Skip to main content

Centromere and Kinetochore Structure and Function

  • Chapter
The Molecular Biology of Schizosaccharomyces pombe

Abstract

The centromere is the site on the chromosome where the kinetochore, a reactive protein machine, is assembled. Fission yeast centromeres, like those of metazoans, are large complex structures where the kinetochore is embedded in silent heterochromatin. These features make fission yeast an excellent model system for centromere research. The actions of the kinetochores, in concert with the spindle, ensure the strict segregation of chromosomes during mitosis and meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams RR, Carmena M, Earnshaw WC (2001) Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol 11: 49–54

    Article  PubMed  CAS  Google Scholar 

  • Akhtar A, Zink D, Becker PB (2000) Chromodomains are protein-RNA interaction modules. Nature 407: 405–409

    Article  PubMed  CAS  Google Scholar 

  • Allshire RC, Javerzat JP, Redhead NJ, Cranston G (1994) Position effect variegation at fission yeast centromeres. Cell 76: 157–169

    Article  PubMed  CAS  Google Scholar 

  • Allshire RC, Nimmo ER, Ekwall K et al. (1995) Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev 9: 218–233

    Article  PubMed  CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF et al. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120–124

    Article  PubMed  CAS  Google Scholar 

  • Baum M, Clarke L (2000) Fission yeast homologs of human CENP-B have redundant func- tions affecting cell growth and chromosome segregation. Mol Cell Biol 20: 2852–2864

    Article  PubMed  CAS  Google Scholar 

  • Baum M, Ngan VK, Clarke L (1994) The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol Biol Cell 5: 747–761

    PubMed  CAS  Google Scholar 

  • Bernard P, Maure JF, Javerzat JP (2001 a) Fission yeast Bubl is essential in setting up the meiotic pattern of chromosome segregation. Nat Cell Biol 3: 522–526

    Google Scholar 

  • Bernard P, Maure JF, Partridge JF et al. (2001 b) Requirement of heterochromatin for cohesion at centromeres. Science 294: 2539–2542

    Google Scholar 

  • Cimini D, Howell B, Maddox P et al. (2001) Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J Cell Biol 153: 517–527

    Article  PubMed  CAS  Google Scholar 

  • Clarke L, Baum MP (1990) Functional analysis of a centromere from fission yeast: a role for centromere-specific repeated DNA sequences. Mol Cell Biol 10: 1863–1872

    PubMed  CAS  Google Scholar 

  • Ding R, McDonald KL, McIntosh JR (1993) Three-dimensional reconstruction and analysis of mitotic spindles from the yeast Schizosaccharomyces pombe. J Cell Biol 120: 141–151

    Article  PubMed  CAS  Google Scholar 

  • Doe CL, Wang G, Chow C et al. (1998) The fission yeast chromo domain encoding gene chp1 + is required for chromosome segregation and shows a genetic interaction with a-tubulin. Nucleic Acids Res 26: 4222–4229

    Article  PubMed  CAS  Google Scholar 

  • Ekwall K, Javerzat JP, Lorentz A et al. (1995) The chromodomain protein Swi6: a key component at fission yeast centromeres. Science 269: 1429–1431

    Article  PubMed  CAS  Google Scholar 

  • Ekwall K, Nimmo ER, Javerzat JP et al. (1996) Mutations in the fission yeast silencing factors clr4 + and rik1 + disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. J Cell Sci 109: 2637–2648

    PubMed  CAS  Google Scholar 

  • Ekwall K, Olsson T, Turner BM et al. (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91: 1021–1032

    Article  PubMed  CAS  Google Scholar 

  • Ekwall K, Cranston G, Allshire RC (1999) Fission yeast mutants that alleviate transcriptional silencing in centromeric flanking repeats and disrupt chromosome segregation. Genetics 153: 1153–1169

    PubMed  CAS  Google Scholar 

  • Fishel B, Amstutz H, Baum M et al. (1988) Structural organization and functional analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 8: 754–763

    PubMed  CAS  Google Scholar 

  • Fleig U, Sen-Gupta M, Hegemann JH (1996) Fission yeast mal2 + is required for chromosome segregation. Mol Cell Biol 16: 6169–6177

    PubMed  CAS  Google Scholar 

  • Funabiki H, Hagan I, Uzawa S, Yanagida M (1993) Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J Cell Biol 121: 961–976

    Article  PubMed  CAS  Google Scholar 

  • Garcia MA, Vardy L, Koonrugsa N, Toda T (2001) Fission yeast ch-TOG/XMAP215 homologue A1p14 connects mitotic spindles with the kinetochore and is a component of the Mad2-dependent spindle checkpoint. EMBO J 20: 3389–3401

    Article  PubMed  CAS  Google Scholar 

  • Garcia MA, Koonrugsa N, Toda T (2002) Two Kinesin-like Kin I family proteins in fission yeast regulate the establishment of metaphase and the onset of anaphase A. Curr Biol 12: 610–621

    Article  PubMed  CAS  Google Scholar 

  • Goshima G, Saitoh S, Yanagida M (1999) Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation. Genes Dev 13: 1664–1677

    Article  PubMed  CAS  Google Scholar 

  • Goshima G, Yanagida M (2000) Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast. Cell 100: 619–633

    Article  PubMed  CAS  Google Scholar 

  • Hahnenberger KM, Baum MP, Polizzi CM et al. (1989) Construction of functional artificial minichromosomes in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci USA 86: 577–581

    Article  PubMed  CAS  Google Scholar 

  • Hahnenberger KM, Carbon J, Clarke L (1991) Identification of DNA regions required for mitotic and meiotic functions within the centromere of Schizosaccharomyces pombe chromosome I. Mol Cell Biol 11: 2206–2215

    PubMed  CAS  Google Scholar 

  • Hall IM, Noma K, Grewal SI (2003) RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc Natl Acad Sci USA 100: 193–198

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM, Caudy AA, Hannon GJ (2001) Post-transcriptional gene silencing by doublestranded RNA. Nat Rev Genet 2: 110–119

    Article  PubMed  CAS  Google Scholar 

  • He X, Rines DR, Espelin CW, Sorger PK (2001) Molecular analysis of kinetochore-microtubule attachment in budding yeast. Cell 106: 195–206

    Article  PubMed  CAS  Google Scholar 

  • Irelan JT, Gutkin GI, Clarke L (2001) Functional redundancies, distinct localizations and interactions among three fission yeast homologs of centromere protein-B. Genetics 157: 1191–1203

    PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293: 1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Jin QW, Pidoux AL, Decker C et al. (2002) The Ma12 protein is an essential component of the fission yeast centromere. Mol Cell Biol 22: 7168–7183

    Article  PubMed  CAS  Google Scholar 

  • Kniola B, O’Toole E, McIntosh JR et al. (2001) The domain structure of centromeres is conserved from fission yeast to humans. Mol Biol Cell 12: 2767–2775

    PubMed  CAS  Google Scholar 

  • Kuhn RM, Clarke L, Carbon J (1991) Clustered tRNA genes in Schizosaccharomyces pombe centromeric DNA sequence repeats. Proc Natl Acad Sci USA 88: 1306–1310

    Article  PubMed  CAS  Google Scholar 

  • Lorentz A, Heim L, Schmidt H (1992) The switching gene swi6 affects recombination and gene expression in the mating-type region of Schizosaccharomyces pombe. Mol Gen Genet 233: 436–442

    Article  PubMed  CAS  Google Scholar 

  • Marschall LG, Clarke L (1995) A novel cis-acting centromeric DNA element affects S. pombe centromeric chromatin structure at a distance. J Cell Biol 128: 445–454

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Murakami S, Niwa O, Yanagida M (1990) Construction and characterization of centric circular and acentric linear chromosomes in fission yeast. Curr Genet 18: 331–335

    Article  Google Scholar 

  • Matzke M, Matzke AJ, Kooter JM (2001) RNA: guiding gene silencing. Science 293: 1080–1083

    Article  PubMed  CAS  Google Scholar 

  • Measday V, Hailey DW, Pot I et al. (2002) Ctf3p, the Mis6 budding yeast homolog, interacts with Mcm22p and Mcml6p at the yeast outer kinetochore. Genes Dev 16: 101–113

    Article  PubMed  CAS  Google Scholar 

  • Morishita J, Matsusaka T, Goshima G, Nakamura T, Tatebe H, Yanagida M (2001) Birl/Cut17 moving from chromosome to spindle upon the loss of cohesion is required for condensation, spindle elongation and repair. Genes Cells 6: 743–763

    Article  PubMed  CAS  Google Scholar 

  • Murakami S, Yanagida, M. Niwa O (1995) A large circular minichromosome of Schizosaccharomyces pombe required a high dose of type II DNA topoisomerase for its stabilization. Mol Gen Genet 246: 671–679

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Huberman JA, Hurwitz J (1996) Identification, purification, and molecular cloning of autonomously replicating sequence-binding protein 1 from fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci USA 93: 502–507

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima K, Nakagawa T, Straight AF et al. (1998) Dynamics of centromeres during metaphase-anaphase transition in fission yeast: Disl is implicated in force balance in metaphase bipolar spindle. Mol Biol Cell 9: 3211–3225

    PubMed  CAS  Google Scholar 

  • Nabetani A, Koujin T, Tsutsumi C et al. (2001) A conserved protein, Nuf2, is implicated in connecting the centromere to the spindle during chromosome segregation: a link between the kinetochore function and the spindle checkpoint. Chromosoma 110: 322–334

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa H, Lee JK, Hurwitz J et al. (2002) Fission yeast CENP-B homologs nucleate centromeric heterochromatin by promoting heterochromatin-specific histone tail modifications. Genes Dev 16: 1766–1778

    Article  PubMed  CAS  Google Scholar 

  • Nakaseko Y, Adachi, Y Funahashi S et al. (1986) Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. EMBO J 5: 1011–1021

    PubMed  CAS  Google Scholar 

  • Nakaseko Y, Goshima G, Morishita J, Yanagida M (2001) M phase-specific kinetochore proteins in fission yeast: microtubule-associating Disl and Mtcl display rapid separation and segregation during anaphase. Curr Biol 11: 537–549

    Article  PubMed  CAS  Google Scholar 

  • Nakayama J, Rice JC, Strahl BD et al. (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292: 110–113

    Article  PubMed  CAS  Google Scholar 

  • Neuwald AF, Poleksic A (2000) PSI-BLAST searches using hidden markov models of structural repeats: prediction of an unusual sliding DNA clamp and of f-propellers in UV-damaged DNA-binding protein. Nucleic Acids Res 28: 3570–3580

    Article  PubMed  CAS  Google Scholar 

  • Ngan VK, Clarke L (1997) The centromere enhancer mediates centromere activation in Schizosaccharomyces pombe. Mol Cell Biol 17: 3305–3314

    PubMed  CAS  Google Scholar 

  • Nimmo ER, Cranston G, Allshire RC (1994) Telomere-associated chromosome breakage in fission yeast results in variegated expression of adjacent genes. EMBO J 13: 3801–3811

    PubMed  CAS  Google Scholar 

  • Niwa O, Matsumoto T, Yanagida M (1986) Construction of a mini-chromosome by deletion and its mitotic and meiotic behaviour in fission yeast. Mol Gen Genet 203: 397–405

    Article  CAS  Google Scholar 

  • Niwa O, Matsumoto T, Chikashige Y, Yanagida M (1989) Characterization of Schizosaccharomyces pombe minichromosome deletion derivatives and a functional allocation of their centromere. EMBO J 8: 3045–3052

    PubMed  CAS  Google Scholar 

  • Nonaka N, Kitajima T, Yokobayashi S et al. (2002) Recruitment of cohesin to heterochromatic regions by Swi6/HPlin fission yeast. Nat Cell Biol 4: 89–93

    Article  PubMed  CAS  Google Scholar 

  • Partridge JF, Borgstrom B, Allshire RC (2000) Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev 14: 783–791

    PubMed  CAS  Google Scholar 

  • Partridge JF, Scott KS, Bannister AJ et al. (2002) Cis-acting DNA from fission yeast mediates histone H3 methylation and recruitment of silencing factors and cohesion to an ectopic site. Curr Biol 12: 1652–1660

    Article  PubMed  CAS  Google Scholar 

  • Peters AH, O’Carroll D, Scherthan H et al. (2001) Loss of the Suv39 h histone methyltrans- ferases impairs mammalian heterochromatin and genome stability. Cell 107: 323–337

    Article  PubMed  CAS  Google Scholar 

  • Petersen J, Paris J, Willer M et al. (2001) S. pombe aurora-related kinase Arkl associates with mitotic structures in a stage-dependent manner and is required for chromosome segregation. J Cell Sci 114: 4371–4384

    Google Scholar 

  • Petersen J, Paris J, Willer M, Philippe M, Hagan IM (2002) S. pombe aurora-related kinase Ark1. J Cell Sci 114: 4371–4387

    Google Scholar 

  • Petersen J, Hagan IM (2003) S. pombe aurora kinase/survivin is required for chromosome condensation and the spindle checkpoint attachment response. Curr Biol Apr 1; 13(7): 590–597

    Google Scholar 

  • Pidoux AL, Uzawa S, Perry PE et al. (2000) Live analysis of lagging chromosomes during anaphase and their effect on spindle elongation rate in fission yeast. J Cell Sci 113: 4177–4191

    PubMed  CAS  Google Scholar 

  • Pidoux AL, Richardson W, Allshire RC (2003) Sim4: a novel fission yeast kinetochore protein required for centromeric silencing and chromosome segregation. J Cell Biol 161: 295–307

    Article  PubMed  CAS  Google Scholar 

  • Polizzi C, Clarke L (1991) The chromatin structure of centromeres from fission yeast: differentiation of the central core that correlates with function. J Cell Biol 112: 191–201

    Article  PubMed  CAS  Google Scholar 

  • Provost P, Silverstein RA, Dishart D, Walfridsson J, Djupedal I, Kniola B, Wright A, Samuelsson B, Radmark O, Ekwall K (2002) Dicer is required for chromosome segregation and gene silencing in fission yeast cells. Proc Natl Acad Sci USA 99: 16648–16653

    Article  PubMed  CAS  Google Scholar 

  • Rea S, Eisenhaber F, O’Carroll D et al. (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406: 593–599

    Article  PubMed  CAS  Google Scholar 

  • Reinhart BJ, Bartel DP (2002) Small RNAs correspond to centromere heterochromatic repeats. Science 297: 1831

    Article  PubMed  CAS  Google Scholar 

  • Saitoh S, Takahashi K, Yanagida M (1997) Mis6, a fission yeast inner centromere protein, acts during Gl/S and forms specialized chromatin required for equal segregation. Cell 90: 131–143

    Article  PubMed  CAS  Google Scholar 

  • Steiner NC, Clarke L (1994) A novel epigenetic effect can alter centromere function in fission yeast. Cell 79: 865–874

    Article  PubMed  CAS  Google Scholar 

  • Steiner NC, Hahnenberger KM, Clarke L (1993) Centromeres of the fission yeast Schizosaccharomyces pombe are highly variable genetic loci. Mol Cell Biol 13: 4578–4587

    PubMed  CAS  Google Scholar 

  • Takahashi K, Murakami S, Chikashige Y et al. (1991) A large number of tRNA genes are symmetrically located in fission yeast centromeres. J Mol Biol 218: 13–17

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Murakami S, Chikashige Y et al. (1992) A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol Biol Cell 3: 819–835

    PubMed  CAS  Google Scholar 

  • Takahashi K, Chen ES, Yanagida M (2000) Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288: 2215–2219

    Article  PubMed  CAS  Google Scholar 

  • Thon G, Verhein-Hansen J (2000) Four chromo-domain proteins of Schizosaccharomyces pombe differentially repress transcription at various chromosomal locations. Genetics 155: 551–568

    PubMed  CAS  Google Scholar 

  • Volpe T, Kidner C, Hall IM et al. (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297: 1833–1827

    Article  PubMed  CAS  Google Scholar 

  • Volpe TA, Schramke V, Hamilton GL, White SA, Teng G, Martienssen RA, Allshire RC (2003) RNA interference is required for normal centromere function in fission yeast. Chromosome Res 11: 137–146

    Article  PubMed  CAS  Google Scholar 

  • Wigge PA, Kilmartin JV (2001) The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol 152: 349–360

    Article  PubMed  CAS  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA et al. (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415: 871–880

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Allshire, R. (2004). Centromere and Kinetochore Structure and Function. In: Egel, R. (eds) The Molecular Biology of Schizosaccharomyces pombe . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10360-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10360-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05631-4

  • Online ISBN: 978-3-662-10360-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics