Skip to main content

Applications

  • Chapter
Book cover The Illiac IV
  • 38 Accesses

Abstract

Historically, the development of applications on the Illiac IV have gone through four phases. The first of these occurred in the period from early 1973 until November 1975. In this phase prior to the Illiac becoming operational a wide variety of application code development projects were undertaken. Many of these were performed by university and private sector personnel under contract to NASA or DARPA. The computational fluid dynamics work performed by the staff of the Ames Research Center CFD Branch is the notable exception. Generally the work was done remotely over the ARPANET communication system. In retrospect the marvel is that not all of these projects failed. The Illiac was not ready; it was down almost all of the time and when it was available, arithmetic errors without diagnostics were rampant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.R. Bailey, Computational Aerodynamics - Illiac IV and Beyond. Meeting IEEE Computer Society, Compcon Spring, Feb. 28 - Mar. 3, 1977, San Francisco, Calif.

    Google Scholar 

  2. J.A. Lordi, R.J. Vidal, and C.B. Johnson, Chemical Nonequilibrium Effects on the Inviscid Flow in the Windward Plane of Symmetry of Two Simplified Shuttle Configurations. NASA TN D-7189, March 1973.

    Google Scholar 

  3. W.D. Goodrich, C.P. Li, C.K. Houston, R.M. Meyers, and L. Olmedo, Scaling of Orbiter Aerothermodynamic Data through Numerical Flow Field Simulations. NASA SP-347, March 1975.

    Google Scholar 

  4. W.D. Goodrich, C.P. Li, C.K. Houston, P. Chiu, and L. Olmedo, Numerical Computations of Orbiter Flow Fields and Heating Rates. AIAA Paper No. 76–359, July 1976.

    Google Scholar 

  5. J.V. Rakich, and M.J. Lanfranco, Numerical Computation of Space Shuttle Heating and Surface Streamlines. AIAA Paper No. 76–464, July 1976.

    Google Scholar 

  6. J.C. Adams, Jr., W.R. Martindale, A.W. Mayne, Jr., and E.O. Marchand, Real Gas Effects on Hypersonic Laminar Boundary-Layer Parameters Including Effects of Entropy-Layer Swallowing. AIAA Paper No. 76–358, July 1976.

    Google Scholar 

  7. A.W. Rizzi, and M. Inouye, Time-Split Finite-Volume Method for Three-Dimensional Blunt Body Flow. AIAA J., 11, No. 11, (1973), pp. 1478–1485.

    Article  MATH  Google Scholar 

  8. A.W. Rizzi, and H.E. Bailey, Reacting Nonequilibrium Flow Around the Space Shuttle Using a Time-Split Method. Aerodynamic Analysis Requiring Advanced Computers, Part II, NASA SP-347 (1975), pp. 1327–1349.

    Google Scholar 

  9. C.P. Li, Time-Dependent Solutions of Non-equilibrium Airflow Past a Blunt Body. J. Spacecraft and Rockets, 9, No. 8, Aug. 1972

    Google Scholar 

  10. pp. 571–572.

    Google Scholar 

  11. G. Moretti, and G. Bleich, Three-Dimensional Flow Around Blunt Bodies. AIAA J., vol. 5, no. 10, Oct. 1967, pp. 1557–1562.

    MATH  Google Scholar 

  12. R.W. Barnwell, A Time-Dependent Method for Calculating Supersonic Angle-of-Attack Flow About Axisymmetric Blunt Bodies with Sharp Shoulders and Smooth Nonaxisymmetric Blunt Bodies. NASA TN D-6283, 1971.

    Google Scholar 

  13. A.W. Rizzi, A. Klavins, and R.W. MacCormack, A Generalized Hyper- bolic Marching Technique for Three-Dimensional Supersonic Flow with Shocks. Proc. Fourth Int. Conf. on Numerical Methods in Fluid Dynamics, ed. R.D. Richtmyer, Lecture Notes in Physics, 35, Springer-Verlag, 1975, pp. 341–346.

    Google Scholar 

  14. A.W. Rizzi, and H.E. Bailey, A Generalized Hyperbolic Marching Method for Chemically Reacting 3-D Supersonic Flow Using a Splitting Technique. Proc. AIAA 2nd Computational Fluid Dynamics Conference (June 1975) pp. 38–46.

    Google Scholar 

  15. A. Rizzi, and H. Bailey, Finite-Volume Solution of the Euler Equations for Steady Three-Dimensional Transonic Flow. 5th Conference on Numerical Methods in Fluid Dynamics, Enschede, Holland (June 1976).

    Google Scholar 

  16. P. Kutler, W.A. Reinhardt, and R.F. Warming, Multishocked, Three-Dimensional Supersonic Flowfields with Real Gas Effects. AIAA J., vol. 11, no. 5, pp. 657–664 (May 1973).

    Article  MATH  Google Scholar 

  17. W.C. Davy, and W.A. Reinhardt, Computation of Shuttle Nonequilibrium Flow Fields on a Parallel Processor. Aerodynamic Analyses Requiring Advanced Computers, Part II, NASA SP-347 (1975) pp. 1351–1376.

    Google Scholar 

  18. J.V. Rakich, Three-Dimensional Flow Calculations by the Method of Characteristics. AIAA J., vol. 5, no. 10, 1967, pp. 1906–1908.

    Article  Google Scholar 

  19. A.W. Rizzi. Symposium Transsonicum II, eds. K. Oswatitsch and D. Rues, Springer-Verlag (1976) pp. 567–574.

    Chapter  Google Scholar 

  20. J.E. Daywitt, and D.A. Anderson, Analysis of a Time-Dependent Finite-Difference Technique for Shock Interaction and Blunt-Body Flows. Engineering Research Institute, Iowa State U., ERI Project 101 (May 1974).

    Google Scholar 

  21. P. Kutler, Computation of Three-Dimensional, Inviscid Supersonic Flows. Progress in Numerical Fluid Dynamics, Lecture Notes in Physics, vol. 41 (ed. H.J. Wirz), pp. 287–374 (1975).

    Google Scholar 

  22. J. Daywitt, D. Anderson, P. Kutler, Supersonic Flow About Circular Cones at Large Angles of Attack; A Floating Discontinuity Approach. AIAA Paper 77–86 (Jan. 1977).

    Google Scholar 

  23. R.W. MacCormack, and A.J. Paullay, Computational Efficiency Achieved by Time Splitting of Finite Difference Operators. AIAA Paper 72–154, 1972.

    Google Scholar 

  24. R.W. MacCormack, and R.F. Warming, Survey of Computational Methods for Three-Dimensional Supersonic Inviscid Flows with Shocks. “Advances in Numerical Fluid Dynamics” AGARD Lecture Series 64, Brussels, Belgium (Feb. 1973).

    Google Scholar 

  25. Lewis B. Schiff, The Axisymmetric Jet Counterflow Problem. AIAA Paper no. 76–325 (July 1976). AIAA 9th Fluid and Plasma Dynamics Conference, San Diego, Calif., July 14–16, 1976.

    Google Scholar 

  26. George S. Deiwert, Computation of Separated Transonic Turbulent Flows. AIAA Paper no. 75–829 (June 1975).

    Google Scholar 

  27. C.M. Hung, and R.W. MacCormack, Numerical Solutions of Supersonic and Hypersonic Laminar Flows over a Two-Dimensional Compression Corner. AIAA Paper no. 75–2, Jan. 1975.

    Google Scholar 

  28. H. Lomax, and H.E. Bailey, A Critical Analysis of Various Numerical Integration Methods for Computing the Flow of a Gas in Chemical Nonequilibrium. NASA TN D-4109, 1967.

    Google Scholar 

  29. Robert J. Gelinas, Stiff Systems of Kinetic Equations–A Practitioner’s View. J. Comp. Physics, 9, no. 2, (Apr. 1972), pp. 222–236.

    Article  MathSciNet  MATH  Google Scholar 

  30. K.G. Stevens, Jr., CFD–A Fortran-like Language for the ILLIAC IV. ACM SIGPLAN Notices, 10, no. 3. March 1975, pp. 72–76.

    Article  Google Scholar 

  31. Computational Fluid Dynamics Branch: CFD A Fortran-Based Language for Illiac IV. C.F.D. Branch, 202–1, NASA-Ames Research Center, Moffett Field, Calif. 94035.

    Google Scholar 

  32. W.G. Vincenti, and C.H. Kruger, Jr., Introduction to Physical Gas Dynamics. John Wiley and Sons, Inc., New York, 1965.

    Google Scholar 

  33. J.F. Clarke, and M. McChesney, The Dynamics of Real Gases. Butterworths Inc. (1964).

    Google Scholar 

  34. Orszag, S.A.: Numerical Methods for the Simulation of Turbulence. Physics of Fluids Supplement II, 1969, p. 250.

    Google Scholar 

  35. J. H. Tillotson, “Metallic Equations of State for Hypervelocity Impact (U),” General Dynamics Corporation (July 1962).

    Google Scholar 

  36. W. E. Johnson, unpublished notes on splitting in hydrodynamics calculations (U).

    Google Scholar 

  37. W. E. Johnson, “Development and Application of Computer Programs to Hypervelocity Impact (U), Systems; Science and Software,Report 3SR-353, ( December 1970 ). ( U)

    Google Scholar 

  38. System Guide for the Illiac IV User,“ Institute for Advanced Computation, IAC Doc. No. SG-I1000–0000-D, (March 1974). (U)

    Google Scholar 

  39. Richard O. Duda and Peter E. Hart, Use of the Hough Transformation to Detect Lines and Curves in Pictures, Comm. of ACM, January 1972 (Vol. 15 No. 1 ) page 11.

    Google Scholar 

  40. A. Rosefeld, Picture Processing by Computer, Academic Press, New York, 1969.

    Google Scholar 

  41. R. M. Hord, Extending the Hough Transform, Automatic Image Pattern Recognition Symposium, U. of Md., May 23–24, 1977.

    Google Scholar 

  42. G. H. Ball and D. J. Hall, “ISODATA, A Novel Method of Data Analysis and Pattern Classification”, Stanford Research Institute,Menlo Park, California, 1965.

    Google Scholar 

  43. P. H. Swain and K. W. Fu, “On the Application of Nonparametric Techniques to Crop Classification Problems”, National Electronics Conference Proceedings, 1968.

    Google Scholar 

  44. K. W. Fu, D. A. Landgrebe, and T. L. Phillips, “Information Processing of Remotely Sensed Agricultural Data”, Proceedings, IEEE, Vol. 57, No. 4, April 1969.

    Google Scholar 

  45. P. H. Swain, “Pattern Recognition: A Basic for Remote Sensing Data Analysis”, LARS Information Note 11572, Laboratory for Applications of Remote Sensing, Purdue University, West Lafayette, Indiana, 1972.

    Google Scholar 

  46. M. Goldberg and S. Schlien, “A Four-Dimensional Histogram Approach to the Clustering of Landsat Data”, Fourth Purdue Symposium on Machine Processing of Remotely Sensed Data, Purdue University, West Lafayette, Indiana, June 1977.

    Google Scholar 

  47. M. Ozga, W. E. Donovan and C. Gleason, “An Interactive System for Agricultural Acreage Estimates Using Landsat Data”, Symposium on Machine Processing of Remotely Sensed Data, Purdue University, West Lafayette, Indiana, June 1977.

    Google Scholar 

  48. Paul Wintz, “Transform Picture Coding”, Proc. IEEE, Vol. 60, No. 7, July 1972, p. 809.

    Article  Google Scholar 

  49. A. E. Kahveci and E. L. Hall, “Sequency Domain Design of Frequency Filters”, IEEE Trans. Comp., Sept. 1974, p. 976.

    Google Scholar 

  50. H. F. Harmuth, “A Generalized Concept of Frequency and Some Applications”, IEEE Trans. Info. Theory, Vol. II-14, No. 3, May 1958, p. 375.

    Google Scholar 

  51. W. K. Pratt et al., “Hadamard Transform Image Coding”, Proc. IEEE, June 1969, p. 58.

    Google Scholar 

  52. R. M. Haralick et al., “A Comparative Study of Data Compression Techniques for Digital Image Transmission”, Cadre Corporation, Lawrence, Kansas, February 1972.

    Google Scholar 

  53. B. A. Chartres, Adaptation of the Jacobi method for a computer with magnetic-tape backing store. Computer J. 5 (1962), 51–60.

    Article  MathSciNet  MATH  Google Scholar 

  54. B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix Eigensystem Routines - EISPACK Guide Extension. Springer-Verlag, Berlin (1977).

    Book  MATH  Google Scholar 

  55. W. M. Gentleman, Error analysis of QR decompositions by Givens transformations. Lin. Alg. Applics. 10 (1975), 189–197.

    Article  MathSciNet  MATH  Google Scholar 

  56. G. Golub and W. Kahan, Calculating the singular values and pseudoinverse of a matrix. J. SIAM Numer. Anal., Ser. B 2 (1965), 205–224.

    MathSciNet  Google Scholar 

  57. G. Golub and F. Luk, Singular value decomposition: applications and computations. ARO Report 77–1, Transactions of the 22-nd Conference of Army Mathematicians (1977), 577–605.

    Google Scholar 

  58. G. Golub and C. Reinsch, Singular value decomposition and least squares solutions. Numer. Math. 14 (1970), 403–420.

    Article  MathSciNet  MATH  Google Scholar 

  59. D. Heller, A survey of parallel algorithms in numerical linear algebra. Technical Report, Dept. of Computer Science, Carnegie-Mellon University (February 1976).

    Google Scholar 

  60. P. Henrici, On the speed of convergence of cyclic and quasicyclic Jacobi methods for computing eigenvalues of Hermitian matrices, J. Soc. Indust. Appl. Math. 6 (1958), 144–162.

    Article  MathSciNet  MATH  Google Scholar 

  61. M. R. Hestenes, Inversion of matrices by biorthogonalization and related results. J. Soc. Indus. Apl. Math. 6 (1958), 51–90.

    Article  MathSciNet  MATH  Google Scholar 

  62. C. Lanczos, Linear Differential Operators, Van Nostrand, London (1961).

    MATH  Google Scholar 

  63. D. H. Lawrie, T. Layman, D. Baer, and J. M. Randal, GLYPNIR–a programming language for ILLIAC IV. Comm AGM 18 (1975), 157–164.

    MATH  Google Scholar 

  64. J. C. Nash, A one-sided transformation method for the singular value decomposition and algebraic eigenproblem. Computer J. 18 (1975), 74–76

    Article  MATH  Google Scholar 

  65. H. Rutishauser, The Jacobi method for real symmetric matrices. Numer. Math. 9 (1966), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  66. A. H. Sameh and D. J. Kuck, A parallel QR algorithm for tridiagonal symmetric matrices. Technical Report, Dept. of Computer Science, University of Illinois, Urbana (July 1974).

    Google Scholar 

  67. A. Schoenhage, Zur Konvergenz des Jacobi-Verfahrens. Numer. Math. 3 (1961), 374–380.

    Article  MathSciNet  MATH  Google Scholar 

  68. K. G. Stevens, Jr., CFD–a FORTRAN-like language for the ILLIAC IV. ACM Sigplan Notices 10 (1975), 72–76.

    Article  Google Scholar 

  69. J. H. Wilkinson, Note on the quadratic convergence of the cyclic Jacobi process. Numer. Math. 4 (1962), 296–300.

    Article  MathSciNet  MATH  Google Scholar 

  70. J. H. Wilkinson, The Algebraic Eigenvalue Problem. Clarendon, Oxford (1965).

    MATH  Google Scholar 

  71. J. H. Wilkinson and C. Reinsch, Linear Algebra. Springer Verlag, New York (1971).

    MATH  Google Scholar 

  72. T. C. Bache, et al, “A Deterministic Methodology for Discriminating Between Earthquakes and Underground Nuclear Explosions.” Final Report to Advanced Research Projects Agency under Contract No. F44620–74-C-0063, July 1976.

    Google Scholar 

  73. J. T. Cherry, et al, “A Deterministic Approach to the Prediction of Free Field Ground Motion and Response Spectra from Stick-Slip Earthquakes.” Earthquake Engineering and Structural Dynamics, Vol. 4, pp. 315–332, 1976.

    Article  Google Scholar 

  74. G. Maenchen and S. Sack, “The Tensor Code.” Methods in Computational Physics, Vol. 3. Academic Press, 1964.

    Google Scholar 

  75. S. S. Alexander and D. B. Rabenstine, 1967a, Detection of surface waves from small events at teleseismic distance: SDL Report No. 175, Teledyne Geotech, Alexandria, Virginia.

    Google Scholar 

  76. S. S. Alexander and D. B. Rabenstine, 1967a, Rayleigh wave signal-to-noise enhancement for a small teleseismic using LASA, LRSM and observatory stations: SDL Report No. 194, Teledyne Geotech, Alexandria, Virginia.

    Google Scholar 

  77. R. R. Blandford, 1971, An automated event detector at TFO: SDL Report No. 263, Teledyne Geotech, Alexandria, Virginia.

    Google Scholar 

  78. J. Capon, 1969, High-resolution frequency-wavenumber spectrum analysis, Proc. IEEE 57, 1408–1418.

    Google Scholar 

  79. CFD, A Fortran based language for ILLIAC IV, 1973, Computational Fluid Dynamics Branch, Ames Research Center, National Aeronautics and Space Administration.

    Google Scholar 

  80. ILLIAC IV Systems Characteristics and Programming Manual, 1971, Burroughs Corporation, Defense, Space and Special Systems Group.

    Google Scholar 

  81. A. U. Kerr and G. Wagenbreth, A long-period processing package for ILLIAC I V, 1974 (in preparation).

    Google Scholar 

  82. H. Mack, 1972, Evaluation of the LASA, ALPHA, NORSAR long period network: Seismic Array Analysis Center Report No. 6, Teledyne Geotech, Alexandria, Virginia.

    Google Scholar 

  83. R. S. Simons, 1968, PHILTRE, A surface wave particle motion discrimination process. Bull. Seism. Soc. Amer., 58, p. 629–637.

    Google Scholar 

  84. E. Smart, 1971, Erroneous phase velocities from frequency wavenumber spectral sections: Geophys. J. Roy. Astr. Soc., 26, p. 247–254.

    Google Scholar 

  85. E. Smart and E. A. Flinn, 1971, Fast frequency-wavenumber analysis and Fisher signal detection in real time infrasonic array data processing: Geophys. J. Roy. Astr. Soc., 26, p. 279–284.

    Google Scholar 

  86. J. E. Stevens, 1971, A fast Fourier transform subroutine for ILLIAC IV: C.Â.C. Document No, 17, Center for Advanced Computation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.

    Google Scholar 

  87. System Guide for the ILLIAC IV User, 1974, Institute for Advanced Computation, Ames Research Center, Moffet Field, California 94035.

    Google Scholar 

  88. D. H. von Seggern and P. Sobel, 1974, Performance of the PHILTRE processor at low signal to noise ratios (in preparation).

    Google Scholar 

  89. J. W. Woods and P. R. Lintz, 1972, Plane waves at small arrays: Geophysics, 38, p. 1023–1041.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hord, R.M. (1982). Applications. In: The Illiac IV. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10345-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10345-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11765-0

  • Online ISBN: 978-3-662-10345-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics