Advertisement

Beetles Large and Small

Chapter

Abstract

TO the ancient Egyptians, scarab beetles were of great religious significance. The pharaohs were placed in their tombs with replicas of the scarab, precisely and uniformly carved according to instructions in the Book of the Dead. These beetles—which build deep underground chambers where their eggs are laid and develop through the larval, white grub stage, until as adults they emerge from the earth as beautiful creatures capable of flight—were symbols of resurrection for the Egyptians, symbols of the continuity of life. For those who understand their habits as dung scavengers, they are also a symbol of, and the central participant in, the continuous cycles of the ecosystem in which they live.

Keywords

Dung Beetle Flight Muscle Carabid Beetle Tiger Beetle Odor Plume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Barnett, P. S., J. J. A. Heffron, and H. R. Hepburn. 1975. Some thermal characteristics of insect flight; enzyme optima versus intra-thoracic temperature. S. Afr. J. Sci. 71:373–374.Google Scholar
  2. Bartholomew, G. A., and T. M. Casey. 1977a. Endothermy during terrestrial activity in large beetles. Science 195:882–883.CrossRefGoogle Scholar
  3. Bartholomew, G. A., and T. M. Casey. 1977b. Body temperature and oxygen consumption during rest and activity in relation to body size in some tropical beetles. J. Therm. Biol. 2:173–176.CrossRefGoogle Scholar
  4. Bartholomew, G. A., and B. Heinrich. 1978. Endothermy in African dung beetles during flight, ball making, and ball rolling. J. Exp. Biol. 73:65–83.Google Scholar
  5. Bartholomew, G. A., J. R. B. Lighton, and G. N. Louw. 1985. Energetics of locomotion and patterns of respiration in tenebrionid beetles from the Namib Desert. J. Comp. Physiol. 155:155–162.Google Scholar
  6. Bolwig, N. 1957. Experiments on the regulation of the body temperature of certain tenebrionid beetles. J. Ent. Soc. S. Afr. 20:454–458.Google Scholar
  7. Buxton, P. A. 1924. Heat, moisture and animal life in deserts. Proc. Roy. Soc. Land. B96:123–131.CrossRefGoogle Scholar
  8. Chappell, M. A. 1984. Thermoregulation and energetics of the green fig beetle (Cotinus texana) during flight and foraging behavior. Physiol. Zool. 57:581–589.Google Scholar
  9. Donaldson, J. M. 1981. Population dynamics of adult cetoniinae Coleoptera: Scarabaeidae) and their relationship to metereological conditions. Phytophylactica 13:11–21.Google Scholar
  10. Dotterweich, H. 1928. Beiträge zur Nervenphysiologie der Insekten. Zool. Jb. Abt. Allg. Zool. Physiol. Tiere 44:399–425.Google Scholar
  11. Dreisig, H. 1980. Daily activity, thermoregulation and water loss in the tiger beetle Cicindela hybrida. Oecologia (Berlin) 44:376–389.Google Scholar
  12. Dreisig, H. 1981. The rate of predation and its temperature dependence in a tiger beetle, Cicindela hybrida. Oikos 36:196–202.CrossRefGoogle Scholar
  13. Dreisig, H. 1990. Thermoregulatory stilting in tiger beetles, Cicindela hybrida L. J. Arid Environ. 19:297–302.Google Scholar
  14. Edney, E. B. 1971. The body temperature of tenebrionid beetles in the Namib Desert of southern Africa. J. Exp. Biol. 55:253–272.Google Scholar
  15. Ellertson, F. E. 1958. Biology of some Oregon rain beetles, Plecoma spp., associated with fruit trees in Wasco and Hood River Counties. Ph.D. thesis, Oregon State University.Google Scholar
  16. Erbeling, L., and W. Paarmann. 1985. Diel activity patterns of the desert carabid beetle Thermophilium (=Anthia) sexmaculatum F. (Coleoptera:Carabidae). J. Arid Environ. 8:141–155.Google Scholar
  17. Erbeling, L., and W. Paarmann. 1986. The role of circannual rhythm of thermoregulation in the control of the reproductive cycle of the desert carabid beetle Thermophilium sexmaculatum F. In Carabid Beetles: Their Adaptations and Dynamics, ed. P. J. den Boer, M. L. Luff, F. Mossakowski, and F. Weber, pp. 125–146. Stuttgart, New York: Gustav Fisher.Google Scholar
  18. Ganeshaiah, K. N., and V. V. Belavadi. 1986. Habitat segregation in four species of adult tiger beetles (Coleoptera: Cicindelidae). Ecol. Entomol. 11:147–154.CrossRefGoogle Scholar
  19. Guppy, M., S. Guppy, and J. Hebrard. 1983. Behaviour of the riverine tiger beetle, Lophyridia dongalensis imperatrix: Effect of water availability on thermoregulatory strategy. Entomol. Exp. Appl. 33:276–282.CrossRefGoogle Scholar
  20. Hadley, N. F. 1971. Micrometerology and energy exchange in two desert arthropods. Ecology 49:726–734.CrossRefGoogle Scholar
  21. Hadley, N. F., T. D. Schultz, and A. Savill. 1988. Spectral reflectances of three tiger beetle subspecies (Neocicindela perhispida): Correlation with habitat substrate. N. Z. J. Zool. 15:343–346.CrossRefGoogle Scholar
  22. Hamilton, W. J., III. 1971. Competition and thermoregulatory behavior of the Namib Desert tenebrionid genus Cardiosis. Ecology 52:810–822.Google Scholar
  23. Hamilton, W. J., III. 1973. Life’s Color Code. New York: McGraw.Google Scholar
  24. Hanski, I., and Y. Cambefort, eds. 1991. Dung Beetle Ecology. Princeton: Princeton University Press.Google Scholar
  25. Heinrich, B. 1974. Thermoregulation in bumblebees. I. Brood incubation by Bombus vosnesenskii queens. J. Comp. Physiol. 88:129–140.CrossRefGoogle Scholar
  26. Heinrich, B., and G. A. Bartholomew. 1979. Roles of endothermy and size in inter-and intraspecific competition for elephant dung in an African dung beetle, Scarabaeus laevistriatus. Physiol. Zool. 52:484–496.Google Scholar
  27. Heinrich, B., and M. J. Heinrich. 1983. Heterothermia in foraging workers and drones of the bumblebee Bombus terricola. Physiol. Zool. 56:563–567.Google Scholar
  28. Heinrich, B., and E. McClain. 1986. “Laziness” and hypothermia as a foraging strategy in flower scarabs (Coleoptera: Scarabaeidae). Physiol. Zool. 59:273–282.Google Scholar
  29. Henwood, K. 1975a. Infrared transmittance as an alternative thermal strategy in the desert beetle Onyymacris plana. Science 189:993–994.Google Scholar
  30. Henwood, K. 1975b. A field-tested thermoregulation model for two diurnal Namib Desert tenebrionid beetles. Ecology 56:1329–1342.CrossRefGoogle Scholar
  31. Hölldobler, B. 1972. Behavioral adaptations of beetles to ecological niches in ant colonies. Verhandlungsbericht Dtsch. Zool. Ges. 65:137–144.Google Scholar
  32. Holm, E., and E. B. Edney. 1973. Daily activity of Namib Desert arthropods in relation to climate. Ecology 54:45–56.CrossRefGoogle Scholar
  33. Kenagy, G. J., and R. D. Stevenson. 1982. Role of body temperature in the seasonality of daily activity in tenebrionid beetles of eastern Washington. Ecology 63:1491–1503.CrossRefGoogle Scholar
  34. Koch, C. 1961. Some aspects of abundant life in the vegetationless sand of the Namib Desert dunes. J. Sw. Afr. Sci. Soc. 15:8–34.Google Scholar
  35. Koch, C. 1962. The tenebrionidae of Southern Africa. XXXI. Comprehensive notes on the tenebrionid fauna of the Namib Desert. Ann. Transv. Mus. 24:61–106.Google Scholar
  36. Krogh, A., and E. Zeuthen. 1941. The mechanism of flight preparation in some insects. J. Exp. Biol. 18:1–10.Google Scholar
  37. Leston, D., J. W. S. Pringle, and D. C. S. White. 1965. Muscular activity during preparation for flight in a beetle. J. Exp. Biol. 42:409–414.Google Scholar
  38. Machin, K. E., J. W. S. Pringle, and M. Tamasige. 1962. The physiology of insect fibrillar muscle. IV. The effect of temperature on a beetle flight muscle. Proc. Roy. Soc. Lend. B155:493–499.CrossRefGoogle Scholar
  39. Marden, J. H. 1987. In pursuit of females: Following and contest behavior by males of a Namib Desert tenebrionid beetle, Physadesmia globosa. Ethology 75:15–24.CrossRefGoogle Scholar
  40. May, M. L., D. L. Pearson, and T. M. Casey. 1986. Oxygen consumption of active and inactive adult tiger beetles. Physiol. Entomol. 11:171–179.CrossRefGoogle Scholar
  41. McClain, E., C. J. Kok, and A. G. Monard. 1991. Reflective wax blooms on black Namib Desert beetles enhance day activity. Naturwissenschaften 78:40–42.CrossRefGoogle Scholar
  42. McClain, E., R. L. Praetorius, S. A. Hanrahan, and M. K. Seeley. 1984a. Dynamics of the wax bloom of a seasonal Namib Desert tenebrionid, Cauricara phalangium (Coleoptera: Adesmiini). Oecologia (Berlin) 63:314–319.Google Scholar
  43. McClain, E., M. J. Savage, and K. Nott. 1984b. Reflectivity of the cuticle of the Namib Desert tenebrionid, Cauricara phalangium,with a wax bloom. S. Afr. J. Sci. 80:183–184.Google Scholar
  44. McClain, E., M. K. Seeley, N. F. Hadley, and V. Gray. 1985. Wax blooms in tenebrionid beetles of the Namib Desert: Correlates with environment. Ecology 66:112–118.CrossRefGoogle Scholar
  45. Morgan, K. R. 1985. Body temperature regulation and terrestrial activity in the ectothermic beetle Cicindela tranquebarica. Physiol. Zool. 58:29–37.Google Scholar
  46. Morgan, K. R. 1987. Temperature regulation, energy metabolism, and matesearching in rain beetles (Plecoma spp.), winter-active, endothermic scarabs (Coleoptera). J. Exp. Biol. 128:107–122.Google Scholar
  47. Morgan, K. R., and G. A. Bartholomew. 1982. Homeothermic response to reduced ambient temperature in a scarab beetle. Science 216:1409–1411.PubMedCrossRefGoogle Scholar
  48. Moser, J. C., and W. A. Thompson. 1986. Temperature thresholds related to flight of Endroctonus frontalis Zimm (Col.: Scolytidae) Agronomie 6:905–910.Google Scholar
  49. Nicolson, S. W. 1987. Absence of endothermy in flightless dung beetles from southern Africa. S. Afr. J. Zool. 22:323–324.Google Scholar
  50. Nicolson, S. W., G. A. Bartholomew, and M. K. Seely. 1984. Ecological correlates of locomotion speed, morphometrics and body temperature in three Namib Desert tenebrionid beetles. S. Afr. J. Zool. 19:131–134.Google Scholar
  51. Nicolson, S. W., and G. N. Louw. 1980. Preflight thermogenesis, conductance and thermoregulation in the Protea beetle, Trichostetha fascicularis (Scarabaeidae: Cetoniinae). S. Afr. J. Sci. 76:124–126.Google Scholar
  52. Oertli, J. J. 1989. Relationship of wing beat frequency and temperature during take-off flight in temperate-zone beetles. J. Exp. Biol. 145:321–338.Google Scholar
  53. Paarmann, W., L. Erbeling, and K. Spinnler. 1986. Ant and ant brood preying larvae: An adaptation of carabid beetles to arid environment. In Carabid Beetles: Their Adaptations and Dynamics,P. J. den Boer, M. L. Luff, F. Mossakowsi, and F. Weber, pp. 79–90. Stuttgart, New York: Gustav Fisher.Google Scholar
  54. Pearson, D. L., and C. B. Knisley. 1985. Evidence for food as a limiting resource in the life cycle of tiger beetles (Coleoptera: Cicindelidae). Oikos 45:161–168.CrossRefGoogle Scholar
  55. Pearson, D. L., and E. J. Mury. 1979. Character divergence and convergence among tiger beetles (Coleoptera: Cicindelidae). Ecology 60:557–566.CrossRefGoogle Scholar
  56. Pearson, D. L., and S. L. Stemberger. 1980. Competition, body size, and the relative energy balance of adult tiger beetles (Coleoptera: Cicindelidae). Am. Midl. Nat. 104:373–377.CrossRefGoogle Scholar
  57. Roberts, C. S., D. Mitchell, M. K. Seeley, and E. L. McClain. 1991. Beetling the heat: The thermal significance of running in O. plana. Unpublished manuscript.Google Scholar
  58. Sato, H., and M. Imamori 1988. Further observations on the nesting behaviour of a subsocial ball-rolling scarab, Kheper aegyptiorum. Kontyû (Tokyo) 56:873–878.Google Scholar
  59. Schneider, P. 1980. Contributions to flight physiology in beetles. 4. Body temperature, flight behavior and wing beat frequency. Zool. Anz. (Jena) 205:1–19.Google Scholar
  60. Schultz, T. D., and N. F. Hadley. 1987a. Microhabitat segregation and physiological differences in co-occurring tiger beetle species, Cicindela oregona and Cicindela tranquebarica. Oecologia (Berlin) 73:363–370.Google Scholar
  61. Schultz, T. D., and N. F. Hadley. 1987b. Structural colors of tiger beetles and their role in heat transfer through the integument. Physiol. Zool. 60:737–745.Google Scholar
  62. Seely, M. K., and D. Mitchell. 1987. Is the subsurface environment of the Namib Desert dunes a thermal haven for chthonic beetles? S. Afr. J. Zool. 22:57–61.Google Scholar
  63. Thiele, H. V. 1977. Carabid Beetles in Their Environments. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
  64. Turner, J. S., and A. T. Lombard. 1990. Body color and body temperature in white and black Namib Desert beetles. J. Arid Environ. 19:303–315.Google Scholar
  65. Wharton, R. A. 1980. Colouration and diurnal activity patterns in some Namib Desert Zophosini (Coleoptera: Tenebrionidae). J. Arid Environ. 3:309–317.Google Scholar
  66. Young, O. R. 1984. Perching of neotropical dung beetles on leaf surfaces: An example of behavioral thermoregulation? Biotropica 16:324–327.CrossRefGoogle Scholar

Copyright information

© Bernd Heinrich 1993

Authors and Affiliations

There are no affiliations available

Personalised recommendations