Skip to main content

Abstract

Telomeres are essential for chromosome integrity, forming a cap structure to protect the ends of eukaryotic linear chromosomes (Blackburn and Greider 1995; McEachern et al. 2000, for reviews). Like those of other eukaryotes, S. pombe chromosomes have telomeric repeats of a short nucleotide sequence. Telomeric DNA consists of the single-stranded, guanine-rich 3′-overhang at the extreme end of chromosomes, flanked by the double-stranded region of telomeric repeats. Several protein complexes are known to bind to these regions of the telomeric DNA to maintain the telomere structure and to perform telomere functions. Telomeric DNA is synthesized by the telomerase enzyme complex, and their length is controlled by positive and negative regulators for the telomerase. Telomeres are made of transcriptionally repressed, non-nucleosomal chromatin and are often localized near the nuclear periphery. The telomeric cap structure prevents DNA damage checkpoint and repair mechanisms from treating telomeres as breaks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrulis ED, Neiman AM, Zappulla DC, Sternglanz R (1998) Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394: 592–595

    Article  PubMed  CAS  Google Scholar 

  • Bass HW, Marshall WF, Sedat JW et al. (1997) Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J Cell Biol 137: 5–18

    Article  PubMed  CAS  Google Scholar 

  • Bass HW, Riera-Lizarazu O, Ananiev EV et al. (2000) Evidence for the coincident initiation of homologue pairing and synapsis during the telomere-clustering (bouquet) stage of meiotic prophase. J Cell Sci 113: 1033–1042

    PubMed  CAS  Google Scholar 

  • Baumann P, Cech TR (2000) Protection of telomeres by the Ku protein in fission yeast. Mol Biol Cell 11: 3265–3275

    PubMed  CAS  Google Scholar 

  • Baumann P, Cech TR (2001) Potl, the putative telomere end-binding protein in fission yeast and humans. Science 292: 1171–1175

    Article  PubMed  CAS  Google Scholar 

  • Bilaud T, Koering CE, Binet-Brasselet E et al. (1996) The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Res 24: 1294–1303

    Article  PubMed  CAS  Google Scholar 

  • Blackburn EH, Greider CW (1995) Telomeres. CSH Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Brun C, Marcand S, Glison, E (1997) Proteins that bind to double-stranded regions of telomeric DNA. Trends Cell Biol 7: 317–324

    Article  CAS  Google Scholar 

  • Carminati JL, Stearns T (1997) Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J Cell Biol 138: 629–641

    Article  PubMed  CAS  Google Scholar 

  • Chikashige Y, Hiraoka Y (2001) Telomere binding of the Rapl protein is required for meiosis in fission yeast. Current Biol 11: 1618–1623

    Article  CAS  Google Scholar 

  • Chikashige Y, Kinoshita N, Nakaseko Y et al. (1989) Composite motifs and repeat symmetry in S. pombe centromeres: direct analysis by integration of Not! restriction sites. Cell 57: 739–751

    Article  PubMed  CAS  Google Scholar 

  • Chikashige Y, Ding DQ, Funabiki H et al. (1994) Telomere-led premeiotic chromosome movement in fission yeast. Science 264: 270–273

    Article  PubMed  CAS  Google Scholar 

  • Chikashige Y, Ding DQ, Imai Y et al. (1997) Meiotic nuclear reorganization: switching the position of centromeres and telomeres in fission yeast Schizosaccharomyces pombe. EMBO J 16: 193–202

    Article  PubMed  CAS  Google Scholar 

  • Cooper JP (2000) Telomere transitions in yeast: the end of the chromosome as we know it. Curr Opin Genet Dev 10: 169–177

    Article  PubMed  CAS  Google Scholar 

  • Cooper JP, Nimmo ER, Allshire RC, Cech TR (1997) Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 20: 744–747

    Article  Google Scholar 

  • Cooper JP, Watanabe Y, Nurse P (1998) Fission yeast Tazl protein is required for meiotic telomere clustering and recombination. Nature 23: 828–831

    Article  Google Scholar 

  • d’Adda di Fagagna F, Hande MP, Tong WM et al. (2001) Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr Biol 11: 1192–1196

    Article  Google Scholar 

  • de Lange T (2001) Telomere capping–one strand fits all. Science 292: 1075–1076

    Article  PubMed  Google Scholar 

  • Dernburg AF, Sedat JW, Cande WZ, Bass HW (1995) Cytology of telomeres. In: Telomeres, Blackburn EH, Greider CW (eds) CSH Laboratory Press, Cold Spring Harbor, pp 295–338

    Google Scholar 

  • Ding DQ, Chikashige Y, Haraguchi T, Hiraoka Y (1998) Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules as revealed by continuous observation of chromosomes and microtubules in living cells. J Cell Sci 111: 701–712

    PubMed  CAS  Google Scholar 

  • Ferreira MG, Cooper JP (2001) The fission yeast Tazl protein protects chromosomes from Ku-dependent end-to-end fusions. Mol Cell 7: 55–63

    Article  PubMed  CAS  Google Scholar 

  • Funabiki H, Hagan IM, Uzawa S, Yanagida M (1993) Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J Cell Biol 121: 961–976

    Article  PubMed  CAS  Google Scholar 

  • Galy V, Olivo-Marin JC, Scherthan H et al. (2000) Nuclear pore complexes in the organization of silent telomeric chromatin. Nature 403: 108–112

    Article  PubMed  CAS  Google Scholar 

  • Garvik B, Carson M, Hartwell L (1995) Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol 15: 6128–6138

    PubMed  CAS  Google Scholar 

  • Griffith JD, Comeau L, Rosenfield S et al. (1999) Mammalian telomeres end in a large duplex loop. Cell 14: 503–14

    Article  Google Scholar 

  • Hagan I, Yanagida M (1995) The product of the spindle formation gene sad1 + associates with the fission yeast spindle pole body and is essential for viability. J Cell Biol 129: 1033–1047

    Article  PubMed  CAS  Google Scholar 

  • Hardy CF, Suussel L, Shore D (1992) A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev 6: 801–814

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka Y (1998) Meiotic telomeres: a matchmaker for homologous chromosomes. Genes Cells 3: 405–413

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka Y, Henderson E, Blackburn EH (1998) Not so peculiar: fission yeast telomere repeats. Trends Biochem Sci 23: 126

    Article  PubMed  CAS  Google Scholar 

  • Kanoh J, Ishikawa F (2001) spRapl and spRifl, recruited to telomeres by Tazl, are essential for telomere function in fission yeast. Curr Biol. 11: 1624–1630

    Google Scholar 

  • Karlseder J, Broccoli D, Dai Y et al. (1999) p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283: 1321–1325

    Google Scholar 

  • Konig P, Rhodes D (1997) Recognition of telomeric DNA. Trends Biochem Sci 22: 43–47

    Article  PubMed  CAS  Google Scholar 

  • Li B, Oestreich S, de Lange T (2000) Identification of human Rapl: implications for telo-mere evolution. Cell 101: 471–83

    Article  PubMed  CAS  Google Scholar 

  • Maddar H, Ratzkovsky N, Krauskopf A (2001) Role for telomere cap structure in meiosis. Mol Biol Cell 12: 3191–3203

    PubMed  CAS  Google Scholar 

  • Manolis KG, Nimmo ER, Hartsuiker E et al. (2001) Novel functional requirements for non-homologous DNA end joining in Schizosaccharomyces pombe. EMBO J 20: 210–221

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Fukui K, Niwa O et al. (1987) Identification of healed terminal DNA fragments in linear minichromosomes of Schizosaccharomyces pombe. Mol Cell Biol 7: 4424–4430

    PubMed  CAS  Google Scholar 

  • McEachern MJ, Krauskopf A, Blackburn EH (2000) Telomeres and their control. Annu Rev Genet 34: 331–358

    Article  PubMed  CAS  Google Scholar 

  • Miki F, Okazaki K, Shimanuki M et al. (2002). The 14-kDa dynein light chain-family protein Dlcl is required for the regular oscillatory nuclear movement and efficient recombination during meiotic prophase in fission yeast. Mol Biol Cell 13: 930–946

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi T, Sadaie M, Kanoh J, Ishikawa F (2002) Telomeric DNA ends are essential for the localization of Ku at telomeres in fission yeast. J Biol Chem. Nov 6 [epub ahead of print]

    Google Scholar 

  • Naito T, Matsuura A, Ishikawa F (1998) Circular chromosome formation in a fission yeast mutant defective in two ATM homologues. Nat Genet 20: 203–206

    Article  PubMed  CAS  Google Scholar 

  • Nakamura TM, Morin GB, Chapman KB et al. (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277: 955–959

    Article  PubMed  CAS  Google Scholar 

  • Nakamura TM, Cooper JP, Cech TR (1998) Two modes of survival of fission yeast without telomerase. Science 282: 493–496

    Article  PubMed  CAS  Google Scholar 

  • Nielsen 0 (1993) Signal transduction during mating and meiosis in S. pombe. Trends Cell Biol 3: 60–65

    Article  Google Scholar 

  • Nimmo ER, Pidoux AL, Perry PE, Allshire RC (1998) Defective meiosis in telomere-silencing mutants of Schizosaccharomyces pombe. Nature 23: 825–828

    Google Scholar 

  • Nishida E, Gotoh Y (1993) The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biol Sci 18: 128–131

    Article  CAS  Google Scholar 

  • Niwa O, Matsumoto T Yanagida M (1986) Construction of a mini-chromosome by deletion and its mitotic and meiotic behaviour in fission yeast. Mol Gen Genet 203: 397–405

    Article  CAS  Google Scholar 

  • Niwa O, Matsumoto T, Chikashige Y, Yanagida M (1989) Characterization of Schizosaccharomyces pombe minichromosome deletion derivatives and a functional allocation of their centromere. EMBO J 8: 3045–3052

    PubMed  CAS  Google Scholar 

  • Niwa O, Shimanuki M, Miki F (2000) Telomere-led bouquet formation facilitates homologous chromosome pairing and restricts ectopic interaction in fission yeast. EMBO J 19: 3831–3840

    Article  PubMed  CAS  Google Scholar 

  • Scherthan H, Bähler J, Kohli J (1994) Dynamics of chromosome organization and pairing during meiotic prophase in fission yeast. J Cell Biol 127: 273–285

    Article  PubMed  CAS  Google Scholar 

  • Scherthan H, Weich S, Schwegler H et al. (1996) Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J Cell Biol 134: 1109–1125

    Article  PubMed  CAS  Google Scholar 

  • Shimanuki M, Miki F, Ding DQ et al. (1997) A novel fission yeast gene, kms1 +, is required for the formation of meiotic prophase-specific nuclear architecture. Mol Gen Genet 254: 238–249

    Article  PubMed  CAS  Google Scholar 

  • Shore D (1997) Telomere length regulation: getting the measure of chromosome ends. Biol Chem 378: 591–597

    PubMed  CAS  Google Scholar 

  • Sugawara N (1989) PhD Thesis, Harvard University

    Google Scholar 

  • Svoboda A, Bähler J, Kohli J (1995) Microtubule-driven nuclear movements and linear elements as meiosis-specific characteristics of the fission yeasts Schizosaccharomyces versatilis and Schizosaccharomyces pombe. Chromosoma 104: 203–214

    Article  PubMed  CAS  Google Scholar 

  • Tham W, Zakian VA (2000) Telomeric tethers. Nature 403: 34–35

    Article  PubMed  CAS  Google Scholar 

  • Trelles-Sticken E, Loidl J, Scherthan H (1999) Bouquet formation in budding yeast: initiation of recombination is not required for meiotic telomere clustering. J Cell Sci 112: 651–658

    PubMed  CAS  Google Scholar 

  • Uzawa S, Yanagida M (1992) Visualization of centromeric and nucleolar DNA in fission yeast by fluorescence in situ hybridization. J Cell Sci 101: 267–275

    PubMed  Google Scholar 

  • Vassetzky NS, Gaden F, Brun C et al. (1999) Tazlp and Teblp, two telobox proteins in Schizosaccharomyces pombe, recognize different telomere-related DNA sequences. Nucleic Acids Res 27: 4687–4694

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, West RR, McIntosh JR, Hiraoka Y (1999) A cytoplasmic dynein heavy chain is required for oscillatory nuclear movement of meiotic prophase and efficient meiotic recombination in fission yeast. J Cell Biol 145: 1233–1249

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M (1996) The molecular control mechanisms of meiosis in fission yeast. Trends Biol Sci 21: 18–22

    CAS  Google Scholar 

  • Yamamoto A, Hiraoka Y (2001) How do meiotic chromosomes meet their homologous partners?: Lessons from fission yeast. BioEssays 23: 526–523

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, Tsutsumi C, Kojima H et al. (2001) Dynamic behavior of microtubules during dynein-dependent nuclear migrations of meiotic prophase in fission yeast. Mol Biol Cell 12: 3933–3946

    PubMed  CAS  Google Scholar 

  • Yanagida M, Niwa O, Chikashige Y et al. (1991) Genome analysis of Schizosaccharomyces pombe. In: Ishihama A, Yoshikawa H (eds) Control of cell growth and division. Japan Sci Soc Press, Tokyo, Springer, Berlin Heidelberg New York, pp 255–262

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hiraoka, Y., Chikashige, Y. (2004). Telomere Organization and Nuclear Movements. In: Egel, R. (eds) The Molecular Biology of Schizosaccharomyces pombe . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10360-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10360-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05631-4

  • Online ISBN: 978-3-662-10360-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics