The Schizosaccharomyces pornbe genome sequence and a preliminary analysis have been reported (Wood et al. 2002). This landmark will further establish and expand the role of fission yeast as a major experimental model organism. The sequencing phase is almost complete, with only four gaps remaining in the repetitive centromeric and telomeric regions. As noted for similar regions in other organisms, these are proving difficult to complete. Work is continuing to finish the sequence to the telomeric repeats, thus precluding genes being missed. The published genome sequence also excludes the rDNA repeats, known to be present as two tandem arrays on chromosome III (Schaak et al. 1982). Below and in Table 2.1, some of the most notable features of the fission yeast genome sequence are summarized.


Fission Yeast Schizosaccharomyces Pombe Multicellular Eukaryote Arabidopsis Genome Initiative Functional Genomic Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman RB, Raychaudhuri S (2001) Whole-genome expression analysis: challenges beyond clustering. Curr Opin Structural Biol 11: 340–347CrossRefGoogle Scholar
  2. Aravind L, Watanabe H, Lipman DJ, Koonin EV (2000) Lineage-specific loss and divergence of functionally linked genes in eukaryotes. Proc Natl Acad Sci USA 97: 11319–11324PubMedCrossRefGoogle Scholar
  3. Ball CA, Jin H, Sherlock G et al. (2001) Saccharomyces genome database provides tools to survey gene expression and functional analysis data. Nucleic Acids Res 29: 80–81Google Scholar
  4. Bolton SJ, Gartner A, Reboul J et al. (2002) Combined functional genomic maps of the C. elegans DNA damage response. Science 295: 127–131CrossRefGoogle Scholar
  5. Brazma A, Hingamp P, Quackenbush J et al. (2001) Minimum information about a microarray experiment ( MIAME) - toward standards for microarray data. Nat Genet 29: 365–371Google Scholar
  6. Brent R (2000) Genomic Biology. Cell 100: 169–183PubMedCrossRefGoogle Scholar
  7. Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21: 33–37PubMedCrossRefGoogle Scholar
  8. Carroll SB, Grenier JK, Weatherbee SD (2001) From DNA to diversity. Blackwell, Malden, MassachusettsGoogle Scholar
  9. Chen D, Toone WM, Mata J et al. (2003) Global transcriptional responses of fission yeast to environmental stress. Mol Biol Cell 14: 214–229PubMedCrossRefGoogle Scholar
  10. Claverie JM (2001) What if there are only 30,000 human genes? Science 291: 1255–1257PubMedCrossRefGoogle Scholar
  11. Colman-Lerner A, Chin TE, Brent R (2001) Yeast Cbkl and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell 107: 739–750PubMedCrossRefGoogle Scholar
  12. Costanzo MC, Crawford ME, Hirschman JE et al. (2001) YPD, PombePD and WormPD: model organism volumes of the BioKnowledge library, an integrated resource for protein information. Nucleic Acids Res 29: 75–79PubMedCrossRefGoogle Scholar
  13. Crom SL, Devaux F, Jacq C, Marc P (2002) yMGV: helping biologists with yeast microarray data mining. Nucleic Acids Res 30: 76–79Google Scholar
  14. Decottignies A, Sanchez-Perez I, Nurse P (2003) Schizosaccharomyces pombe essential genes: a pilot study. Genome Res 13: 399–406Google Scholar
  15. Delneri D, Brancia FL, Oliver SG (2001) Towards a truly integrative biology through the functional genomics of yeast. Curr Opin Biotechnol 12: 87–91PubMedCrossRefGoogle Scholar
  16. Ding DQ, Tornita Y, Yamamoto A et al. (2000) Large-scale screening of intracellular protein localization in living fission yeast cells by the use of a GFP-fusion genomic DNA library. Genes Cells 5: 169–190PubMedCrossRefGoogle Scholar
  17. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95: 14863–14868PubMedCrossRefGoogle Scholar
  18. Enard W, Khaitovich P, Klose J et al. (2002) Intra-and interspecific variation in primate gene expression patterns. Science 296: 340–343PubMedCrossRefGoogle Scholar
  19. Fan J, Yang X, Wang W et al. (2002) Global analysis of stress-regulated mRNA turnover by using cDNA arrays. Proc Natl Acad Sci USA 99: 10611–10616PubMedCrossRefGoogle Scholar
  20. Ferea TL, Brown PO (1999) Observing the living genome. Curr Opin Genet Dev 9: 715–722PubMedCrossRefGoogle Scholar
  21. Fraser AG, Kamath RS, Zipperlen P et al. (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408: 325–330PubMedCrossRefGoogle Scholar
  22. Ge H, Liu Z, Church GM, Vidal M (2001) Correlation between transcriptome and interactome mapping data from S. cerevisiae. Nat Genet 29: 482–486PubMedCrossRefGoogle Scholar
  23. Goffeau A (2000) Four years of post-genomic life with 6,000 yeast genes. FEBS Lett 480: 3741CrossRefGoogle Scholar
  24. Hartwell L, Hopfield J, Leibler S, Murray A (1999) From molecular to modular cell biology. Nature 402: C47–052PubMedCrossRefGoogle Scholar
  25. Hughes TR, Marton MJ, Jones AR et al. (2000) Functional discovery via a compendium of expression profiles. Cell 102: 109–126PubMedCrossRefGoogle Scholar
  26. Ideker T, Thorsson V, Ranish JE et al. (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292: 929–934PubMedCrossRefGoogle Scholar
  27. Jansen R, Greenbaum D, Gerstein M (2002) Relating whole-genome expression data with protein-protein interactions. Genome Res 12: 37–46PubMedCrossRefGoogle Scholar
  28. Krupp G, Cherayil B, Frendewey D et al. (1986) Two RNA species co-purify with RNase P from the fission yeast S. pombe. EMBO J 5: 1697–1703PubMedGoogle Scholar
  29. Kumar A, Snyder M (2001) Emerging technologies in yeast genomics. Nat Rev Genet 2: 30 2312Google Scholar
  30. Kumar A, Snyder M (2002) Protein complexes take the bait. Nature 415: 123–124PubMedCrossRefGoogle Scholar
  31. Lee TI, Rinaldi NJ, Robert F et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298: 799–804PubMedCrossRefGoogle Scholar
  32. Lockhart D, Winzeler E (2000) Genomics, gene expression and DNA arrays. Nature 405: 827–836PubMedCrossRefGoogle Scholar
  33. Marc P, Devaux F, Jacq C (2001) yMGV: a database for visualization and data mining of published genome-wide yeast expression data. Nucleic Acids Res 29: e63Google Scholar
  34. Mata J, Lyne R, Burns G, Bähler J (2002) The transcriptional program of meiosis and sporulation in fission yeast. Nature Genet 32: 143–147PubMedCrossRefGoogle Scholar
  35. Mewes HW, Albermann K, Bahr M et al. (1997) Overview of the yeast genome. Nature 387: 7–65PubMedCrossRefGoogle Scholar
  36. Nal B, Mohr E, Ferrier P (2001) Location analysis of DNA-bound proteins at the whole-genome level: untangling transcriptional regulatory networks. BioEssays 23: 473–476PubMedCrossRefGoogle Scholar
  37. Ohler U, Niemann H (2001) Identification and analysis of eukaryotic promoters: recent computational approaches. Trends Genet 17: 56–60PubMedCrossRefGoogle Scholar
  38. Pilpel Y, Sudarsanam P, Church GM (2001) Identifying regulatory networks by combinatorial analysis of promoter elements. Nat Genet 29: 153–159PubMedCrossRefGoogle Scholar
  39. Pradet-Balade B, Boulme F, Beug H et aí. (2001) Translational control: bridging the gap between genomics and proteomics. Trends Biochem Sci 26: 225–229PubMedCrossRefGoogle Scholar
  40. Ribes V, Dehoux P, Tollervey D (1988) 7SL RNA from S. pombe is encoded by a single copy essential gene. EMBO J 7: 231–237Google Scholar
  41. Roberts CJ, Nelson B, Marton MJ et al. (2000) Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287: 873–880PubMedCrossRefGoogle Scholar
  42. Rutherford K, Parkhill J, Crook J et al. (2000) Artemis: sequence visualization and annotation. Bioinformatics 16: 944–945PubMedCrossRefGoogle Scholar
  43. Schaak J, Mao J, Söll D (1982) The 5.8S RNA gene sequence and the ribosomal repeat of S. pombe. Nucleic Acids Res 10: 2851–2864PubMedCrossRefGoogle Scholar
  44. Stillman B (2001) Genomic views of genome duplication. Science 294: 2301–2304PubMedCrossRefGoogle Scholar
  45. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815Google Scholar
  46. The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018Google Scholar
  47. Tong AH, Evangelista M, Parsons AB et al. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294: 2364–2368PubMedCrossRefGoogle Scholar
  48. Tong AH, Drees B, Nardelli G et al. (2002) A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295: 321–324PubMedCrossRefGoogle Scholar
  49. Toth A, Rabitsch KP, Galova M et al. (2000) Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell 103: 11551168Google Scholar
  50. Tupler R, Perini G, Green MR (2001) Expressing the human genome. Nature 409: 832–833PubMedCrossRefGoogle Scholar
  51. Vidal M (2001) A biological atlas of functional maps. Cell 104: 333–339PubMedCrossRefGoogle Scholar
  52. Wang Y, Liu CL, Storey JD et al. (2002) Precision and functional specificity in mRNA decay. Proc Natl Acad Sci USA 99: 5860–5865PubMedCrossRefGoogle Scholar
  53. Watanabe Y, Yamamoto M (1994) S. pombe mei2 + encodes an RNA-binding protein essential for premeiotic DNA synthesis and meiosis I, which cooperates with a novel RNA species meiRNA. Cell 78: 487–498PubMedCrossRefGoogle Scholar
  54. Watanabe T, Miyashita K, Saito TT et al. (2001) Comprehensive isolation of meiosis-specific genes identifies novel proteins and unusual non-coding transcripts in S. pombe. Nucleic Acids Res 29: 2327–2337PubMedCrossRefGoogle Scholar
  55. Watanabe T, Miyashita K, Saito TT, Nabeshima K, Nojima H (2002) Abundant poly (A)- bearing RNAs that lack open reading frames in S. pombe. DNA Res 9: 209–215PubMedCrossRefGoogle Scholar
  56. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708–713PubMedCrossRefGoogle Scholar
  57. Wood V, Bähler J (2002) How to get the best from fission yeast genome data. Comp Funct Genom 3: 282–288CrossRefGoogle Scholar
  58. Wood V, Rutherford KM, Ivens A et al. (2001) A re-annotation of the S. cerevisiae genome. Comp Funct Genom 2: 143–154CrossRefGoogle Scholar
  59. Wood V, Gwilliam R, Rajandream MA et al. (2002) The genome sequence of S. pombe. Nature 415: 871–880PubMedCrossRefGoogle Scholar
  60. Young R (2000) Biomedical discovery with DNA arrays. Cell 102: 9–16PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jürg Bähler
  • Valerie Wood

There are no affiliations available

Personalised recommendations