMed  CAS  Google Scholar 

  • Burge CB, Tuschl TH, Sharp PA (1999) Splicing of precursors to mRNAs by the spliceosomes. In: Gesteland RF, Cech TR, Atkins JF (eds) RNA World II. CSH Laboratory Press, Cold Spring Harbor, pp 525–560

    Google Scholar 

  • Collins CA, Guthrie C (2000) The question remains: is the spliceosome a ribozyme? Nat Struct Biol 10: 850–854

    Google Scholar 

  • Dellaire G, Makarov EM, Cowger JJ et al. (2002) Mammalian PRP4 kinase copurifies and interacts with components of both the U5 snRNP and the N-CoR deacetylase complexes. Mol Cell Biol 22: 5141–5156

    Article  PubMed  CAS  Google Scholar 

  • Gatermann KB, Hoffmann A, Rosenberg GH, Käufer NF (1989) Introduction of functional artificial introns into the naturally intronless ura4 gene of Schizosaccharomyces pombe. Mol Cell Biol 9: 1526–1535

    PubMed  CAS  Google Scholar 

  • Gozani O, Potashkin J, Reed R (1998) A potential role for U2AF-SAP 155 interactions in recruiting U2 snRNP to the branch site. Mol Cell Biol 18: 4752–4760

    PubMed  CAS  Google Scholar 

  • Graveley BR (2000) Sorting out the complexity of SR protein functions. RNA 6: 1197–1211

    Article  PubMed  CAS  Google Scholar 

  • Groß T, Lützelberger M, Weigmann H et al. (1997) Functional analysis of the fission yeast Prp4 protein kinase involved in pre-mRNA splicing and isolation of a putative mammalian homologue. Nucleic Acids Res 25: 1028–1035

    Article  PubMed  Google Scholar 

  • Groß T, Richert K, Mierke C et al. (1998) Identification and characterization of srpl, a gene of fission yeast encoding a RNA binding domain and a RS domain typical of SR splicing factors. Nucleic Acids Res 26: 505–511

    Article  PubMed  Google Scholar 

  • Habara Y, Urushiyama S, Tani T, Ohshima Y (1998) The fission yeast prp10 + gene involved in pre-mRNA splicing encodes a homologue of highly conserved splicing factor, SAP155. Nucleic Acids Res 26: 5662–5669

    Article  PubMed  CAS  Google Scholar 

  • Habara Y, Urushiyama S, Shibuya T et al. (2001) Mutation in the prp12 + gene encoding a homolog of SAP130/SF3b130 causes differential inhibition of pre-mRNA splicing and arrest of cell-cycle progression in Schizosaccharomyces pombe. RNA 7: 671–681

    Article  PubMed  CAS  Google Scholar 

  • Hannus S, Bühler D, Romano M et al. (2000) The Schizosaccharomyces pombe protein Yab8p and a novel factor, Yiplp, share structural and functional similarity with the spinal muscular atrophy-associated proteins SMN and SIP1. Hum Mol Genet 9: 663–674

    Article  PubMed  CAS  Google Scholar 

  • Hastings ML, Krainer AR (2001) Pre-mRNA splicing in the new millenium. Curr Opin Cell Biol 13: 302–309

    Article  PubMed  CAS  Google Scholar 

  • Johnson TL, Abelson J (2001) Characterization of U4 and U6 interactions with the 5’ splice site using a S. cerevisiae in vitro trans-splicing system. Genes Dev 15: 1957–1970

    Article  PubMed  CAS  Google Scholar 

  • Käufer NF, Potashkin J (2000) Analysis of the splicing machinery in fission yeast: a comparison with budding yeast and mammals. Nucleic Acids Res 28: 3003–3010

    Article  PubMed  Google Scholar 

  • Kojima T, Zama T, Wada K et al. (2001) Cloning of human PRP4 reveals interaction with Clkl. J Biol Chem 276: 32247–32256

    Article  PubMed  CAS  Google Scholar 

  • Kuhn AN, Brow DA (2000) Suppressors of a cold-sensitive mutation in yeast U4 RNA define five domains in the splicing factor Prp8 that influence spliceosome activation. Genetics 155: 1667–1682

    PubMed  CAS  Google Scholar 

  • Kuhn AN, Reichl EM, Brow DA (2002) Distinct domains of splicing factor Prp8 mediate different aspects of spliceosome activation. Proc Natl Acad Sci USA 99: 9145–9149

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre S, Burglen L, Reboullet S et al. (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80: 155–165

    Article  PubMed  CAS  Google Scholar 

  • Lopez PJ, Séraphin B (1999) Genomic-scale quantitative analysis of yeast pre-mRNA splicing: implications for splice-site recognition. RNA 5: 1135–1137

    Article  PubMed  CAS  Google Scholar 

  • Lundgren K, Allan S, Urushiyama S et al. (1996) A connection between pre-mRNA splicing and the cell cycle in fission yeast: cdc28 + is allelic with prp8 + and encodes an RNA-dependent ATPase/helicase. Mol Biol Cell 7: 1083–1094

    PubMed  CAS  Google Scholar 

  • Lützelberger M, Groß T, Käufer NF (1999) Srp2, an SR protein family member of fission yeast: in vivo characterization of its modular domains. Nucleic Acids Res 27: 2618–2626

    Article  PubMed  Google Scholar 

  • Madhani HD, Guthrie C (1992) A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 71: 803–817

    Article  PubMed  CAS  Google Scholar 

  • Makarov EM, Makarova OV, Achsel T, Lührmann R (2000) The human homologue of the yeast splicing factor Prp6p contains multiple TPR elements and is stably associated with the U5 snRNP via protein-protein interactions. J Mol Biol 298: 567–575

    Article  PubMed  CAS  Google Scholar 

  • Maroney PA, Romfo CM, Nilsen TW (2000) Functional recognition of 5’ splice site by U4/ U6.U5 tri-snRNP defines a novel ATP-dependent step in early spliceosome assembly. Mol Cell 6: 317–328

    Article  PubMed  CAS  Google Scholar 

  • Mayeda A, Badolato J, Kobayashi R et al. (1999) Purification and characterization of human RNPS1: a general activator of pre-mRNA splicing. EMBO J 18: 4560–4570

    Article  PubMed  CAS  Google Scholar 

  • McDonald WH, Ohi R, Smelkova N et al. (1999) Myb-related fission yeast Cdc5p is a component of a 40S snRNP-containing complex and is essential for pre-mRNA splicing. Mol Cell Biol 19: 5352–5362

    PubMed  CAS  Google Scholar 

  • Meister G, Bühler D, Laggerbauer B et al. (2000) Characterization of a nuclear 20S complex containing the survival of motor neurons (SMN) protein and a specific subset of spliceosomal Sm proteins. Hum Mol Genet 9: 1977–1986

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Bühler D, Pillai R et al. (2001) A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nat Cell Biol 3: 945–949

    Article  PubMed  CAS  Google Scholar 

  • Mermoud JE, Cohen P, Lamond AI (1992) Ser/Thr-specific protein phosphatases are required for both catalytic steps of pre-mRNA splicing. Nucleic Acids Res 20: 5263–5269

    Article  PubMed  CAS  Google Scholar 

  • Mount SM, Salz HK (2000) Pre-messenger RNA processing factors in the Drosophila genome. J Cell Biol 150: F37–44

    Article  PubMed  CAS  Google Scholar 

  • Murray MV, Kobayashi R, Krainer AR (1999) The type 2C Ser/Thr phosphatase PP2Cg is a pre-mRNA splicing factor. Genes Dev 13: 87–97

    Article  PubMed  CAS  Google Scholar 

  • Nilsen TW (2002) The spliceosome: no assembly required? Mol Cell 9: 8–9

    Article  PubMed  CAS  Google Scholar 

  • Ohi MD, Gould KL (2002) Characterization of interactions among the Ceflp-Prpl9p-associated splicing complex. RNA 8: 798–815

    Article  PubMed  CAS  Google Scholar 

  • Ohi R, McCollum D, Hirani B et al. (1994) The Schizosaccharomyces pombe cdc5 + gene encodes an essential protein with homology to c-Myb. EMBO J 13: 471–483

    PubMed  CAS  Google Scholar 

  • Ohi MD, Link AJ, Ren L et al. (2002) Proteomics analysis reveals stable multiprotein cornplexes in both fission and budding yeasts containing Myb-related Cdc5p/Ceflp, novel pre-mRNA splicing factors, and snRNAs. Mol Cell Biol 22: 2011–2024

    Article  PubMed  CAS  Google Scholar 

  • Owen N, Doe CL, Mellor J, Davies KE (2000) Characterization of the Schizosaccharomyces pombe orthologue of the human survival motor neuron (SMN) protein. Hum Mol Genet 9: 675–684

    Article  PubMed  CAS  Google Scholar 

  • Paushkin S, Charroux B, Abel L et al. (2000) The survival motor neuron protein of Schizosacharomyces pombe. Conservation of survival motor neuron interaction domains in divergent organisms. J Biol Chem 275: 23841–23846

    Article  PubMed  CAS  Google Scholar 

  • Potashkin J, Li R, Frendewey D (1989) Pre-mRNA splicing mutants of Schizosaccharomyces pombe. EMBO J 8: 551–559

    PubMed  CAS  Google Scholar 

  • Potashkin J, Naik K, Wentz-Hunter K (1993) U2AF homolog required for splicing in vivo. Science 262: 573–575

    Article  PubMed  CAS  Google Scholar 

  • Potashkin J, Kim D, Fons M et al. (1998) Cell-division-cycle defects associated with fission yeast pre-mRNA splicing mutants. Curr Genet 34: 153–163

    Article  PubMed  CAS  Google Scholar 

  • Prabhala G, Rosenberg GH, Käufer NF (1992) Architectural features of pre-mRNA introns in the fission yeast Schizosaccharomyces pombe. Yeast 8: 171–182

    Article  PubMed  CAS  Google Scholar 

  • Romfo CM, Alvarez CJ, van Heeckeren WJ et al. (2000) Evidence for splice site pairing via intron definition in Schizosaccharomyces pombe. Mol Cell Biol 20: 7955–7970

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg GH, Alahari SK, Käufer NF (1991) prp4 from Schizosaccharomyces pombe, a mutant deficient in pre-mRNA splicing isolated using genes containing artificial introns. Mol Gen Genet 226: 305–309

    Google Scholar 

  • Schmidt H, Richert K, Drakas RA, Käufer NF (1999) spp42, identified as a classical suppressor of prp4–73, which encodes a kinase involved in pre-mRNA splicing in fission yeast, is a homologue of the splicing factor Prp8p. Genetics 153: 1183–1191

    Google Scholar 

  • Schwelnus W, Richert K, Opitz F et al. (2001) Fission yeast Prp4p kinase regulates premRNA splicing by phosphorylating a non-SR-splicing factor. EMBO Rep 2: 35–41

    Article  PubMed  CAS  Google Scholar 

  • Shimoseki M, Shimoda C (2001) The 5’ terminal region of the Schizosaccharomyces pombe mesi mRNA is crucial for its meiosis-specific splicing. Mol Genet Genomics 265: 673–682

    Article  PubMed  CAS  Google Scholar 

  • Smith CW, Valcârcel J (2000) Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem Sci 25: 381–388

    Article  PubMed  CAS  Google Scholar 

  • Sontheimer EJ, Sun S, Piccirilli JA (1997) Metal ion catalysis during splicing of premessenger RNA. Nature 388: 801–805

    Article  PubMed  CAS  Google Scholar 

  • Spector DL (1996) Nuclear organization and gene expression. Exp Cell Res 229: 189–197

    Article  PubMed  CAS  Google Scholar 

  • Spingola M, Grate L, Haussler D, Ares Jr M (1999) Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae. RNA 5: 221–234

    Article  PubMed  CAS  Google Scholar 

  • Staley JP, Guthrie C (1998) Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92: 315–326

    Article  PubMed  CAS  Google Scholar 

  • Stevens SW, Ryan DE, Ge HY et al. (2002) Composition and functional characterization of the yeast spliceosomal penta-snRNP. Mol Cell 9: 31–44

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi M, Yanagida M (1993) A mitotic role for a novel fission yeast protein kinase dskl with cell cycle stage dependent phosphorylation and localization. Mol Biol Cell 4: 247260

    Google Scholar 

  • Tang Z, Yanagida M, Lin RJ (1998) Fission yeast mitotic regulator Dskl is an SR protein-specific kinase. J Biol Chem 273: 5963–5969

    Article  PubMed  CAS  Google Scholar 

  • Tang Z, Kuo T, Shen J, Lin RJ (2000) Biochemical and genetic conservation of fission yeast Dskl and human SR protein-specific kinase 1. Mol Cell Biol 20: 816–824

    Article  PubMed  CAS  Google Scholar 

  • Tang Z, Käufer NF, Lin RJ (2002) Interactions between two fission yeast SR-related proteins and their modulation by phosphorylation. Biochem J, Immediate Publication, doi: 10.1042/BJ20021133

    Google Scholar 

  • Tsai WY, Chow YT, Chen HR et al. (1999) Ceflp is a component of the Prpl9p-associated complex and essential for pre-mRNA splicing. J Biol Chem 274: 9455–9462

    Article  PubMed  CAS  Google Scholar 

  • Umen JG, Guthrie C (1995) The second catalytic step of pre-mRNA splicing. RNA 1: 869–885

    PubMed  CAS  Google Scholar 

  • Urushiyama S, Tani T, Ohshima Y (1996) Isolation of novel pre-mRNA splicing mutants of Schizosaccharomyces pombe. Mol Gen Genet 253: 118–127

    Article  PubMed  CAS  Google Scholar 

  • Urushiyama S, Tani T, Ohshima Y (1997) The prp1+ gene required for pre-mRNA splicing in Schizosaccharomyces pombe encodes â protein that contains TPR motifs and is similar to Prp6p of budding yeast. Genetics 147: 101–115

    PubMed  CAS  Google Scholar 

  • Valadkhan S, Manley JL (2001) Splicing-related catalysis by protein-free snRNAs. Nature 413: 701–707

    Article  PubMed  CAS  Google Scholar 

  • van Nues RW, Beggs JD (2001) Functional contacts with a range of splicing proteins suggest a central role for Brr2p in the dynamic control of the order of events in spliceosomes of Saccharomyces cerevisiae. Genetics 157: 1451–1467

    PubMed  Google Scholar 

  • Wang C, Chua K, Seghezzi W et al. (1998) Phosphorylation of spliceosomal protein SAP 155 coupled with splicing catalysis. Genes Dev 12: 1409–1014

    Article  PubMed  CAS  Google Scholar 

  • Will CL, Lührmann R (2001) Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol 13: 290–301

    Article  PubMed  CAS  Google Scholar 

  • Yean SL, Wuenschell G, Termini J, Lin RJ (2000) Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature 408: 881–884

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuhn, A.N., Käufer, N.E. (2004). Mechanism and Control of Pre-mRNA Splicing. In: Egel, R. (eds) The Molecular Biology of Schizosaccharomyces pombe . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10360-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10360-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05631-4

  • Online ISBN: 978-3-662-10360-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics