Skip to main content
  • 443 Accesses

Abstract

Microtubules form by the polymerization of heterodimers composed of α- and β-tubulin into long hollow filaments. Both ends are not identical; β subunits are exposed at the dynamic plus end, where two modes of different stability can alternate dramatically. In the polymerizing, growing mode new subunits add on to the plus end whereas subunits are lost in the depolymerizing mode, leading to rapid shrinkage or ‘catastrophe’. The opposite minus end is less dynamic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrieu A, Brassac T, Galas S et al. (1998) The polo-like kinase Plxl is a component of the MPF amplification loop at the G(2)/M-phase transition of the cell cycle in Xenopus eggs. J Cell Sci 111: 1751–1757

    PubMed  CAS  Google Scholar 

  • Adams IR, Kilmartin JV (2000) Spindle pole body duplication: a model for centrosome duplication? Trends Cell Biol 10: 329–335

    Article  PubMed  CAS  Google Scholar 

  • Alfa CE, Ducommun B, Beach D, Hyams JS (1990) Distinct nuclear and spindle pole body populations of cyclin-cdc2 in fission yeast. Nature 347: 680–682

    Article  PubMed  CAS  Google Scholar 

  • Bähler J, Steever AB, Wheatley S et al. (1998) Role of polo kinase and Midlp in determining the site of cell division in fission yeast. J Cell Biol 143: 1603–1616

    Article  PubMed  Google Scholar 

  • Beinhauer JD, Hagan IM, Hegemann JH, Fleig U (1997) Ma13, the fission yeast homolog of the human APC-interacting protein EB-1 is required for microtubule integrity and the maintenance of cell form. J Cell Biol 139: 717–728

    Article  PubMed  CAS  Google Scholar 

  • Bridge AJ, Morphew M, Bartlett R, Hagan IM (1998) The fission yeast SPB component Cut12 links bipolar spindle formation to mitotic control. Genes Dev 12: 927–942

    Article  PubMed  CAS  Google Scholar 

  • Brunner D, Nurse P (2000) CLIP170-like tipi spatially organizes microtubular dyanmics in fission yeast. Cell 102: 695–704

    Article  PubMed  CAS  Google Scholar 

  • Chikashige Y, Ding DQ, Funabiki H et al. (1994) Telomere-led premeiotic chromosome movement in fission yeast. Science 264: 270–273

    Article  PubMed  CAS  Google Scholar 

  • Cottingham FR Hoyt MA (1997) Mitotic spindle positioning in Saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins. J Cell Biol 138: 1041–1058

    Article  Google Scholar 

  • Cottingham FR, Gheber L, Millar DL, Hoyt MA (1999) Novel roles for Saccharomyces cerevisiae mitotic spindle motors. J Cell Biol 147: 355–349

    Article  Google Scholar 

  • Decottignies A, Zarzov P, Nurse P (2001) in vivo localisation of fission yeast cyclin-dependent kinase cdc2p and cyclin B cdcl3p during mitosis and meiosis. J Cell Sci 114: 2627–2640

    Google Scholar 

  • Ding R, McDonald KL, McIntosh JR (1993) Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe. J Cell Biol 120: 141–151

    CAS  Google Scholar 

  • Ding R, West RR, Morphew M, McIntosh JR (1997) The spindle pole body of Schizosaccharomyces pombe enters and leaves the nuclear envelope as the cell cycle proceeds. Mol Biol Ce11: 1461–1479

    Google Scholar 

  • Endow SA, Kang SJ, Satterwhite LL et al. (1994) Yeast Kar3 is a minus-end microtubule motor protein that destabilizes microtubules preferentially at the minus ends. EMBO J 13: 2708–2713

    PubMed  CAS  Google Scholar 

  • Flory MR, Morphew MM, Joseph JD et al. (2002) Pcpl, an Spc110p related calmodulin target at the centrosome of the fission yeast Schizosaccharomyces pombe. Cell Growth Differ 13: 47–58

    PubMed  CAS  Google Scholar 

  • Funabiki H, Hagan I, Uzawa S, Yanagida M (1993) Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J Cell Biol 121: 961–976

    Article  PubMed  CAS  Google Scholar 

  • Gachet Y, Tournier S, Millar JB, Hyams JS (2001) A MAP kinase-dependent actin checkpoint ensures proper spindle association in fission yeast. Nature 412: 352–355

    Article  PubMed  CAS  Google Scholar 

  • Garcia MA, Vardy L, Koonrugsa N, Toda T (2001) fission yeast ch-TOG/XMAP215 homologue A1p14 connects mitotic spindles with the kinetochore and is a component of the Mad2-dependent spindle checkpoint. EMBO J 20: 3389–3401

    Google Scholar 

  • Garcia MA, Koonrugsa N, Toda T (2002) Two kinesin-like kinI family proteins in fission yeast regulate the establishment of metaphase and the onset of anaphase. Curr Biol 12: 610–621

    Article  PubMed  CAS  Google Scholar 

  • Goldstein LS (1993) Functional redundancy in mitotic force generation. J Cell Biol 120: 1–3

    Article  PubMed  CAS  Google Scholar 

  • Goshima G, Saitoh S, Yanagida M (1999) Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation. Genes Dev 13: 1664–1677

    Article  PubMed  CAS  Google Scholar 

  • Goto B, Okazaki K, Niwa O (2001) Cytoplasmic microtubular system implicated in de novo formaiton of a Rabl-like orientation of chromosomes in fission yeast. J Cell Sci 114: 2427–2435

    PubMed  CAS  Google Scholar 

  • Grallert A, Hagan IM (2002) Schizosaccharomyces pombe NIMA-related kinase Finl regulates spindle formation and an affinity of Polo for the SPB. EMBO J 21: 3096–3107

    Google Scholar 

  • Hagan IM (1998) Fission yeast microtubules. J Cell Sci 111: 1603–1612

    PubMed  CAS  Google Scholar 

  • Hagan I, Yanagida M (1990) Novel potential mitotic motor protein encoded by the fission yeast cut7 + gene. Nature 347: 563–566

    Article  PubMed  CAS  Google Scholar 

  • Hagan I, Yanagida M (1992) Kinesin-related Cut7 protein associates with mitotic and meiotic spindles in fission yeast. Nature 356: 74–76

    Article  PubMed  CAS  Google Scholar 

  • Hagan I, Yanagida M (1995) The product of the spindle formation gene sadl + associates with the fission yeast spindle pole body and is essential for viability. J Cell Biol 129: 1033–1047

    Article  PubMed  CAS  Google Scholar 

  • Hagan I, Yanagida M (1997) Evidence for cell cycle-specific, spindle pole body-mediated, nuclear positioning in the fission yeast Schizosaccharomyces pombe. J Cell Sci 110: 1851–1866

    PubMed  CAS  Google Scholar 

  • Hagan IM, Riddle PN, Hyams JS (1990) Intramitotic controls in the fission yeast Schizosaccharomyces pombe - the effect of cell size on spindle length and the timing of mitotic events. J Cell Biol 110: 1617–1621

    Article  PubMed  CAS  Google Scholar 

  • Heitz MJ, Petersen J, Hagan IM (2001) MTOC formation during mitotic exit in fission yeast. J Cell Sci 114: 4521–4532

    PubMed  CAS  Google Scholar 

  • Hofken T, Schiebel E (2002) A role for cell polarity proteins in mitotic exit. EMBO J 21: 4851–4862

    Article  PubMed  Google Scholar 

  • Hudson JD, Feilotter H, Young PG (1990) stfl: non wee mutations epistatic to cdc25 in the fission yeast Schizosaccharomyces pombe. Genetics 126: 309–315

    Google Scholar 

  • Maclver FH, Tanaka K, Robertson AM, Hagan IM (2003) Physical and functional interactions between polo kinase and the spindle pole component Cut12 regulate mitotic commitment in S. pombe. Genes Dev 17, in press

    Google Scholar 

  • Mallavarapu A, Sawin K, Mitchison T (1999) A switch in microtubule dynamics at the onset of anaphase B in the mitotic spindle of Schizosaccharomyces pombe. Curr Biol 9: 1423–1426

    Article  PubMed  CAS  Google Scholar 

  • Masuda H, Hirano T, Yanagida M, Cande WZ (1990) In vitro reactivation of spindle elongation in fission yeast nuc2 mutant-cells. J Cell Biol 110:417–425

    Google Scholar 

  • Masuda H, Sevik M, Cande WZ (1992) In vitro microtubule nucleating activity of spindle pole bodies in fission yeast Schizosaccharomyces pombe - cell cycle-dependent activation in Xenopus cell-free extracts. J Cell Biol 117:1055–1066

    Google Scholar 

  • May KM, Reynolds N, Cullen F et al. (2002) Polo boxes and Cut23 (Apc8) mediate an interaction between polo kinase and the anaphase-promoting complex for fission yeast. J Cell Biol 156: 23–28

    Article  PubMed  CAS  Google Scholar 

  • Miller RK, Heller KK, Frisen L et a1. (1998) The kinesin-related proteins, Kip2 and Kip3, function differently in nuclear migration in yeast. Mol Biol Cell 9: 2051–2068

    PubMed  CAS  Google Scholar 

  • Mulvihill DP, Petersen J, Ohkura H et al. (1999) Plol kinase recruitment to the spindle pole body and its role in cell division in Schizosaccharomyces pombe. Mol Biol Cell 10: 2771–2785

    PubMed  CAS  Google Scholar 

  • Nabeshima K, Kurooka H, Takeuchi M et al. (1995) p93d’s’, which is required for sister-chromatid separation, is a novel microtubule and spindle pole body-associating protein phosphorylated at the Cdc2 target sites. Genes Dev 9: 1572–1585

    Google Scholar 

  • Nabeshima K, Nakagawa T, Straight AF et al. (1998) Dynamics of centromeres during metaphase-anaphase transition in fission yeast: Disl is implicated in force balance in metaphase bipolar spindle. Mol Biol Cell 9: 3211–3225

    Google Scholar 

  • Nakaseko Y, Nabeshima K, Kinoshita K, Yanagida M (1996) Dissection of fission yeast microtubule associating protein p93`1’°: regions implicated in regulated localization and microtubule interaction. Genes Cells 1: 633–644

    Article  PubMed  CAS  Google Scholar 

  • Nakaseko Y, Goshima G, Morishita J, Yanagida M (2001) M phase specific kinetochore proteins in fission yeast: microtubule-associating Disl and Mtcl display rapid separation and segregation during anaphase. Curr Biol 11: 537–549

    Article  PubMed  CAS  Google Scholar 

  • Ohkura H, Adachi Y, Kinoshita N et al. (1988) Cold-sensitive and caffeine-supersensitive mutants of the Schizosaccharomyces pombe dis genes implicated in sister chromatid separation during mitosis. EMBO J 7: 1465–1473

    PubMed  CAS  Google Scholar 

  • Ohkura H, Garcia MA, Toda T (2001) Disl/TOG universal microtubule adaptors–one MAP for all? J Cell Sci 114: 3805–3812

    PubMed  CAS  Google Scholar 

  • Paluh JL, Nogales E, Oakley BR et al. (2000) A mutation in y-tubulin alters microtubule dynamics and organisation and is synthetically lethal with kinesin like protein Pkllp. Mol Biol Cell 11: 1225–1239

    PubMed  CAS  Google Scholar 

  • Petersen J, Paris J, Willer M et al. (2001) The S. pombe Aurora-related kinase Arkl associates with mitotic structures in a stage dependent manner and is required for chromosome segregation. J Cell Sci 114: 4371–4384

    PubMed  CAS  Google Scholar 

  • Pidoux AL, Ledizet M, Cande WZ (1996) Fission yeast pkll is a kinesin-related protein involved in mitotic spindle function. Mol Biol Cell 7: 1639–1655

    PubMed  CAS  Google Scholar 

  • Pidoux AL, Uzawa S, Perry PE et al. (2000) Live analysis of lagging chromosomes during anaphase and their effect on spindle elongation rate in fission yeast. J Cell Sci 113: 4177–4191

    PubMed  CAS  Google Scholar 

  • Popov AV Severin F, Karsenti E (2002) XMAP215 is required for the microtubule-nucleating activity of centrosomes. Curr Biol 12: 1326–1330

    Article  Google Scholar 

  • Saitoh S, Takahashi K, Yanagida M (1997) Mis6, a fission yeast inner centromere protein, acts during Gl/S and forms specialized chromatin required for equal segregation. Cell 90: 131–143

    Article  PubMed  CAS  Google Scholar 

  • Schiebel E (2000) y-tubulin complexes: binding to the centrosome, regulation and microtubule nucleation. Curr Op Cell Biol 12:113–118

    Google Scholar 

  • Segal M, Clarke DJ (2001) The Ras pathway and spindle assembly collide? Bioessays 23: 307–310

    PubMed  CAS  Google Scholar 

  • Takada S, Shibata T, Hiraoka H, Masuda H (2000) Identification of ribonucleotide reductase protein R1 as an activator of microtubule nucleation in Xenopus mitotic extracts. Mol Biol Cell 11: 4173–4187

    PubMed  CAS  Google Scholar 

  • Tanaka K, Petersen J, Maclver FH et al. (2001) The role of Plol kinase in mitotic commitment and septation in Schizosaccharomyces pombe. EMBO J 20: 1259–1270

    Article  PubMed  CAS  Google Scholar 

  • Tournebize R, Popov A, Kinoshita K et al. (2000) Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nat. Cell Biol 2: 13–19

    Google Scholar 

  • Troxell CL, Sweezy MA, West RR et al. (2001) pk11 + and klp2 +: two kinesins of the Kar3 subfamily in fission yeast perform different functions in both mitosis and meiosis. Mol Biol Cell 12: 3476–3488

    Google Scholar 

  • Vardy L, Toda T (2000) The fission yeast y-tubulin complex is required in G, phase and is a component of the spindle assembly checkpoint. EMBO J 19: 6098–6111

    Article  PubMed  CAS  Google Scholar 

  • Vasquez RJ, Gard DL Cassimeris L (1994) XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover. J Cell Biol 127: 985–993

    Article  PubMed  CAS  Google Scholar 

  • Walczak CE, Mitchison TJ (1996) Kinesin-related proteins at mitotic spindle poles–function and regulation. Cell 85: 943–946

    Article  PubMed  CAS  Google Scholar 

  • West RR, Vaisberg EV, Ding R et al. (1998) cut11 +: a gene required for cell cycle-dependent spindle pole body anchoring in the nuclear envelope and bipolar spindle formation in Schizosaccharomyces pombe. Mol Biol Cell 9: 2839–2855

    Google Scholar 

  • West RR, Malmstrom T, Troxell CL, McIntosh JR (2001) Two related kinesins, klp5 + and klpó +, foster microtubule disassembly and are required for meiosis in fission yeast. Mol Biol Cell 12: 3919–3932

    PubMed  CAS  Google Scholar 

  • West RR, Malmstrom T, McIntosh JR (2002) Kinesins klp5 + and klp6 +are required for normal chromosome movement in mitosis. J Cell Sci 115: 931–940

    PubMed  CAS  Google Scholar 

  • Yamamoto A, West RR, McIntosh JR, Hiraoka Y (1999) A cytoplasmic dynein heavy chain is required for oscillatory nuclear movement of meiotic prophase and efficient meiotic recombination in fission yeast. J Cell Biol 145: 1233–1249

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hagan, I.M. (2004). The Mitotic Spindle and Genome Segregation. In: Egel, R. (eds) The Molecular Biology of Schizosaccharomyces pombe . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10360-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10360-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05631-4

  • Online ISBN: 978-3-662-10360-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics