Hot-Headed Honeybees



THE honeybee, Apis mellifera, is a highly atypical flying insect. It is the only one that has refuge year-round, winter and summer, in a warm environment stocked with food. Honeybees can always seek the warmth of their companions in the nest—or, to put it another way, they are unavoidably subjected to heating by them.


Flight Muscle Flight Speed Evaporative Water Loss Honeybee Worker Free Flight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, M. D. 1955. Respiration rates of worker honeybees of different ages and at different temperatures. J. Exp. Biol. 36:92–101.Google Scholar
  2. Arnhart, L. 1906. Die Bedeutung der Aortenschlangenwindungen des Bienenherzens. Zool. Anzeiger 30:721–722.Google Scholar
  3. Bastian, J, and H. Esch. 1970. The nervous control of the flight muscles of the honeybee. Z. Vergl. Physiol. 67:307–324.CrossRefGoogle Scholar
  4. Boettiger, E. G. 1957. Triggering of the contractile process in insect fibrillar muscle. In Physiological Triggers, ed. T. H. Bullock, pp. 103–106. Washington, D.C.: American Physiological Society.Google Scholar
  5. Cahill, K., and S. Lustick. 1976. Oxygen consumption and thermoregulation in Apis mellifera workers and drones. Comp. Biochem. Physiol. 55A:355–357.CrossRefGoogle Scholar
  6. Calder, W. A. 1984. Size, Function, and Life History. Cambridge, Mass.: Harvard University Press.Google Scholar
  7. Cena, K., and J. A. Clark. 1972. Effect of solar radiation on temperatures of working honey bees. Nature 236:222–223.Google Scholar
  8. Coelho, J. R. 1989. The effect of thorax temperature and body size on flight speed in honey bee drones. Am. Bee J. 129:811–1812.Google Scholar
  9. Coelho, J. R. 1990. The effect of thorax temperature on force production during tethered flight in honeybee (Apis mellifera) drones, workers and queens. Physiol. Zool. (MS submitted).Google Scholar
  10. Coelho, J. R. 1991. Thermoregulation in honey bee drones (Apis mellifera). Unpublished manuscript.Google Scholar
  11. Coelho, J. R., and J. B. Mitton. 1988. Oxygen consumption during hovering is associated with genetic variation of enzymes in honeybees. Funct. Ecol. 2:141–146.CrossRefGoogle Scholar
  12. Cooper, P., W. M. Schaffer, and S. L. Buchmann 1985. Temperature regulation of honey bees (Apis mellifera) foraging in the Sonoran Desert. J. Exp. Biol. 114:1–15.Google Scholar
  13. Duruz, C., and F. Baumann. 1968. Influence de la température sur le potential de repos et le potential récepteur d’une cellule photoréceptrice. Hely. Physiol. pharmacol. Acta 26:341–342.Google Scholar
  14. Dyer, F. C., and T. D. Seeley. 1987. Interspecific comparison of endothermy in honeybees (Apis): Deviations from the expected size-related patterns. J. Exp. Biol. 127:1–26.Google Scholar
  15. Esch, H. 1960. Über die Körpertemperaturen und den Wärmehaushalt von Apis mellfca. Z. Vergl. Physiol. 43:305–335.CrossRefGoogle Scholar
  16. Esch, H. 1964. Über den Zusammenhang zwischen Temperatur, Aktionspotentialen und Thoraxbewegungen bei der Honigbiene (Apis mellifica L.) Z. Vergl. Physiol. 48:547–551.Google Scholar
  17. Esch, H. 1976. Body temperature and flight performance of honey bees in a servomechanically controlled wind tunnel. J. Comp. Physiol. 109:254–277.CrossRefGoogle Scholar
  18. Esch, H. 1988. The effects of temperature on flight muscle potentials in honeybees and cuculiinid winter moths. J. Exp. Biol. 135:109–117.Google Scholar
  19. Esch, H., and J. Bastian. 1968. Mechanical and electrical activity in the indirect flight muscles of the honey bee. Z. Vergl. Physiol. 58:429–440.CrossRefGoogle Scholar
  20. Esch, H., and F. Goller. 1991. Neural control of honeybee fibrillar muscles during shivering and flight. J. Exp. Biol. 159:419–431.Google Scholar
  21. Esch, H., W. Nachtigall, and S. N. Kogge. 1975. Correlations between aerodynamic output, electrical activity in the indirect flight muscles and wing positions of bees flying in a servomechanically controlled wind tunnel. J. Comp. Physiol. 100:147–159.CrossRefGoogle Scholar
  22. Fahrenholz, L. 1986. Die soziale Thermoregulation im Stock der Honigbiene (Apis mellifera carnica) und die kalorimetrische Bestimmung der Wärmeproduktion bei Einzeltieren. Ph.D. dissertation, Free University of Berlin.Google Scholar
  23. Feller, P., and W. Nachtigall. 1989. Flight of the honeybee. II. Inner-and surface thorax temperatures and energetic criteria correlated to flight parameters. J. Comp. Physiol. B158:719–727.Google Scholar
  24. Free, J. B. 1965. The allocation of duties among worker honeybees. Zool. Soc. Lond. Symp. 14:39–50.Google Scholar
  25. Free, J. B., and Y. Spencer-Booth. 1958. Observations of the temperature and food consumption of honeybees (Apis mellifera). J. Exp. Biol. 35:930–937.Google Scholar
  26. Free, J. B., and Y. Spencer-Booth. 1960. Chill-coma and cold death temperatures of Apis mellifera. Entomol. Exp. Appl. 3:222–230.CrossRefGoogle Scholar
  27. Freudenstein, K. 1928. Das Herz und das Zirkulationssystem der Honigbiene (Apis mellifica L.) Z. Wiss. Zool. 132:404–475.Google Scholar
  28. Frisch, K. von. 1967. Dance Language and Orientation of Bees. Cambridge, Mass.: Harvard University Press.Google Scholar
  29. Goller, F., and H. Esch. 1990a. Comparative study of chill-coma temperatures and muscle potentials in insect flight muscles. J. Exp. Biol. 150:221–231.Google Scholar
  30. Goller, F., and H. Esch. 1990b. Oxygen consumption and flight muscle activity during warm-up in workers and drones of Apis mellifera. J. Comp. Physiol. (in press).Google Scholar
  31. Goller, F., and H. Esch. 1990c. Muscle potentials and temperature acclimation in flight muscles of workers and drones of Apis mellifera. J. Therm. Biol. 15:307–312.CrossRefGoogle Scholar
  32. Harrison, J. M. 1986. Caste-specific changes in honeybee flight activity. Physiol. Zool. 59:175–187.Google Scholar
  33. Heinrich, B. 1975. Thermoregulation in bumblebees. H. Energetics of warm-up and free flight. J. Comp. Physiol. 96:155–166.Google Scholar
  34. Heinrich, B. 1976. Heat exchange in relation to blood flow between thorax and abdomen in bumblebees. J. Exp. Biol. 54:561–585.Google Scholar
  35. Heinrich, B. 1979a. Keeping a cool head: Honeybee thermoregulation. Science 205:1269–1271.CrossRefGoogle Scholar
  36. Heinrich, B. 1979b. Thermoregulation of African and European honeybees during foraging, attack, and hive exits and returns. J. Exp. Biol. 80:217–229.Google Scholar
  37. Heinrich, B. 1979c. Bumblebee Economics. Cambridge, Mass.: Harvard University Press.Google Scholar
  38. Heinrich, B. 1980a. Mechanisms of body-temperature regulation in honeybees, Apis mellifera. I. Regulation of head temperature. J. Exp. Biol. 85:61–72.Google Scholar
  39. Heinrich, B. 1980b. Mechanisms of body-temperature regulation in honeybees, Apis mellifera. II. Regulation of thoracic temperature at high air temperatures. J. Exp. Biol. 85:73–87.Google Scholar
  40. Heinrich, B. 1981a. Energetics of honeybee swarm thermoregulation. Science 212:565–566.CrossRefGoogle Scholar
  41. Heinrich, B. 198lb. The mechanisms and energetics of honeybee swarm temperature regulation. J. Exp. Biol. 91:25–55.Google Scholar
  42. Heran, H. 1952. Untersuchungen über den Temperatursinn der Honigbiene (Apis mellifeca) unter besonderer Berücksichtigung der Wahrnehmung strahlender Wärme. Z. Vergl. Physiol. 34:179–206.CrossRefGoogle Scholar
  43. Herold, R. C. 1965. Development and utrastructural changes of sarcosomes during honeybee flight muscle development. Dey. Biol. 12:269–286.CrossRefGoogle Scholar
  44. Herold, R. C., and H. Borei. 1963. Cytochrome changes during honeybee flight muscle development. Dey. Biol. 8:67–79.CrossRefGoogle Scholar
  45. Hersch, M. I., R. M. Crewe, H. R. Hepburn, P. R. Thompson, and N. Savage. 1978. Sequential development of glycolytic competence in the muscles of worker honeybees. Comp. Biochem. Physiol. 61B:427–431.Google Scholar
  46. Heusner, A., and M. Roth. 1963. Consommation de l’oxygène de l’abeille à différentes températures. C. R. Hebd. Séance Acad. Sci., Paris 256:284–285.Google Scholar
  47. Himmer, A. 1925. Körpertemperaturmessungen an Bienen und anderen Insekten. Erlanger Jb. Bienenk. 3:44–115.Google Scholar
  48. Himmer, A. 1926. Der sozial Wärmehaushalt der Honigbiene. I. Die Wärme im nicht brütenden Wintervolk. Erlanger Jb. Bienenk. 4:1–51.Google Scholar
  49. Himmer, A. 1927. Der soziale Wärmehaushalt der Honigbiene. II. Die Wärme der Bienenbrut. Erlanger Jb. Bienenk. 5:1–32.Google Scholar
  50. Himmer, A. 1932. Die Temperaturverhältnisse bei den sozialen Hymenopteren. Biol. Rev. 7:224–253.CrossRefGoogle Scholar
  51. Ikeda, K., and E. G. Boettiger. 1965. Studies on the flight mechanism of insects. II. The innervation and electrical activity of the fibrillar muscles of the bumblebee, Bombus. J. Insect Physiol. 11:779–789.CrossRefGoogle Scholar
  52. Jungmann, R., U. Rothe, and W. Nachtigall. 1989. Flight of the honey bee. II. Thorax surface temperature and thermoregulation during tethered flight. J. Comp. Physiol. B158:711–718.Google Scholar
  53. Kammer, A. E., and B. Heinrich. 1974. Metabolic rates related to muscle activity in bumblebees. J. Exp. Biol. 61:219–227.PubMedGoogle Scholar
  54. Kosmin, N. P., W. W. Alpatov, and M. S. Resnitschenko. 1932. Zur Kenntnis des Gaswechsels und des Energieverbrauchs der Biene in Beziehung zu deren Aktivität. Z. Vergl. Physiol. 17:408–422.Google Scholar
  55. Lensky, Y. 1964a. L’économie de liquides chez les abeilles aux températures élevées. Insectes Sociaux (Paris) 11:207–222.Google Scholar
  56. Himmer, A. 1964b. Résistance des abeilles (Apis mellifica L. var. ligustica) a des températures élevées. Insectes Sociaux (Paris) 11:293–300.Google Scholar
  57. Lindauer, M. 1952. Ein Beitrag der Frage der Arbeitsteilung im Bienenstaat. Z. Vergl. Physiol. 34:299–345.CrossRefGoogle Scholar
  58. Louw, G., and N. Hadley. 1985. Water economy of the honeybee: A stoichiometric accounting. J. Exp. Zool. 235:147–150.CrossRefGoogle Scholar
  59. Machin, K. E., J. W. S. Pringle, and M. Tamasige. 1962. The phhsiology of insect fibrillar muscle. W..The effect of temperature on beetle flight muscle. Proc. Roy. Soc. Lond. B155:493–499.CrossRefGoogle Scholar
  60. Mardan, M., and P. G. Kevan. 1989. Honeybees and “yellow rain.” Nature 341:191.CrossRefGoogle Scholar
  61. Nachtigall, W., U. Rothe, P. Feller, and R. Jungmann. 1989. Flight of the honeybee. HI. Flight metabolic power calculated from gas analysis, thermoregulation and fuel consumption. J. Comp. Physiol. B158:729–737.Google Scholar
  62. Neukirch, A. 1982. Dependence of the life span of the honeybee (Apis mellifica) upon flight performance and energy consumption. J. Comp. Physiol. 146:38–40.Google Scholar
  63. Pearl, R. 1928. The Rate of Living. New York: Knopf.Google Scholar
  64. Pirsch, G. B. 1923. Studies on the temperature of individual insects, with special reference to the honey bee. J. Agric. Res. 24:257–287.Google Scholar
  65. Pissarew, W. J. 1898. Das Herz der Biene (Apis mellifera L.). Zool. Anzeiger 21:282–283.Google Scholar
  66. Rösch, G. A. 1925. Untersuchungen über die Arbeitsteilung im Bienenstaat. I. Die Tätigkeiten im normalen Bienenstaate und ihre Beziehungen zum Alter der Arbeiterinnen. Z. Vergl. Physiol. 2:571–631.Google Scholar
  67. Rothe, U., and W. Nachtigall. 1989. Flight of the honeybee. W. Respiratory quotients and metabolic rates during sitting, walking and flying. J. Comp. Physiol. 158B:739–749.Google Scholar
  68. Schmaranzer, S. 1983. Thermovision bei trinkenden und tanzenden Hon- igbienen (Apis mellifera carnica). Verh. Dtsch. Zool. Ges. 1983:319.Google Scholar
  69. Schmaranzer, S. 1984. Körpertemperaturmessungen mittels Thermovision bei Honigbienen während der Futtersuche und des Tanzens. In International Symposium in Memory of Dr. Franz Saubeer,51–53. Univ. für Bodenkultur, Vienna.Google Scholar
  70. Schmaranzer, S., and A. Stabentheiner. 1988. Variability of the thermal behavior of honeybees on a feeding place. J. Comp. Physiol. B15:135–141Google Scholar
  71. Schmidt-Hempel, P., and T. Wolf. 1988. Foraging effort and life span of workers in a social insect. J. Anim. Ecol. 57:500–521.Google Scholar
  72. Snodgrass, R. E. 1956. Anatomy of the Honey Bee. Ithaca, N.Y.: Comstock Publishing Associates, Cornell University Press.Google Scholar
  73. Sotavalta, O. 1954. On the fuel consumption of the honeybee (Apis mellifica L.) in flight experiments. Ann. Zool. Soc. Vanamo 16:1–27.Google Scholar
  74. Southwick, E. E. 1985. Bee hair structure and the effect of hair on metabolism at cool temperatures. Apic. Res. 24:144–149.Google Scholar
  75. Stabentheiner, A., and S. Schmaranzer. 1986. Thermografie bei Bienen: Körpertemperaturen am Futterplatz und im ‘Bienenbart.“ Verh. Deutsch. Zool. Ges. 79:417–418.Google Scholar
  76. Stabentheiner, A., and S. Schmaranzer. 1987. Thermographic determination of body temperatures in honey bees and hornets: Calibration and applications. Thermology 2: 563–572.Google Scholar
  77. Stabentheiner, A., and S. Schmaranzer. 1988. Flight-related thermobiological investigations of honeybees (Apis mellifera carnica). Biona 6:89–102.Google Scholar
  78. Waddington, K. D. 1990. Foraging profits and thoracic temperature of honey bees (Apis mellifera). J. Comp. Physiol. B160:325–329.Google Scholar
  79. Witherell, P. C. 1971. Duration of flight and of interflight time in drone honey bees, Apis mellifera. Ann. Entomol. Soc. Am. 64:609–612.Google Scholar
  80. Withers, P. C. 1981. The effects of ambient air pressure on oxygen consumption of resting and hovering honeybees. J. Comp. Physiol. 141:433–437.Google Scholar
  81. Wolf, T. J., and P. Schmidt-Hempel. 1989. Extra loads and foraging life span in honeybee workers. J. Anim. Ecol. 58:943–954.CrossRefGoogle Scholar
  82. Wolf, T. J., P. Schmidt-Hempel, C. P. Ellington, and R. D. Stevenson. 1989. Physiological correlates of foraging efforts in honey-bees: Oxygen consumption and nectar load. Func. Ecol. 3:417–424.CrossRefGoogle Scholar
  83. Zander, E. 1911. Der Bau der Biene. Stuttgart: Verlag Eugen Ulmer.Google Scholar

Copyright information

© Bernd Heinrich 1993

Authors and Affiliations

There are no affiliations available

Personalised recommendations