Skip to main content

Grasshoppers and Other Orthoptera

  • Chapter
The Hot-Blooded Insects
  • 331 Accesses

Abstract

MORE is known about the biology of locusts than possibly any other insects. Our intense interest in the acrididine grasshoppers is due not to some peculiar trait of theirs but to their economic and ecological importance: they compete with mammalian grazers and with humans for grain crops in the world’s temperate grasslands. As Daniel Otte (1984) states: “The impact of most North American species cannot even be roughly estimated, for they have not been studied, but perennially they are rated among the worst insect pests.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Abrams, T. W., and K. G. Pearson. 1982. Effects of temperature on identified central neurons that control jumping in the grasshopper. J. Neurosci. 2:1538–1553.

    PubMed  CAS  Google Scholar 

  • Alcock, J. 1972. Observations on the behaviour of the grasshopper Taeniopoda eques (Burmeister), Orthoptera, Acrididae. Anim. Behay. 20:237–242.

    Article  CAS  Google Scholar 

  • Alexander, G., and J. R. Hilliard, Jr. 1969. Altitudinal and seasonal distribution of Orthoptera in the Rocky Mountains of northern Colorado. Ecol. Monogr. 39:385–431.

    Article  Google Scholar 

  • Alther, H., H. Sass, and I. Alther. 1977. Relationship between structure and function of antennal chemo-, hygro-, and thermoreceptive sensilla in Periplaneta americana. Cell Tissue Res. 176:389–405.

    Google Scholar 

  • Altman, J. S. 1975. Changes in the flight motor pattern during the development of the Australian plague locust, Chortoicetes terminifera. J. Comp. Physiol. 97:127–142.

    Article  Google Scholar 

  • Anderson, R. L., and Mutchmor, J. A. 1968. Temperature acclimation and its influence on the electrical activity of the nervous system in three species of cockroaches. J. Insect Physiol. 15:243–251.

    Article  Google Scholar 

  • Anderson, R. V., C. R. Tracy, and Z. Abramsky. 1979. Habitat selection in two species of short-horned grasshoppers. The role of thermal and hydric stresses. Oecologia 38:359–374.

    Article  Google Scholar 

  • Bailey, L. 1954. The respiratory currents in the tracheal system of the adult honey-bee. J. Exp. Biol. 31:589–593.

    CAS  Google Scholar 

  • Bailey, W. J., R. J. Cunningham, and L. Lebel. 1990. Song power, spectral distribution and female phonotaxis in the bushcricket Requena verticalis (Tettigoniidae: Orthoptera): Active female choice or passive attraction? Anim. Behay. 40:33–42.

    Article  Google Scholar 

  • Bauer, M., and O. von. Helversen. 1987. Separate localization of sound recognizing and sound producing neural mechanisms in a grasshopper. J. Comp. Physiol. A161:95–101.

    Article  Google Scholar 

  • Bentley, D. R., and R. R. Hoy. 1970. Postembryonic development of adult motor patterns in crickets: A neural analysis. Science 170:1409–1411.

    Article  PubMed  CAS  Google Scholar 

  • Bessey, C. A., and E. A. Bessey. 1898. Further notes on thermometer crickets. Am. Nat. 32:263–264.

    Article  Google Scholar 

  • Bodenheimer, R. S. 1929. Studien zur Epidemiologie, Ökologie and Physiologie der afrikanischen Wanderheuschrecke (Schistocerca gregaria Forsk). Z. Angew. Entomol. 15:1–123.

    Google Scholar 

  • Brosemer, R. W., W. Vogell, and T. Bücher. 1963. Morphologische and enzymatische Muster bei der Entwicklung indirekter Flugmuskeln von Locusta migratoria. Biochem. Z. 338:854–910.

    CAS  Google Scholar 

  • Bullock, T. H. 1955. Compensation for temperature in the metabolism and activity of poikilotherms. Biol. Rev. 30:311–342.

    Article  CAS  Google Scholar 

  • Buxton, P. A. 1924. Heat, moisture, and animal life in deserts. Proc. Roy. Soc. Lond. B96:123–131.

    Article  Google Scholar 

  • Calhoun, E. H. 1960. Acclimation to cold in insects. Entomol. Exp. Appl. 3:27–32.

    Article  Google Scholar 

  • Carruthers, R. I., T. S. Larkin, H. Firstencel, and Z. Feng. 1992. Influence of thermal ecology of the mycosis of a rangeland grasshopper. Ecology 73:190–204.

    Article  Google Scholar 

  • Chapman, R R 1965. The behavior of nymphs of Schistocerca gregaria (Farskal) (Orthoptera, Acrididae) in a temperature gradient with special reference to temperature preference. Behaviour 24:283–317.

    Article  Google Scholar 

  • Chappell, M. A. 1983a. Thermal limitations to escape responses in desert grasshoppers. Anim. Behay. 31:1088–1093.

    Article  Google Scholar 

  • Chappell, M. A. 1983b. Metabolism and thermoregulation in desert and montane grasshoppers. Oecologia (Berlin) 56:126–131.

    Google Scholar 

  • Dehnel, P. A., and E. Segal. 1956. Acclimation and oxygen consumption to temperature on the American cockroach (Periplaneta americana). Biol. Bull. (Woods Hole) 111:53–61.

    Article  Google Scholar 

  • Doherty, J. A. 1985. Temperature coupling and “trade-off” phenomena in the acoustic communication system of the cricket, Gryllus bimaculatus De Geer (Gryllidae). J. Exp. Biol. 114:17–35.

    Google Scholar 

  • Dolbear, A. E. 1897. The cricket as a thermometer. Am. Nat. 31:970–971.

    Article  Google Scholar 

  • Edney, E. B., S. Haynes, and D. Gibo. 1974. Distribution and activity of the desert cockroach Arenivaga investigata (Polyphagidae) in relation to microclimate. Ecology 55:420–427.

    Article  Google Scholar 

  • Edwards, G. A., and W. L. Nutting. 1950. The influence of temperature upon the respiration and heart activity of Thermobia and Grylloblatta. Psyche 57:33–44.

    Article  CAS  Google Scholar 

  • Elder, H. Y. 1971. High frequency muscles used in sound production by a katydid. II. Ultrastructure of the singing muscles. Biel. Bull. (Woods Hole) 141:434–448.

    Article  Google Scholar 

  • Ellis, P. E. 1963. An experimental study of feeding, basking, marching and pottering in locust nymphs. Behavior 20:282–310.

    Article  Google Scholar 

  • Farnsworth, E. G. 1972a. Effects of ambient temperature and humidity on internal temperature and wing-beat frequency of Periplaneta americana. J. Insect Physiol. 18:359–371.

    Article  Google Scholar 

  • Farnsworth, E. G. 1972b. Effects of ambient temperature, humidity, and age on wing-beat frequency of Periplaneta species. J. Insect Physiol. 18:827–839.

    Article  Google Scholar 

  • Fraenkel, D. G. 1929. Untersuchungen über Lebensgewohnheiten, Sinnesphysiologie and Sozialpsychologie der wandernden Larven der afrikanischen Wanderheuschrecke Schistocerca gregaria (Forsk). Biol. Zbl. 49:657–680.

    Google Scholar 

  • Farnsworth, E. G. 1930. Die Orientierung von Schistocerca gregaria zu strahlender Wärme. Z. Vergl. Physiol. 13:300–313.

    Article  Google Scholar 

  • Gerhardt, H. C. 1978. Temperature coupling in the vocal communication system of the gray treefrog, Hyla versicolor. Science 199:992–994.

    CAS  Google Scholar 

  • Gillis, J. E., and K. W. Possai. 1983. Thermal niche partitioning in the grasshoppers Arphia conspersa and Trimerotropis suffusa from a montane habitat in central Colorado. Ecol. Entomol. 8:155–161.

    Article  Google Scholar 

  • Goodman, C. S., and W. J. Heitler. 1977. Isogenic locusts and genetic variability in the effects of temperature on neuronal threshold J. Comp. Physiol. 117:183–207.

    Article  Google Scholar 

  • Gunn, D. L. 1934. The temperature and humidity relations of the cockroach (Blatella orientalis). II. Temperature preferences. Z. Vergl. Physiol. 20:617–625.

    Article  Google Scholar 

  • Gunn, D. L. 1942. Body temperature in poikilothennic animals Biol. Rev. 17:293–314.

    Article  Google Scholar 

  • Hadley, N. F., and D. D. Massion. 1985. Oxygen consumption, water loss and cuticular lipids of high vs. low elevation populations of the grasshopper Aeropedellus clavatus (Orthoptera: Acrididae). Comp. Biochem. Physiol. 80A:307–311.

    Article  CAS  Google Scholar 

  • Hamilton, A. G. 1936. The relation of humidity and temperature to the development of three species of African locusts-Locusta migratoria migratorioides (R. and F.), Schistocerca gregaria (Forsk.), Nomadacris septemfasciata (Serv.). Trans. Roy. Entomol. Soc. Land. 85:1–60.

    Article  Google Scholar 

  • Hamilton, A. G. 1950. Further studies on the relation of humidity and temperature to the development of two species of African locusts-Locusta migrata ria migratorioides (R. and F.) and Schistocerca gregaria (Forsk.). Trans. R. Entomol. Soc. Lond. 101:1–58.

    Google Scholar 

  • Hardman, J. M., and M. K. Mukerji. 1982. A model simulating the population dynamics of the grasshoppers (Acrididae) Melanoplus sanguinipes (Fabr.), M. packardii (Scudder) and Camnula pellucida (Scudder). Res. Popul. Ecol. 24:276–301.

    Google Scholar 

  • Harrison, J. M. 1988. Temperature effects on haemolymph acid-base status in vivo and in vitro in the two-striped grasshopper Melanoplus bivittatus. J. Exp. Biol. 140:421–435.

    Google Scholar 

  • Heath, J. E., and R. K. Josephson. 1970. Body temperature and singing in the katydid, Neoconocephalus robustus (Orthoptera, Tettigoniidae). Biol Bull. (Woods Hole) 138:272–285.

    Article  Google Scholar 

  • Heinrich, B. 1975. Thermoregulation and flight energetics of desert insects. In Environmental Physiology of Desert Organisms, ed. N. F. Hadley. Stroudsberg, Penn.: Dowden, Hutchinson and Ross.

    Google Scholar 

  • Heinrich, B. 1980. Mechanisms of body temperature regulation in honeybees, Apis mellifera. II. Regulation of thoracic temperature at high air temperatures. J. Exp. Biol. 85:73–87.

    Google Scholar 

  • Heitler, W. J., C. S. Goodman, and C. H. Frazer-Rowell. 1977. The effects of temperature on the threshold of identified neurons in the locust. J. Comp. Physiol. 117:163–182.

    Article  Google Scholar 

  • Helversen, D. von, and O. von. Helversen. 1981. Korrespondenz zwischen Gesang und auslösendem Schema bei Feldheuschrecken. Nova Acta Leopold. 245:449–462.

    Google Scholar 

  • Herter, K. 1924. Untersuchungen über den Temperatursinn einiger Insekten. Z. Vergl. Physiol. 1:122–188.

    Google Scholar 

  • Hilbert, D. W., and J. A. Logan. 1983. Empirical model of nymphal development for the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). Environ. Entomol. 12:1–5.

    Google Scholar 

  • Janiszewski, J. 1984. The temperature of the head, thorax and abdomen of Periplaneta americana during rest and flight and high ambient temperatures. J. Thermal Biol. 9:177–181.

    Article  Google Scholar 

  • Janiszewski, J. 1985. The effect of head heating on the flight activity of the cockroach. Experientia 41:1199–1200.

    Article  Google Scholar 

  • Janiszewski, J., U. Kosecka-Janiszewska, and D. Otto. 1988. Changes in rate of abdominal ventilatory pumping induced by warming individual ganglia in the male cricket Gryllus bimaculatus (De Geer). J. Therm. Biol. 13:185–188.

    Article  Google Scholar 

  • Janiszewski, J., and D. Otto. 1988. Modulation of activity of identified subesophageal neurons in the cricket Gryllus bimaculatus by local changes in body temperature. J. Comp. Physiol. A162:739–746.

    Article  Google Scholar 

  • Janiszewski, J., D. Otto, and H. U. Kleindienst. 1987. Descending neurons in the cricket’s subesophageal ganglion with activity modulated by localized body cooling. Naturwissenschaften 74:500–501.

    Article  Google Scholar 

  • Jensen, M. 1956. Biology and physics of locust flight. III. The aerodynamics of locust flight. Phil. Trans. Roy. Soc. Lond. B239:511–552.

    Google Scholar 

  • Joern, A. 1982. Importance of behavior and coloration in the control of body temperature by Brachystola magna Girard (Orthoptera: Acrididae). Acrida 10:117–130.

    Google Scholar 

  • Josephson, R. K. 1973. Contraction kinetics of the fast muscles used in singing by a katydid. J. Exp. Biol. 59:781–801.

    Google Scholar 

  • Josephson, R. K. 1985. The mechanical power output of a tettigoniid wing muscle during singing and flight. J. Exp. Biol. 117:357–368.

    Google Scholar 

  • Josephson, R. K., and H. Y. Elder. 1968. Rapidly contracting muscles used in sound production by a katydid. Biol. Bull. (Woods Hole) 135:409.

    Google Scholar 

  • Josephson, R. K., and R. C. Halverson. 1971. High frequency muscles used in sound production by a katydid. I. Organization of the motor system. Biol. Bull. (Woods Hole) 141:411–433.

    Article  Google Scholar 

  • Kammer, A. E., and S. C. Kinnamon. 1979. Maturation of flight motor pattern without movement in Manduca sexta. J. Comp. Physiol. 130:29–37.

    Article  Google Scholar 

  • Kammer, A. E., and M. B. Rheuben. 1976. Adult motor patterns produced by moth pupae during development. J. Exp. Biol. 65:65–84.

    PubMed  CAS  Google Scholar 

  • Kemp, W. P. 1986. Thermoregulation in three rangeland grasshopper species. Can. Entomol. 118:335–342.

    Article  Google Scholar 

  • Kerkut, G. A., and B. J. R. Taylor. 1956. Effect of temperature on the spontaneous activity from the isolated ganglia of the slug, cockroach and crayfish. Nature 178:426.

    Article  PubMed  CAS  Google Scholar 

  • Kerkut, G. A., and B. J. R. Taylor. 1957. A temperature receptor in the tarsus of the cockroach, Periplaneta americana. J. Exp. Biol. 34:486–493.

    Google Scholar 

  • Kerkut, G. A., and B. J. R. Taylor. 1958. The effect of temperature changes on the activity of poikilotherms. Behaviour 13:259–279.

    Article  Google Scholar 

  • Krogh, A., and T. Weis-Fogh. 1951. The respiratory exchange of the desert locust (Schistocerca gregaria) before, during, and after flight. J. Exp. Biol. 28:344–357.

    CAS  Google Scholar 

  • Kutsch, W. 1971. The development of the flight motor pattern in the desert locust, Schistocerca gregaria. Z. Vergl. Physiol. 74:156–168.

    Article  Google Scholar 

  • Kutsch, W. 1973. The influence of age and culture-temperature on the wing-beat frequency of the migratory locust, Locusta migratoria. J. Insect Physiol. 19:763–772.

    Article  Google Scholar 

  • Loftus, R. 1966. Cold receptors in the antenna of Periplaneta americana. Z. Vergl. Physiol. 52:380–385.

    Article  Google Scholar 

  • Loftus, R. 1968. The response of the antennal cold receptors of Periplaneta americana to rapid temperature changes and to steady temperature. Z. Vergl. Physiol. 59:413–455.

    Article  Google Scholar 

  • Loher, W., and G. Wiedenmann. 1981. Temperature-dependent changes in circadian patterns of cricket premating behaviour. Physiol. Entomol. 6:35–43.

    Article  Google Scholar 

  • MacKay, W. P. 1982. An altitudinal comparison of oxygen consumption rates in three species of Pogonomyrmex harvester ants (Hymenoptera: Formicidae). Physiol. Zool. 55:367–377.

    Google Scholar 

  • Mellanby, K. 1939. Low temperature and insect activity. Proc. Roy. Soc. Land. B127:473–485.

    Article  Google Scholar 

  • Miles, C. I. 1985. The effects of behaviorally relevant temperatures on mechanosensory neurons of the grasshopper, Schistocerca americana. J. Exp. Biol. 116:121–139.

    CAS  Google Scholar 

  • Miller, P. L. 1960. Respiration in the desert locust. III. Ventilation and the spiracles during flight. J. Exp. Biol. 37:264–278.

    Google Scholar 

  • Mizisin, A. P., and N. E. Ready. 1986. Growth and development of flight muscle in the locust (Schistocerca nitens, Thünberg). J. Exp. Zool. 237:45–55.

    Article  Google Scholar 

  • Morrisey, R., and J. S. Edwards. 1979. Neural function in an alpine grylloblattid: A comparison with the house cricket, Acheta domesticus. Physiol. Entomol. 4:241–250.

    Article  Google Scholar 

  • Muchmor, J. A., and A. G. Richards 1961. Low temperature tolerance in insects in relation to the influence of temperature on muscle apyrase activity. J. Insect Physiol. 7:141–158.

    Article  Google Scholar 

  • Murphy, B. F. Jr., and J. E. Heath. 1983. Temperature sensitivity in the prothoracic ganglion of the cockroach, Periplaneta americana, and its relationship to thermoregulation. J. Exp. Biol. 105:305–315.

    Google Scholar 

  • Murrish, D. F., and K. Schmidt-Nielsen. 1970. Exhaled air temperature and water conservation in lizards. Respir. Physiol. 10:151–158.

    Article  PubMed  CAS  Google Scholar 

  • Neville, A. C. 1963. Motor unit distribution of the dorsal longitudinal flight muscles in locusts. J. Exp. Biol. 40:123–136.

    Google Scholar 

  • Neville, A. C., and T. Weis-Fogh. 1963. The effect of temperature on locust flight muscle. J. Exp. Biol. 40:111–121.

    Google Scholar 

  • Novicki, A. 1989a. Rapid postembryonic development of a cricket flight muscle. J. Exp. Zool. 250:253–262.

    Article  CAS  Google Scholar 

  • Novicki, A. 1989b. Control of growth and ultrastructural maturation of a cricket flight muscle. J. Exp. Zool. 250:263–272.

    Article  CAS  Google Scholar 

  • Novicki, A., and R. K. Josephson. 1987. Innervation is necessary for the development of fast contraction kinetics of singing muscles in a katydid. J. Exp. Zool. 242:309–315.

    Article  PubMed  CAS  Google Scholar 

  • Otte, D. 1984. The North American Grasshoppers. Vol. 2, Acrididae: Oedipodinae Cambridge, Mass.: Harvard University Press.

    Google Scholar 

  • Parker, J. R. 1930. Some effects of temperature and moisture upon Melanoplus mexicanus mexicanus Saussure and Camnula pellucida Scudder (Orthoptera). Mont. Agric. Exp. Stn. Bull. 223.

    Google Scholar 

  • Parker, M. A. 1982. Thermoregulation by diurnal movement in the barberpole grasshopper (Dactylotum bicolor). Am. Midl. Nat. 107:228–237.

    Article  Google Scholar 

  • Pepper, J. H., and E. Hastings. 1952. The effects of solar radiation on grasshopper temperature and activities. Ecology 33:96–103.

    Article  Google Scholar 

  • Prange, D. H. 1990. Temperature regulation by respiratory evaporation in grasshoppers. J. Exp. Biol. 154:463–474.

    Google Scholar 

  • Putnam, L. G. 1963. The progress of nymphal development in pest grasshoppers (Acrididae) of western Canada. Can. Entomol. 95:1210–1216.

    Article  Google Scholar 

  • Rainey, R. C. 1958. Some observations on flying locusts and atmospheric turbulence in eastern Africa. Q. J. Roy. Met. Soc. 84:334–354.

    Article  Google Scholar 

  • Ready, N. E. 1986. Development of fast singing muscles in a katydid. J. Exp. Zool. 238:43–54.

    Article  CAS  Google Scholar 

  • Rence, B. G., and W. Loher. 1975. Arrhythmically singing crickets: Thermoperiodic re-entrainment after bilobectomy. Science 190:385–387.

    Article  PubMed  CAS  Google Scholar 

  • Roffey, J. 1963. Observations on gliding in the desert locust. Anim. Behay. 15:359–366.

    Article  Google Scholar 

  • Schmidt-Nielsen, K. 1972. How Animals Work. Cambridge. Cambridge University Press.

    Google Scholar 

  • Schwartz, L. M., and J. W. Truman. 1984. Hormonal control of muscle atrophy and degeneration in the moth Antheraea polyphemus. J. Exp. Biol. 111:13–30.

    Google Scholar 

  • Shotwell, R. L. 1941. Life histories and habits of some grasshoppers of economic importance on the great plains Tech. Bull. U.S. Dept. Agric. 774.

    Google Scholar 

  • Skovmand, O., and S. B. Pedersen. 1983. Song recognition and song pattern in a short-horned grasshopper. J. Comp. Physiol. 153:393–401.

    Article  Google Scholar 

  • Stevens, E. D., and R. K. Josephson. 1977. Metabolic rate and body temperature in singing katydids. Physiol. Zool. 50:31–42.

    Google Scholar 

  • Stower, W. J., and J. F. Griffiths. 1966. The body temperature of the desert locust (Schistocerca gregaria). Entomol. Exp. Appl. 9:127–178.

    Article  Google Scholar 

  • Truman, J. W. 1973. Temperature sensitive programming of the silkmoth flight clock: A mechanism for adapting to the seasons. Science 182: 727–729.

    Article  Google Scholar 

  • Walker, T. J. 1957. Specificity in the responses of female tree crickets (Orthoptera, Gryllidae, Oecanthinae) to calling songs of males. Ann. Entomol. Soc. Am. 50:626–636.

    Google Scholar 

  • Walker, T. J. 1962. Factors responsible for intra-specific variation in the calling song of crickets. Evolution 16:407–428.

    Article  Google Scholar 

  • Walker, T. J. 1969a. Systematics and acoustic behavior of United States crickets of the genus Orocharis (Orthoptera: Gryllidae). Ann. Entomol. Soc. Am. 62:752–762.

    Google Scholar 

  • Walker, T. J. 1969b. Systematics and acoustic behavior of United States crickets of the genus Cyrtoxipha (Orthoptera: Gryllidae). Ann. Entomol. Soc. Am. 62:945–952.

    Google Scholar 

  • Walker, T. J. 1975a. Effects of temperature, humidity, and age on stridulatory rates in Atlanticus spp. (Orthoptera: Tettigoniidae: Decticinae). Ann. Entomol. Soc. Am. 68:607–611.

    Google Scholar 

  • Walker, T. J. 1975b. Effects of temperature on rates in poikilotherm nervous systems in evidence for calling songs of meadow crickets (Orthoptera: Tettogoniidae: Orchelimum) and reanalysis of published data. J. Comp. Physiol. 101:57–69.

    Article  Google Scholar 

  • Waloff, Z. 1963. Field studies on solitary and transient desert locusts in the Red Sea area. Anti-Locust Bull. 40:1–93.

    Google Scholar 

  • Walsh, J. 1986. Return of the locust: A cloud over Africa. Science 234:1719.

    Google Scholar 

  • Weis-Fogh, T. 1952. Fat combustion and metabolic rate of flying locusts (Schistocerca gregaria Forskal). Phil. Trans. Roy. Soc. Lond. B237:1–36.

    Google Scholar 

  • Walker, T. J. 1964a. Functional design of the tracheal system of flying insects as compared with the avian lung. J. Exp. Biol. 41:207–227.

    Google Scholar 

  • Walker, T. J. 1964b. Biology and physics of locust flight. VIII. Lift and metabolic rate of flying locusts. J. Exp. Biol. 41:257–271.

    Google Scholar 

  • Walker, T. J. 1967. Respiration and tracheal ventilation in locusts and other flying insects. J. Exp. Biol. 47:561–587.

    Google Scholar 

  • Whitman, D. W. 1986. Developmental thermal requirements for the grasshopper Taeniopoda eques (Orthoptera: Acrididae). Ann. Entomol. Soc. Am. 79:711–714.

    Google Scholar 

  • Whitman, D. W. 1987. Thermoregulation and daily activity patterns in a black desert grasshopper, Taeniopoda eques. Anim. Behay. 35:1814–1826.

    Article  Google Scholar 

  • Whitman, D. W. 1988. Function and evolution of thermoregulation in the desert grasshopper Taeniopoda eques. J. Anim. Ecol. 57:369–383.

    Article  Google Scholar 

  • Whitman, D W., M. S. Blum, and C. G. Jones. 1985. Chemical defense in Taeniopa eques (Orthoptera: Acrididae): Role of the metathoracic secretion. Ann. Entomol. Soc. Am. 78:451–455.

    Google Scholar 

  • Whitman, D. W., and L. Orsak. 1985. Biology of Taeniopoda eques (Orthoptera: Acrididae) in southeastern Arizona. Ann. Entomol. Soc. Am. 78:811–825.

    Google Scholar 

  • Wigglesworth, V. B., and J. D. Gillett. 1934. The function of the antennae in Rhodnius prolixus (Hemiptera) and the mechanism of orientation to the host. J. Exp. Biol. 11:120–139.

    Google Scholar 

  • Wilson, D. M. 1961. The central nervous control of flight in the locust. J. Exp. Biol. 38:471–490.

    Google Scholar 

  • Wilson, D. M. 1968. The nervous control of insect flight and related behavior. Adv. Insect Physiol. 5:289–338.

    Article  Google Scholar 

  • Wilson, D. M., and T. Weis-Fogh. 1962. Patterned activity of co-ordinated motor units, studied in flying locusts. J. Exp. Biol. 39:643–667.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Bernd Heinrich

About this chapter

Cite this chapter

Heinrich, B. (1993). Grasshoppers and Other Orthoptera. In: The Hot-Blooded Insects. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10340-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10340-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10342-5

  • Online ISBN: 978-3-662-10340-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics