The Illiac IV pp 123-303 | Cite as

Applications

  • R. Michael Hord

Abstract

Historically, the development of applications on the Illiac IV have gone through four phases. The first of these occurred in the period from early 1973 until November 1975. In this phase prior to the Illiac becoming operational a wide variety of application code development projects were undertaken. Many of these were performed by university and private sector personnel under contract to NASA or DARPA. The computational fluid dynamics work performed by the staff of the Ames Research Center CFD Branch is the notable exception. Generally the work was done remotely over the ARPANET communication system. In retrospect the marvel is that not all of these projects failed. The Illiac was not ready; it was down almost all of the time and when it was available, arithmetic errors without diagnostics were rampant.

Keywords

Entropy Vortex Corn Enthalpy Autocorrelation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.R. Bailey, Computational Aerodynamics - Illiac IV and Beyond. Meeting IEEE Computer Society, Compcon Spring, Feb. 28 - Mar. 3, 1977, San Francisco, Calif.Google Scholar
  2. 2.
    J.A. Lordi, R.J. Vidal, and C.B. Johnson, Chemical Nonequilibrium Effects on the Inviscid Flow in the Windward Plane of Symmetry of Two Simplified Shuttle Configurations. NASA TN D-7189, March 1973.Google Scholar
  3. 3.
    W.D. Goodrich, C.P. Li, C.K. Houston, R.M. Meyers, and L. Olmedo, Scaling of Orbiter Aerothermodynamic Data through Numerical Flow Field Simulations. NASA SP-347, March 1975.Google Scholar
  4. 4.
    W.D. Goodrich, C.P. Li, C.K. Houston, P. Chiu, and L. Olmedo, Numerical Computations of Orbiter Flow Fields and Heating Rates. AIAA Paper No. 76–359, July 1976.Google Scholar
  5. 5.
    J.V. Rakich, and M.J. Lanfranco, Numerical Computation of Space Shuttle Heating and Surface Streamlines. AIAA Paper No. 76–464, July 1976.Google Scholar
  6. 6.
    J.C. Adams, Jr., W.R. Martindale, A.W. Mayne, Jr., and E.O. Marchand, Real Gas Effects on Hypersonic Laminar Boundary-Layer Parameters Including Effects of Entropy-Layer Swallowing. AIAA Paper No. 76–358, July 1976.Google Scholar
  7. 7.
    A.W. Rizzi, and M. Inouye, Time-Split Finite-Volume Method for Three-Dimensional Blunt Body Flow. AIAA J., 11, No. 11, (1973), pp. 1478–1485.MATHCrossRefGoogle Scholar
  8. 8.
    A.W. Rizzi, and H.E. Bailey, Reacting Nonequilibrium Flow Around the Space Shuttle Using a Time-Split Method. Aerodynamic Analysis Requiring Advanced Computers, Part II, NASA SP-347 (1975), pp. 1327–1349.Google Scholar
  9. 9.
    C.P. Li, Time-Dependent Solutions of Non-equilibrium Airflow Past a Blunt Body. J. Spacecraft and Rockets, 9, No. 8, Aug. 1972Google Scholar
  10. pp. 571–572.Google Scholar
  11. 10.
    G. Moretti, and G. Bleich, Three-Dimensional Flow Around Blunt Bodies. AIAA J., vol. 5, no. 10, Oct. 1967, pp. 1557–1562.MATHGoogle Scholar
  12. 11.
    R.W. Barnwell, A Time-Dependent Method for Calculating Supersonic Angle-of-Attack Flow About Axisymmetric Blunt Bodies with Sharp Shoulders and Smooth Nonaxisymmetric Blunt Bodies. NASA TN D-6283, 1971.Google Scholar
  13. 12.
    A.W. Rizzi, A. Klavins, and R.W. MacCormack, A Generalized Hyper- bolic Marching Technique for Three-Dimensional Supersonic Flow with Shocks. Proc. Fourth Int. Conf. on Numerical Methods in Fluid Dynamics, ed. R.D. Richtmyer, Lecture Notes in Physics, 35, Springer-Verlag, 1975, pp. 341–346.Google Scholar
  14. 13.
    A.W. Rizzi, and H.E. Bailey, A Generalized Hyperbolic Marching Method for Chemically Reacting 3-D Supersonic Flow Using a Splitting Technique. Proc. AIAA 2nd Computational Fluid Dynamics Conference (June 1975) pp. 38–46.Google Scholar
  15. 14.
    A. Rizzi, and H. Bailey, Finite-Volume Solution of the Euler Equations for Steady Three-Dimensional Transonic Flow. 5th Conference on Numerical Methods in Fluid Dynamics, Enschede, Holland (June 1976).Google Scholar
  16. 15.
    P. Kutler, W.A. Reinhardt, and R.F. Warming, Multishocked, Three-Dimensional Supersonic Flowfields with Real Gas Effects. AIAA J., vol. 11, no. 5, pp. 657–664 (May 1973).MATHCrossRefGoogle Scholar
  17. 16.
    W.C. Davy, and W.A. Reinhardt, Computation of Shuttle Nonequilibrium Flow Fields on a Parallel Processor. Aerodynamic Analyses Requiring Advanced Computers, Part II, NASA SP-347 (1975) pp. 1351–1376.Google Scholar
  18. 17.
    J.V. Rakich, Three-Dimensional Flow Calculations by the Method of Characteristics. AIAA J., vol. 5, no. 10, 1967, pp. 1906–1908.CrossRefGoogle Scholar
  19. 18.
    A.W. Rizzi. Symposium Transsonicum II, eds. K. Oswatitsch and D. Rues, Springer-Verlag (1976) pp. 567–574.CrossRefGoogle Scholar
  20. J.E. Daywitt, and D.A. Anderson, Analysis of a Time-Dependent Finite-Difference Technique for Shock Interaction and Blunt-Body Flows. Engineering Research Institute, Iowa State U., ERI Project 101 (May 1974).Google Scholar
  21. 20.
    P. Kutler, Computation of Three-Dimensional, Inviscid Supersonic Flows. Progress in Numerical Fluid Dynamics, Lecture Notes in Physics, vol. 41 (ed. H.J. Wirz), pp. 287–374 (1975).Google Scholar
  22. 21.
    J. Daywitt, D. Anderson, P. Kutler, Supersonic Flow About Circular Cones at Large Angles of Attack; A Floating Discontinuity Approach. AIAA Paper 77–86 (Jan. 1977).Google Scholar
  23. 22.
    R.W. MacCormack, and A.J. Paullay, Computational Efficiency Achieved by Time Splitting of Finite Difference Operators. AIAA Paper 72–154, 1972.Google Scholar
  24. 23.
    R.W. MacCormack, and R.F. Warming, Survey of Computational Methods for Three-Dimensional Supersonic Inviscid Flows with Shocks. “Advances in Numerical Fluid Dynamics” AGARD Lecture Series 64, Brussels, Belgium (Feb. 1973).Google Scholar
  25. 24.
    Lewis B. Schiff, The Axisymmetric Jet Counterflow Problem. AIAA Paper no. 76–325 (July 1976). AIAA 9th Fluid and Plasma Dynamics Conference, San Diego, Calif., July 14–16, 1976.Google Scholar
  26. 25.
    George S. Deiwert, Computation of Separated Transonic Turbulent Flows. AIAA Paper no. 75–829 (June 1975).Google Scholar
  27. 26.
    C.M. Hung, and R.W. MacCormack, Numerical Solutions of Supersonic and Hypersonic Laminar Flows over a Two-Dimensional Compression Corner. AIAA Paper no. 75–2, Jan. 1975.Google Scholar
  28. 27.
    H. Lomax, and H.E. Bailey, A Critical Analysis of Various Numerical Integration Methods for Computing the Flow of a Gas in Chemical Nonequilibrium. NASA TN D-4109, 1967.Google Scholar
  29. 28.
    Robert J. Gelinas, Stiff Systems of Kinetic Equations–A Practitioner’s View. J. Comp. Physics, 9, no. 2, (Apr. 1972), pp. 222–236.MathSciNetMATHCrossRefGoogle Scholar
  30. 29.
    K.G. Stevens, Jr., CFD–A Fortran-like Language for the ILLIAC IV. ACM SIGPLAN Notices, 10, no. 3. March 1975, pp. 72–76.CrossRefGoogle Scholar
  31. 30.
    Computational Fluid Dynamics Branch: CFD A Fortran-Based Language for Illiac IV. C.F.D. Branch, 202–1, NASA-Ames Research Center, Moffett Field, Calif. 94035.Google Scholar
  32. 31.
    W.G. Vincenti, and C.H. Kruger, Jr., Introduction to Physical Gas Dynamics. John Wiley and Sons, Inc., New York, 1965.Google Scholar
  33. 32.
    J.F. Clarke, and M. McChesney, The Dynamics of Real Gases. Butterworths Inc. (1964).Google Scholar
  34. Orszag, S.A.: Numerical Methods for the Simulation of Turbulence. Physics of Fluids Supplement II, 1969, p. 250.Google Scholar
  35. 1.
    J. H. Tillotson, “Metallic Equations of State for Hypervelocity Impact (U),” General Dynamics Corporation (July 1962).Google Scholar
  36. 2.
    W. E. Johnson, unpublished notes on splitting in hydrodynamics calculations (U).Google Scholar
  37. 3.
    W. E. Johnson, “Development and Application of Computer Programs to Hypervelocity Impact (U), Systems; Science and Software,Report 3SR-353, ( December 1970 ). ( U)Google Scholar
  38. 4.
    System Guide for the Illiac IV User,“ Institute for Advanced Computation, IAC Doc. No. SG-I1000–0000-D, (March 1974). (U)Google Scholar
  39. 1.
    Richard O. Duda and Peter E. Hart, Use of the Hough Transformation to Detect Lines and Curves in Pictures, Comm. of ACM, January 1972 (Vol. 15 No. 1 ) page 11.Google Scholar
  40. 2.
    A. Rosefeld, Picture Processing by Computer, Academic Press, New York, 1969.Google Scholar
  41. 3.
    R. M. Hord, Extending the Hough Transform, Automatic Image Pattern Recognition Symposium, U. of Md., May 23–24, 1977.Google Scholar
  42. 1.
    G. H. Ball and D. J. Hall, “ISODATA, A Novel Method of Data Analysis and Pattern Classification”, Stanford Research Institute,Menlo Park, California, 1965.Google Scholar
  43. 2.
    P. H. Swain and K. W. Fu, “On the Application of Nonparametric Techniques to Crop Classification Problems”, National Electronics Conference Proceedings, 1968.Google Scholar
  44. 3.
    K. W. Fu, D. A. Landgrebe, and T. L. Phillips, “Information Processing of Remotely Sensed Agricultural Data”, Proceedings, IEEE, Vol. 57, No. 4, April 1969.Google Scholar
  45. 4.
    P. H. Swain, “Pattern Recognition: A Basic for Remote Sensing Data Analysis”, LARS Information Note 11572, Laboratory for Applications of Remote Sensing, Purdue University, West Lafayette, Indiana, 1972.Google Scholar
  46. 5.
    M. Goldberg and S. Schlien, “A Four-Dimensional Histogram Approach to the Clustering of Landsat Data”, Fourth Purdue Symposium on Machine Processing of Remotely Sensed Data, Purdue University, West Lafayette, Indiana, June 1977.Google Scholar
  47. 6.
    M. Ozga, W. E. Donovan and C. Gleason, “An Interactive System for Agricultural Acreage Estimates Using Landsat Data”, Symposium on Machine Processing of Remotely Sensed Data, Purdue University, West Lafayette, Indiana, June 1977.Google Scholar
  48. 1.
    Paul Wintz, “Transform Picture Coding”, Proc. IEEE, Vol. 60, No. 7, July 1972, p. 809.CrossRefGoogle Scholar
  49. 2.
    A. E. Kahveci and E. L. Hall, “Sequency Domain Design of Frequency Filters”, IEEE Trans. Comp., Sept. 1974, p. 976.Google Scholar
  50. 3.
    H. F. Harmuth, “A Generalized Concept of Frequency and Some Applications”, IEEE Trans. Info. Theory, Vol. II-14, No. 3, May 1958, p. 375.Google Scholar
  51. 4.
    W. K. Pratt et al., “Hadamard Transform Image Coding”, Proc. IEEE, June 1969, p. 58.Google Scholar
  52. 5.
    R. M. Haralick et al., “A Comparative Study of Data Compression Techniques for Digital Image Transmission”, Cadre Corporation, Lawrence, Kansas, February 1972.Google Scholar
  53. 1.
    B. A. Chartres, Adaptation of the Jacobi method for a computer with magnetic-tape backing store. Computer J. 5 (1962), 51–60.MathSciNetMATHCrossRefGoogle Scholar
  54. 2.
    B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix Eigensystem Routines - EISPACK Guide Extension. Springer-Verlag, Berlin (1977).MATHCrossRefGoogle Scholar
  55. 3.
    W. M. Gentleman, Error analysis of QR decompositions by Givens transformations. Lin. Alg. Applics. 10 (1975), 189–197.MathSciNetMATHCrossRefGoogle Scholar
  56. 4.
    G. Golub and W. Kahan, Calculating the singular values and pseudoinverse of a matrix. J. SIAM Numer. Anal., Ser. B 2 (1965), 205–224.MathSciNetGoogle Scholar
  57. 5.
    G. Golub and F. Luk, Singular value decomposition: applications and computations. ARO Report 77–1, Transactions of the 22-nd Conference of Army Mathematicians (1977), 577–605.Google Scholar
  58. 6.
    G. Golub and C. Reinsch, Singular value decomposition and least squares solutions. Numer. Math. 14 (1970), 403–420.MathSciNetMATHCrossRefGoogle Scholar
  59. 7.
    D. Heller, A survey of parallel algorithms in numerical linear algebra. Technical Report, Dept. of Computer Science, Carnegie-Mellon University (February 1976).Google Scholar
  60. 8.
    P. Henrici, On the speed of convergence of cyclic and quasicyclic Jacobi methods for computing eigenvalues of Hermitian matrices, J. Soc. Indust. Appl. Math. 6 (1958), 144–162.MathSciNetMATHCrossRefGoogle Scholar
  61. 9.
    M. R. Hestenes, Inversion of matrices by biorthogonalization and related results. J. Soc. Indus. Apl. Math. 6 (1958), 51–90.MathSciNetMATHCrossRefGoogle Scholar
  62. 10.
    C. Lanczos, Linear Differential Operators, Van Nostrand, London (1961).MATHGoogle Scholar
  63. 11.
    D. H. Lawrie, T. Layman, D. Baer, and J. M. Randal, GLYPNIR–a programming language for ILLIAC IV. Comm AGM 18 (1975), 157–164.MATHGoogle Scholar
  64. 12.
    J. C. Nash, A one-sided transformation method for the singular value decomposition and algebraic eigenproblem. Computer J. 18 (1975), 74–76MATHCrossRefGoogle Scholar
  65. 13.
    H. Rutishauser, The Jacobi method for real symmetric matrices. Numer. Math. 9 (1966), 1–10.MathSciNetMATHCrossRefGoogle Scholar
  66. 14.
    A. H. Sameh and D. J. Kuck, A parallel QR algorithm for tridiagonal symmetric matrices. Technical Report, Dept. of Computer Science, University of Illinois, Urbana (July 1974).Google Scholar
  67. 15.
    A. Schoenhage, Zur Konvergenz des Jacobi-Verfahrens. Numer. Math. 3 (1961), 374–380.MathSciNetMATHCrossRefGoogle Scholar
  68. 16.
    K. G. Stevens, Jr., CFD–a FORTRAN-like language for the ILLIAC IV. ACM Sigplan Notices 10 (1975), 72–76.CrossRefGoogle Scholar
  69. 17.
    J. H. Wilkinson, Note on the quadratic convergence of the cyclic Jacobi process. Numer. Math. 4 (1962), 296–300.MathSciNetMATHCrossRefGoogle Scholar
  70. 18.
    J. H. Wilkinson, The Algebraic Eigenvalue Problem. Clarendon, Oxford (1965).MATHGoogle Scholar
  71. 19.
    J. H. Wilkinson and C. Reinsch, Linear Algebra. Springer Verlag, New York (1971).MATHGoogle Scholar
  72. 1.
    T. C. Bache, et al, “A Deterministic Methodology for Discriminating Between Earthquakes and Underground Nuclear Explosions.” Final Report to Advanced Research Projects Agency under Contract No. F44620–74-C-0063, July 1976.Google Scholar
  73. 2.
    J. T. Cherry, et al, “A Deterministic Approach to the Prediction of Free Field Ground Motion and Response Spectra from Stick-Slip Earthquakes.” Earthquake Engineering and Structural Dynamics, Vol. 4, pp. 315–332, 1976.CrossRefGoogle Scholar
  74. 3.
    G. Maenchen and S. Sack, “The Tensor Code.” Methods in Computational Physics, Vol. 3. Academic Press, 1964.Google Scholar
  75. 1.
    S. S. Alexander and D. B. Rabenstine, 1967a, Detection of surface waves from small events at teleseismic distance: SDL Report No. 175, Teledyne Geotech, Alexandria, Virginia.Google Scholar
  76. 2.
    S. S. Alexander and D. B. Rabenstine, 1967a, Rayleigh wave signal-to-noise enhancement for a small teleseismic using LASA, LRSM and observatory stations: SDL Report No. 194, Teledyne Geotech, Alexandria, Virginia.Google Scholar
  77. 3.
    R. R. Blandford, 1971, An automated event detector at TFO: SDL Report No. 263, Teledyne Geotech, Alexandria, Virginia.Google Scholar
  78. 4.
    J. Capon, 1969, High-resolution frequency-wavenumber spectrum analysis, Proc. IEEE 57, 1408–1418.Google Scholar
  79. 5.
    CFD, A Fortran based language for ILLIAC IV, 1973, Computational Fluid Dynamics Branch, Ames Research Center, National Aeronautics and Space Administration.Google Scholar
  80. 6.
    ILLIAC IV Systems Characteristics and Programming Manual, 1971, Burroughs Corporation, Defense, Space and Special Systems Group.Google Scholar
  81. 7.
    A. U. Kerr and G. Wagenbreth, A long-period processing package for ILLIAC I V, 1974 (in preparation).Google Scholar
  82. 8.
    H. Mack, 1972, Evaluation of the LASA, ALPHA, NORSAR long period network: Seismic Array Analysis Center Report No. 6, Teledyne Geotech, Alexandria, Virginia.Google Scholar
  83. 9.
    R. S. Simons, 1968, PHILTRE, A surface wave particle motion discrimination process. Bull. Seism. Soc. Amer., 58, p. 629–637.Google Scholar
  84. 10.
    E. Smart, 1971, Erroneous phase velocities from frequency wavenumber spectral sections: Geophys. J. Roy. Astr. Soc., 26, p. 247–254.Google Scholar
  85. 11.
    E. Smart and E. A. Flinn, 1971, Fast frequency-wavenumber analysis and Fisher signal detection in real time infrasonic array data processing: Geophys. J. Roy. Astr. Soc., 26, p. 279–284.Google Scholar
  86. 12.
    J. E. Stevens, 1971, A fast Fourier transform subroutine for ILLIAC IV: C.Â.C. Document No, 17, Center for Advanced Computation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.Google Scholar
  87. 13.
    System Guide for the ILLIAC IV User, 1974, Institute for Advanced Computation, Ames Research Center, Moffet Field, California 94035.Google Scholar
  88. 14.
    D. H. von Seggern and P. Sobel, 1974, Performance of the PHILTRE processor at low signal to noise ratios (in preparation).Google Scholar
  89. 15.
    J. W. Woods and P. R. Lintz, 1972, Plane waves at small arrays: Geophysics, 38, p. 1023–1041.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • R. Michael Hord
    • 1
  1. 1.General Research Corp.McLeanUSA

Personalised recommendations