Skip to main content

Abstract

Under conditions of nutritional deprivation fission yeast cells differentiate into ascospores. In this process haploid G1 cells of opposite mating types (M and P) first mate to form a diploid zyogote, which subsequently undergoes meiosis and sporulation, thereby producing an ascus with four haploid spores. These spores represent a dormant state, which is more resistant to unfavourable conditions. Once the environment improves the ascus sac will dissolve, releasing the spores, which then germinate into haploid vegetative cells, thus completing the life cycle (Egel 1994; Nielsen and Davey 1995; Yamamoto et al. 1997 for reviews and early references).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barr MM, Tu H, Van Aelst L, Wigler M (1996) Identification of Ste4 as a potential regulator of Byr2 in the sexual response pathway of Schizosaccharomyces pombe. Mol Cell Biol 16: 5597–5603

    PubMed  CAS  Google Scholar 

  • Bauman P, Cheng QC, Albright CF (1998) The Byr2 kinase translocates to the plasma membrane in a Rasl-dependent manner. Biochem Biophys Res Commun 244: 468–474

    Article  PubMed  CAS  Google Scholar 

  • Beach D, Rodgers L, Gould J (1985) rant controls the transition from mitotic division to meiosis in fission yeast. Curr Genet 10: 297–311

    Article  PubMed  CAS  Google Scholar 

  • Christensen PU, Davey J, Nielsen O (1996) The Schizosaccharomyces pombe maml gene encodes an ABC transporter mediating secretion of M-factor. Mol Gen Genet 255: 226–236

    Article  Google Scholar 

  • Correa-Bordes J, Nurse P (1995) p25’uml orders S phase and mitosis by acting as an inhibitor of the p34`d`2 mitotic kinase. Cell 83: 1001–1009

    Google Scholar 

  • Costello G, Beach D (1986) Fission yeast enters the stationary Go state from either mitotic G1 or G2. Curr Genet 11: 119–125

    Article  Google Scholar 

  • Chung KS, Won M, Lee SB et al. (2001) Isolation of a novel gene from Schizosaccharomyces pombe: shill’ encoding a seven-transmembrane loop protein that may couple with the heterotrimeric Ga 2 protein, Gpa2. J Biol Chem 276: 40190–40201

    PubMed  CAS  Google Scholar 

  • Davey J (1992) Mating pheromones of the fission yeast Schizosaccharomyces pombe: purification and structural characterization of M-factor and isolation and analysis of two genes encoding the pheromone. EMBO J 11: 951–960

    PubMed  CAS  Google Scholar 

  • Davey J, Nielsen O (1994) Mutations in cyrl and pat/ reveal pheromone-induced G1 arrest in the fission yeast Schizosaccharomyces pombe. Curr Genet 26: 105–112

    Article  PubMed  CAS  Google Scholar 

  • DeVoti J, Seydoux G, Beach D, McLeod M (1991) Interaction between rani+ protein kinase and cAMP dependent protein kinase as negative regulators of fission yeast meiosis. EMBO J 10: 3759–3768

    PubMed  CAS  Google Scholar 

  • Egel R (1994) Regulation of meiosis and sporulation in Schizosaccharomyces pombe. In: Wessels JGH, Meinhardt F (eds) The Mycota I: Growth, differentiation and sexuality. Springer, Berlin Heidelberg New York, pp 251–265

    Google Scholar 

  • Fantes P and Nurse P (1977) Control of cell size at division in fission yeast by a growth-modulated size control over nuclear division. Exp Cell Res 107: 377–386

    Article  PubMed  CAS  Google Scholar 

  • Fukui Y, Kaziro Y (1985) Molecular cloning and sequence analysis of a ras gene from Schizosaccharomyces pombe. EMBO J 4: 687–691

    PubMed  CAS  Google Scholar 

  • Fukui Y, Kozasa T, Kaziro Yet al. (1986) Role of a ras homolog in the life cycle of Schizosaccharomyces pombe. Cell 44: 329–336

    Article  PubMed  CAS  Google Scholar 

  • Fukui Y, Miyake S, Satoh M, Yamamoto M (1989) Characterization of the Schizosaccharomyces pombe ral2 gene implicated in activation of the rasi gene product. Mol Cell Biol 9: 5617–5622

    PubMed  CAS  Google Scholar 

  • Gotoh Y, Nishida E, Shimanuki M et al. (1993) Schizosaccharomyces pombe Spkl is a tyrosine-phosphorylated protein functionally related to Xenopus mitogen-activated protein kinase. Mol Cell Biol 13: 6427–6434

    Google Scholar 

  • Grallert B, Kearsey SE, Lenhard M et al. (2000) A fission yeast general translation factor re- veals links between protein synthesis and cell cycle controls. J Cell Sci 113: 1447–1458

    PubMed  CAS  Google Scholar 

  • Hao Z, Furunobu A, Nagata A, Okayama H (1997) A zinc finger protein required for stationary phase viability in fission yeast. J Cell Sci 110: 2557–2566

    PubMed  CAS  Google Scholar 

  • Hughes DA, Fukui Y, Yamamoto M (1990) Homologous activators of Ras in fission and budding yeast. Nature 344: 355–357

    Article  PubMed  CAS  Google Scholar 

  • Hughes DA, Yabana N, Yamamoto M (1994) Transcriptional regulation of a Ras nucleotide- exchange factor gene by extracellular signals in fission yeast. J Cell Sci 107: 3635–3642

    PubMed  CAS  Google Scholar 

  • Imai Y, Miyake S, Hughes DA, Yamamoto M (1991) Identification of a GTPase-activating protein homolog in Schizosaccharomyces pombe. Mol Cell Biol 11: 3088–3094

    PubMed  CAS  Google Scholar 

  • Imai Y, Yamamoto M (1994) The fission yeast mating pheromone P-factor: its molecular structure, gene structure, and ability to induce gene expression and G1 arrest in the mating partner. Genes Dev 8: 328–338

    Article  PubMed  CAS  Google Scholar 

  • Imai Y, Davey J, Kawagishi-Kobayashi M, Yamamoto M (1997) Genes encoding farnesyl cysteine carboxyl methyltransferase in Schizosaccharomyces pombe and Xenopus laevis. Mol Cell Biol 17: 1543–1551

    PubMed  CAS  Google Scholar 

  • Isshiki T, Mochizuki N, Maeda T, Yamamoto M (1992) Characterization of a fission yeast gene, gpa2, that encodes a Ga subunit involved in the monitoring of nutrition. Genes Dev 6: 2455–2462

    Article  PubMed  CAS  Google Scholar 

  • Kelly M, Burke J, Smith M et al. (1988) Four mating-type genes control sexual differentiation in the fission yeast. EMBO J 7: 1537–1547

    PubMed  CAS  Google Scholar 

  • Kitamura K, Shimoda C (1991) The Schizosaccharomyces pombe mam2 gene encodes a putative pheromone receptor which has a significant homology with the Saccharomyces cerevisiae Ste2 protein. EMBO J 10: 3743–3751

    PubMed  CAS  Google Scholar 

  • Kjaerulff S, Davey J, Nielsen O (1994) Analysis of the structural genes encoding M-factor in the fission yeast Schizosaccharomyces pombe: identification of a third gene, mfm3. Mol Cell Biol 14: 3895–3905

    PubMed  CAS  Google Scholar 

  • Kjaerulff S, Dooijes D, Clevers H, Nielsen O (1997) Cell differentiation by interaction of two HMG-box proteins: Matl-Mc activates M cell-specific genes in S. pombe by recruiting the ubiquitous transcription factor Stell to weak binding sites. EMBO J 16: 4021–4033

    Article  PubMed  CAS  Google Scholar 

  • Kurahashi H, Imai Y, Yamamoto M (2002) Tropomyosin is required for the cell fusion process during conjugation in fission yeast. Genes Cells 7: 375–384

    Article  PubMed  CAS  Google Scholar 

  • Landry S, Pettit MT, Apolinario E, Hoffman CS (2000) The fission yeast git5 gene encodes a Gß subunit required for glucose-triggered adenylate cyclase activation. Genetics 154: 1463–1471

    PubMed  CAS  Google Scholar 

  • Lee JK, Kim M, Choe J et al. (1995) Characterization of uvi15 +, a stress-inducible gene from Schizosaccharomyces pombe. Mol Gen Genet 246: 663–670

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Watanabe Y, Kunitomo H, Yamamoto M (1994) Cloning of the pkal gene encoding the catalytic subunit of the cAMP-dependent protein kinase in Schizosaccharomyces pombe. J Biol Chem 269: 9632–9637

    PubMed  CAS  Google Scholar 

  • Maekawa H, Nakagawa T, Uno Yet al. (1994) The stel3 + gene encoding a putative RNA helicase is essential for nitrogen starvation-induced G1 arrest and initiation of sexual development in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 244: 456–464

    Article  PubMed  CAS  Google Scholar 

  • Marcus S, Polverino A, Chang E et al. (1995) Shkl, a homolog of the Saccharomyces cerevisiae Ste20 and mammalian p65PAK protein kinases, is a component of a Ras/Cdc42 signaling module in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci USA 92: 6180–6184

    Article  PubMed  CAS  Google Scholar 

  • Morishita M, Morimoto F, Kitamura K et al. (2002) Phosphatidylinositol 3-phosphate 5-kinase is required for the cellular response to nutritional starvation and mating pheromone signals in Schizosaccharomyces pombe. Genes Cells 7: 199–215

    Article  PubMed  CAS  Google Scholar 

  • Neiman AM, Stevenson BJ, Xu HP et al. (1993) Functional homology of protein kinases required for sexual differentiation in Schizosaccharomyces pombe and Saccharomyces cerevisiae suggests a conserved signal transduction module in eukaryotic organisms. Mol Biol Cell 4: 107–120

    PubMed  CAS  Google Scholar 

  • Nielsen O, Davey J (1995) Pheromone communication in the fission yeast Schizosaccharomyces pombe. Semin Cell Biol 6: 95–104

    Article  PubMed  CAS  Google Scholar 

  • Nielsen O, Friis T, Kjaerulff S (1996) The Schizosaccharomyces pombe ma» gene encodes an SRF/MCM1-related protein required for P-cell specific gene expression. Mol Gen Genet 253: 387–392

    PubMed  CAS  Google Scholar 

  • Obara T, Nakafuku M, Yamamoto M, Kaziro Y (1991) Isolation and characterization of a gene encoding a G-protein a subunit from Schizosaccharomyces pombe: involvement in mating and sporulation pathways. Proc Natl Acad Sci USA 88: 5877–5881

    Article  PubMed  CAS  Google Scholar 

  • Obara-Ishihara T, Okayama H (1994) A B-type cyclin negatively regulates conjugation via interacting with cell cycle `start’ genes in fission yeast. EMBO J 13: 1863–1872

    PubMed  CAS  Google Scholar 

  • Ohmiya R, Yamada H, Kato C, Aiba H, Mizuno T (2000) The Prrl response regulator is essential for transcription of stel 1+ and for sexual development in fission yeast Mol Gen Genet 264: 441–451

    CAS  Google Scholar 

  • Okazaki N, Okazaki K, Watanabe Y, Kato-Hayashi M, Yamamoto M, Okayama H (1998) Novel factor highly conserved among eukaryotes controls sexual development in fission yeast. Mol Cell Biol 18: 887–895

    PubMed  CAS  Google Scholar 

  • Ottilie S, Miller PJ, Johnson DI et al. (1995) Fission yeast pakl + encodes a protein kinase that interacts with Cdc42p and is involved in the control of cell polarity and mating. EMBO J 14: 5908–5919

    PubMed  CAS  Google Scholar 

  • Pereira PS, Jones NC (2001) The RGS domain-containing fission yeast protein, Rgslp, regulates pheromone signalling and is required for mating. Genes Cells 6: 789–802

    Google Scholar 

  • Petersen J, Weilguny D, Egel R, Nielsen 0 (1995) Characterization of fusi of Schizosaccharomyces pombe: a developmentally controlled function needed for conjugation. Mol Cell Biol 15: 3697–3707

    CAS  Google Scholar 

  • Petersen J, Heitz MJ, Hagan IM (1998a) Conjugation in S. pombe: identification of a microtubule-organising centre, a requirement for microtubules and a role for Mad2. Curr Biol 8: 963–966

    Article  PubMed  CAS  Google Scholar 

  • Petersen J, Nielsen O, Egel R, Hagan IM (1998b) FH3, a domain found in formins, targets the fission yeast formin Fusl to the projection tip during conjugation. J Cell Biol 141: 1217–1228

    Article  PubMed  CAS  Google Scholar 

  • Petersen J, Nielsen O, Egel R, Hagan IM (1998c) F-actin distribution and function during sexual differentiation in Schizosaccharomyces pombe. J Cell Sci 111: 867–876

    PubMed  CAS  Google Scholar 

  • Stern B, Nurse P (1997) Fission yeast pheromone blocks S-phase by inhibiting the G1 cyclin B-p34k2 kinase. EMBO J 16: 534–444

    Article  PubMed  CAS  Google Scholar 

  • Stern B, Nurse P (1998) Cyclin B proteolysis and the cyclin-dependent kinase inhibitor Rumlp are required for pheromone-induced G1 arrest in fission yeast. Mol Biol Cell 9: 1309–1321

    PubMed  CAS  Google Scholar 

  • Stettler S, Warbrick E, Prochnik S et al. (1996) The wisl signal transduction pathway is required for expression of cAMP-repressed genes in fission yeast. J Cell Sci 109: 1927–1935

    PubMed  CAS  Google Scholar 

  • Sugimoto A, Iino Y, Maeda T et al. (1991) Schizosaccharomyces pombe steal + encodes a transcription factor with an HMG motif that is a critical regulator of sexual development. Genes Dev 5: 1990–1999

    Google Scholar 

  • Szankasi P, Smith GR (1996) Requirement of S. pombe exonuclease II, a homologue of S. cerevisiae Sepl, for normal mitotic growth and viability. Curr Genet 30: 284–293

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Davey J, Imai Y, Yamamoto M (1993) Schizosaccharomyces pombe map3 + encodes the putative M-factor receptor. Mol Cell Biol 13: 80–88

    Google Scholar 

  • Tratner I, Fourticq-Esqueoute A, Tillit J, Baldacci G (1997) Cloning and characterization of the S. pombe gene efc25 +, a new putative guanine nucleotide exchange factor. Gene 193: 203–210

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara K, Yamamoto H, Okayama H (1998) An RNA binding protein negatively controlling differentiation in fission yeast. Mol Cell Biol 18: 4488–4498

    PubMed  CAS  Google Scholar 

  • Tu H, Barr M, Dong DL, Wigler M (1997) Multiple regulatory domains on the Byr2 protein kinase. Mol Cell Biol 17: 5876–5887

    PubMed  CAS  Google Scholar 

  • Ueno M, Kurokawa R, Renauld H et al. (2001) Schizosaccharomyces pombe tafl + is required for nitrogen starvation-induced sexual development and for entering the dormant GO state. Curr Genet 38: 307–313

    Google Scholar 

  • Welton RM, Hoffman CS (2000) Glucose monitoring in fission yeast via the Gpa2 Ga, the Git5 Gß and the Git3 putative glucose receptor. Genetics 156: 513–521

    PubMed  CAS  Google Scholar 

  • Willer M, Hoffmann L, Styrkarsdottir U et al. (1995) Two-step activation of meiosis by the mati locus in Schizosaccharomyces pombe. Mol Cell Biol 15: 4964–4970

    PubMed  CAS  Google Scholar 

  • Yabana N, Yamamoto M (1996) Schizosaccharomyces pombe mapi + encodes a MADS-boxfamily protein required for cell-type-specific gene expression. Mol Cell Biol 16: 3420–348

    Google Scholar 

  • Yamamoto M, Imai Y, Watanabe Y (1997) Mating and sporulation in Schizosaccharomyces pombe. In: Pringle JR, Broach JR and Jones EW (eds) The molecular and cellular biology of the yeast Saccharomyces. Vol 3. CSH Laboratory Press, Cold Spring Harbor. pp 1037–1106

    Google Scholar 

  • Yamashita YM, Nakaseko Y, Samejima I et al. (1996) 20S cyclosome complex formation and proteolytic activity inhibited by the cAMP/PKA pathway. Nature 384: 276–279

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nielsen, O. (2004). Mating-Type Control and Differentiation. In: Egel, R. (eds) The Molecular Biology of Schizosaccharomyces pombe . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10360-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10360-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05631-4

  • Online ISBN: 978-3-662-10360-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics