Grasshoppers and Other Orthoptera



MORE is known about the biology of locusts than possibly any other insects. Our intense interest in the acrididine grasshoppers is due not to some peculiar trait of theirs but to their economic and ecological importance: they compete with mammalian grazers and with humans for grain crops in the world’s temperate grasslands. As Daniel Otte (1984) states: “The impact of most North American species cannot even be roughly estimated, for they have not been studied, but perennially they are rated among the worst insect pests.”


Flight Muscle Temperature Preference Temperature Excess Chirp Rate Blinded Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, T. W., and K. G. Pearson. 1982. Effects of temperature on identified central neurons that control jumping in the grasshopper. J. Neurosci. 2:1538–1553.PubMedGoogle Scholar
  2. Alcock, J. 1972. Observations on the behaviour of the grasshopper Taeniopoda eques (Burmeister), Orthoptera, Acrididae. Anim. Behay. 20:237–242.CrossRefGoogle Scholar
  3. Alexander, G., and J. R. Hilliard, Jr. 1969. Altitudinal and seasonal distribution of Orthoptera in the Rocky Mountains of northern Colorado. Ecol. Monogr. 39:385–431.CrossRefGoogle Scholar
  4. Alther, H., H. Sass, and I. Alther. 1977. Relationship between structure and function of antennal chemo-, hygro-, and thermoreceptive sensilla in Periplaneta americana. Cell Tissue Res. 176:389–405.Google Scholar
  5. Altman, J. S. 1975. Changes in the flight motor pattern during the development of the Australian plague locust, Chortoicetes terminifera. J. Comp. Physiol. 97:127–142.CrossRefGoogle Scholar
  6. Anderson, R. L., and Mutchmor, J. A. 1968. Temperature acclimation and its influence on the electrical activity of the nervous system in three species of cockroaches. J. Insect Physiol. 15:243–251.CrossRefGoogle Scholar
  7. Anderson, R. V., C. R. Tracy, and Z. Abramsky. 1979. Habitat selection in two species of short-horned grasshoppers. The role of thermal and hydric stresses. Oecologia 38:359–374.CrossRefGoogle Scholar
  8. Bailey, L. 1954. The respiratory currents in the tracheal system of the adult honey-bee. J. Exp. Biol. 31:589–593.Google Scholar
  9. Bailey, W. J., R. J. Cunningham, and L. Lebel. 1990. Song power, spectral distribution and female phonotaxis in the bushcricket Requena verticalis (Tettigoniidae: Orthoptera): Active female choice or passive attraction? Anim. Behay. 40:33–42.CrossRefGoogle Scholar
  10. Bauer, M., and O. von. Helversen. 1987. Separate localization of sound recognizing and sound producing neural mechanisms in a grasshopper. J. Comp. Physiol. A161:95–101.CrossRefGoogle Scholar
  11. Bentley, D. R., and R. R. Hoy. 1970. Postembryonic development of adult motor patterns in crickets: A neural analysis. Science 170:1409–1411.PubMedCrossRefGoogle Scholar
  12. Bessey, C. A., and E. A. Bessey. 1898. Further notes on thermometer crickets. Am. Nat. 32:263–264.CrossRefGoogle Scholar
  13. Bodenheimer, R. S. 1929. Studien zur Epidemiologie, Ökologie and Physiologie der afrikanischen Wanderheuschrecke (Schistocerca gregaria Forsk). Z. Angew. Entomol. 15:1–123.Google Scholar
  14. Brosemer, R. W., W. Vogell, and T. Bücher. 1963. Morphologische and enzymatische Muster bei der Entwicklung indirekter Flugmuskeln von Locusta migratoria. Biochem. Z. 338:854–910.Google Scholar
  15. Bullock, T. H. 1955. Compensation for temperature in the metabolism and activity of poikilotherms. Biol. Rev. 30:311–342.CrossRefGoogle Scholar
  16. Buxton, P. A. 1924. Heat, moisture, and animal life in deserts. Proc. Roy. Soc. Lond. B96:123–131.CrossRefGoogle Scholar
  17. Calhoun, E. H. 1960. Acclimation to cold in insects. Entomol. Exp. Appl. 3:27–32.CrossRefGoogle Scholar
  18. Carruthers, R. I., T. S. Larkin, H. Firstencel, and Z. Feng. 1992. Influence of thermal ecology of the mycosis of a rangeland grasshopper. Ecology 73:190–204.CrossRefGoogle Scholar
  19. Chapman, R R 1965. The behavior of nymphs of Schistocerca gregaria (Farskal) (Orthoptera, Acrididae) in a temperature gradient with special reference to temperature preference. Behaviour 24:283–317.CrossRefGoogle Scholar
  20. Chappell, M. A. 1983a. Thermal limitations to escape responses in desert grasshoppers. Anim. Behay. 31:1088–1093.CrossRefGoogle Scholar
  21. Chappell, M. A. 1983b. Metabolism and thermoregulation in desert and montane grasshoppers. Oecologia (Berlin) 56:126–131.Google Scholar
  22. Dehnel, P. A., and E. Segal. 1956. Acclimation and oxygen consumption to temperature on the American cockroach (Periplaneta americana). Biol. Bull. (Woods Hole) 111:53–61.CrossRefGoogle Scholar
  23. Doherty, J. A. 1985. Temperature coupling and “trade-off” phenomena in the acoustic communication system of the cricket, Gryllus bimaculatus De Geer (Gryllidae). J. Exp. Biol. 114:17–35.Google Scholar
  24. Dolbear, A. E. 1897. The cricket as a thermometer. Am. Nat. 31:970–971.CrossRefGoogle Scholar
  25. Edney, E. B., S. Haynes, and D. Gibo. 1974. Distribution and activity of the desert cockroach Arenivaga investigata (Polyphagidae) in relation to microclimate. Ecology 55:420–427.CrossRefGoogle Scholar
  26. Edwards, G. A., and W. L. Nutting. 1950. The influence of temperature upon the respiration and heart activity of Thermobia and Grylloblatta. Psyche 57:33–44.CrossRefGoogle Scholar
  27. Elder, H. Y. 1971. High frequency muscles used in sound production by a katydid. II. Ultrastructure of the singing muscles. Biel. Bull. (Woods Hole) 141:434–448.CrossRefGoogle Scholar
  28. Ellis, P. E. 1963. An experimental study of feeding, basking, marching and pottering in locust nymphs. Behavior 20:282–310.CrossRefGoogle Scholar
  29. Farnsworth, E. G. 1972a. Effects of ambient temperature and humidity on internal temperature and wing-beat frequency of Periplaneta americana. J. Insect Physiol. 18:359–371.CrossRefGoogle Scholar
  30. Farnsworth, E. G. 1972b. Effects of ambient temperature, humidity, and age on wing-beat frequency of Periplaneta species. J. Insect Physiol. 18:827–839.CrossRefGoogle Scholar
  31. Fraenkel, D. G. 1929. Untersuchungen über Lebensgewohnheiten, Sinnesphysiologie and Sozialpsychologie der wandernden Larven der afrikanischen Wanderheuschrecke Schistocerca gregaria (Forsk). Biol. Zbl. 49:657–680.Google Scholar
  32. Farnsworth, E. G. 1930. Die Orientierung von Schistocerca gregaria zu strahlender Wärme. Z. Vergl. Physiol. 13:300–313.CrossRefGoogle Scholar
  33. Gerhardt, H. C. 1978. Temperature coupling in the vocal communication system of the gray treefrog, Hyla versicolor. Science 199:992–994.Google Scholar
  34. Gillis, J. E., and K. W. Possai. 1983. Thermal niche partitioning in the grasshoppers Arphia conspersa and Trimerotropis suffusa from a montane habitat in central Colorado. Ecol. Entomol. 8:155–161.CrossRefGoogle Scholar
  35. Goodman, C. S., and W. J. Heitler. 1977. Isogenic locusts and genetic variability in the effects of temperature on neuronal threshold J. Comp. Physiol. 117:183–207.CrossRefGoogle Scholar
  36. Gunn, D. L. 1934. The temperature and humidity relations of the cockroach (Blatella orientalis). II. Temperature preferences. Z. Vergl. Physiol. 20:617–625.CrossRefGoogle Scholar
  37. Gunn, D. L. 1942. Body temperature in poikilothennic animals Biol. Rev. 17:293–314.CrossRefGoogle Scholar
  38. Hadley, N. F., and D. D. Massion. 1985. Oxygen consumption, water loss and cuticular lipids of high vs. low elevation populations of the grasshopper Aeropedellus clavatus (Orthoptera: Acrididae). Comp. Biochem. Physiol. 80A:307–311.CrossRefGoogle Scholar
  39. Hamilton, A. G. 1936. The relation of humidity and temperature to the development of three species of African locusts-Locusta migratoria migratorioides (R. and F.), Schistocerca gregaria (Forsk.), Nomadacris septemfasciata (Serv.). Trans. Roy. Entomol. Soc. Land. 85:1–60.CrossRefGoogle Scholar
  40. Hamilton, A. G. 1950. Further studies on the relation of humidity and temperature to the development of two species of African locusts-Locusta migrata ria migratorioides (R. and F.) and Schistocerca gregaria (Forsk.). Trans. R. Entomol. Soc. Lond. 101:1–58.Google Scholar
  41. Hardman, J. M., and M. K. Mukerji. 1982. A model simulating the population dynamics of the grasshoppers (Acrididae) Melanoplus sanguinipes (Fabr.), M. packardii (Scudder) and Camnula pellucida (Scudder). Res. Popul. Ecol. 24:276–301.Google Scholar
  42. Harrison, J. M. 1988. Temperature effects on haemolymph acid-base status in vivo and in vitro in the two-striped grasshopper Melanoplus bivittatus. J. Exp. Biol. 140:421–435.Google Scholar
  43. Heath, J. E., and R. K. Josephson. 1970. Body temperature and singing in the katydid, Neoconocephalus robustus (Orthoptera, Tettigoniidae). Biol Bull. (Woods Hole) 138:272–285.CrossRefGoogle Scholar
  44. Heinrich, B. 1975. Thermoregulation and flight energetics of desert insects. In Environmental Physiology of Desert Organisms, ed. N. F. Hadley. Stroudsberg, Penn.: Dowden, Hutchinson and Ross.Google Scholar
  45. Heinrich, B. 1980. Mechanisms of body temperature regulation in honeybees, Apis mellifera. II. Regulation of thoracic temperature at high air temperatures. J. Exp. Biol. 85:73–87.Google Scholar
  46. Heitler, W. J., C. S. Goodman, and C. H. Frazer-Rowell. 1977. The effects of temperature on the threshold of identified neurons in the locust. J. Comp. Physiol. 117:163–182.CrossRefGoogle Scholar
  47. Helversen, D. von, and O. von. Helversen. 1981. Korrespondenz zwischen Gesang und auslösendem Schema bei Feldheuschrecken. Nova Acta Leopold. 245:449–462.Google Scholar
  48. Herter, K. 1924. Untersuchungen über den Temperatursinn einiger Insekten. Z. Vergl. Physiol. 1:122–188.Google Scholar
  49. Hilbert, D. W., and J. A. Logan. 1983. Empirical model of nymphal development for the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). Environ. Entomol. 12:1–5.Google Scholar
  50. Janiszewski, J. 1984. The temperature of the head, thorax and abdomen of Periplaneta americana during rest and flight and high ambient temperatures. J. Thermal Biol. 9:177–181.CrossRefGoogle Scholar
  51. Janiszewski, J. 1985. The effect of head heating on the flight activity of the cockroach. Experientia 41:1199–1200.CrossRefGoogle Scholar
  52. Janiszewski, J., U. Kosecka-Janiszewska, and D. Otto. 1988. Changes in rate of abdominal ventilatory pumping induced by warming individual ganglia in the male cricket Gryllus bimaculatus (De Geer). J. Therm. Biol. 13:185–188.CrossRefGoogle Scholar
  53. Janiszewski, J., and D. Otto. 1988. Modulation of activity of identified subesophageal neurons in the cricket Gryllus bimaculatus by local changes in body temperature. J. Comp. Physiol. A162:739–746.CrossRefGoogle Scholar
  54. Janiszewski, J., D. Otto, and H. U. Kleindienst. 1987. Descending neurons in the cricket’s subesophageal ganglion with activity modulated by localized body cooling. Naturwissenschaften 74:500–501.CrossRefGoogle Scholar
  55. Jensen, M. 1956. Biology and physics of locust flight. III. The aerodynamics of locust flight. Phil. Trans. Roy. Soc. Lond. B239:511–552.Google Scholar
  56. Joern, A. 1982. Importance of behavior and coloration in the control of body temperature by Brachystola magna Girard (Orthoptera: Acrididae). Acrida 10:117–130.Google Scholar
  57. Josephson, R. K. 1973. Contraction kinetics of the fast muscles used in singing by a katydid. J. Exp. Biol. 59:781–801.Google Scholar
  58. Josephson, R. K. 1985. The mechanical power output of a tettigoniid wing muscle during singing and flight. J. Exp. Biol. 117:357–368.Google Scholar
  59. Josephson, R. K., and H. Y. Elder. 1968. Rapidly contracting muscles used in sound production by a katydid. Biol. Bull. (Woods Hole) 135:409.Google Scholar
  60. Josephson, R. K., and R. C. Halverson. 1971. High frequency muscles used in sound production by a katydid. I. Organization of the motor system. Biol. Bull. (Woods Hole) 141:411–433.CrossRefGoogle Scholar
  61. Kammer, A. E., and S. C. Kinnamon. 1979. Maturation of flight motor pattern without movement in Manduca sexta. J. Comp. Physiol. 130:29–37.CrossRefGoogle Scholar
  62. Kammer, A. E., and M. B. Rheuben. 1976. Adult motor patterns produced by moth pupae during development. J. Exp. Biol. 65:65–84.PubMedGoogle Scholar
  63. Kemp, W. P. 1986. Thermoregulation in three rangeland grasshopper species. Can. Entomol. 118:335–342.CrossRefGoogle Scholar
  64. Kerkut, G. A., and B. J. R. Taylor. 1956. Effect of temperature on the spontaneous activity from the isolated ganglia of the slug, cockroach and crayfish. Nature 178:426.PubMedCrossRefGoogle Scholar
  65. Kerkut, G. A., and B. J. R. Taylor. 1957. A temperature receptor in the tarsus of the cockroach, Periplaneta americana. J. Exp. Biol. 34:486–493.Google Scholar
  66. Kerkut, G. A., and B. J. R. Taylor. 1958. The effect of temperature changes on the activity of poikilotherms. Behaviour 13:259–279.CrossRefGoogle Scholar
  67. Krogh, A., and T. Weis-Fogh. 1951. The respiratory exchange of the desert locust (Schistocerca gregaria) before, during, and after flight. J. Exp. Biol. 28:344–357.Google Scholar
  68. Kutsch, W. 1971. The development of the flight motor pattern in the desert locust, Schistocerca gregaria. Z. Vergl. Physiol. 74:156–168.CrossRefGoogle Scholar
  69. Kutsch, W. 1973. The influence of age and culture-temperature on the wing-beat frequency of the migratory locust, Locusta migratoria. J. Insect Physiol. 19:763–772.CrossRefGoogle Scholar
  70. Loftus, R. 1966. Cold receptors in the antenna of Periplaneta americana. Z. Vergl. Physiol. 52:380–385.CrossRefGoogle Scholar
  71. Loftus, R. 1968. The response of the antennal cold receptors of Periplaneta americana to rapid temperature changes and to steady temperature. Z. Vergl. Physiol. 59:413–455.CrossRefGoogle Scholar
  72. Loher, W., and G. Wiedenmann. 1981. Temperature-dependent changes in circadian patterns of cricket premating behaviour. Physiol. Entomol. 6:35–43.CrossRefGoogle Scholar
  73. MacKay, W. P. 1982. An altitudinal comparison of oxygen consumption rates in three species of Pogonomyrmex harvester ants (Hymenoptera: Formicidae). Physiol. Zool. 55:367–377.Google Scholar
  74. Mellanby, K. 1939. Low temperature and insect activity. Proc. Roy. Soc. Land. B127:473–485.CrossRefGoogle Scholar
  75. Miles, C. I. 1985. The effects of behaviorally relevant temperatures on mechanosensory neurons of the grasshopper, Schistocerca americana. J. Exp. Biol. 116:121–139.Google Scholar
  76. Miller, P. L. 1960. Respiration in the desert locust. III. Ventilation and the spiracles during flight. J. Exp. Biol. 37:264–278.Google Scholar
  77. Mizisin, A. P., and N. E. Ready. 1986. Growth and development of flight muscle in the locust (Schistocerca nitens, Thünberg). J. Exp. Zool. 237:45–55.CrossRefGoogle Scholar
  78. Morrisey, R., and J. S. Edwards. 1979. Neural function in an alpine grylloblattid: A comparison with the house cricket, Acheta domesticus. Physiol. Entomol. 4:241–250.CrossRefGoogle Scholar
  79. Muchmor, J. A., and A. G. Richards 1961. Low temperature tolerance in insects in relation to the influence of temperature on muscle apyrase activity. J. Insect Physiol. 7:141–158.CrossRefGoogle Scholar
  80. Murphy, B. F. Jr., and J. E. Heath. 1983. Temperature sensitivity in the prothoracic ganglion of the cockroach, Periplaneta americana, and its relationship to thermoregulation. J. Exp. Biol. 105:305–315.Google Scholar
  81. Murrish, D. F., and K. Schmidt-Nielsen. 1970. Exhaled air temperature and water conservation in lizards. Respir. Physiol. 10:151–158.PubMedCrossRefGoogle Scholar
  82. Neville, A. C. 1963. Motor unit distribution of the dorsal longitudinal flight muscles in locusts. J. Exp. Biol. 40:123–136.Google Scholar
  83. Neville, A. C., and T. Weis-Fogh. 1963. The effect of temperature on locust flight muscle. J. Exp. Biol. 40:111–121.Google Scholar
  84. Novicki, A. 1989a. Rapid postembryonic development of a cricket flight muscle. J. Exp. Zool. 250:253–262.CrossRefGoogle Scholar
  85. Novicki, A. 1989b. Control of growth and ultrastructural maturation of a cricket flight muscle. J. Exp. Zool. 250:263–272.CrossRefGoogle Scholar
  86. Novicki, A., and R. K. Josephson. 1987. Innervation is necessary for the development of fast contraction kinetics of singing muscles in a katydid. J. Exp. Zool. 242:309–315.PubMedCrossRefGoogle Scholar
  87. Otte, D. 1984. The North American Grasshoppers. Vol. 2, Acrididae: Oedipodinae Cambridge, Mass.: Harvard University Press.Google Scholar
  88. Parker, J. R. 1930. Some effects of temperature and moisture upon Melanoplus mexicanus mexicanus Saussure and Camnula pellucida Scudder (Orthoptera). Mont. Agric. Exp. Stn. Bull. 223.Google Scholar
  89. Parker, M. A. 1982. Thermoregulation by diurnal movement in the barberpole grasshopper (Dactylotum bicolor). Am. Midl. Nat. 107:228–237.CrossRefGoogle Scholar
  90. Pepper, J. H., and E. Hastings. 1952. The effects of solar radiation on grasshopper temperature and activities. Ecology 33:96–103.CrossRefGoogle Scholar
  91. Prange, D. H. 1990. Temperature regulation by respiratory evaporation in grasshoppers. J. Exp. Biol. 154:463–474.Google Scholar
  92. Putnam, L. G. 1963. The progress of nymphal development in pest grasshoppers (Acrididae) of western Canada. Can. Entomol. 95:1210–1216.CrossRefGoogle Scholar
  93. Rainey, R. C. 1958. Some observations on flying locusts and atmospheric turbulence in eastern Africa. Q. J. Roy. Met. Soc. 84:334–354.CrossRefGoogle Scholar
  94. Ready, N. E. 1986. Development of fast singing muscles in a katydid. J. Exp. Zool. 238:43–54.CrossRefGoogle Scholar
  95. Rence, B. G., and W. Loher. 1975. Arrhythmically singing crickets: Thermoperiodic re-entrainment after bilobectomy. Science 190:385–387.PubMedCrossRefGoogle Scholar
  96. Roffey, J. 1963. Observations on gliding in the desert locust. Anim. Behay. 15:359–366.CrossRefGoogle Scholar
  97. Schmidt-Nielsen, K. 1972. How Animals Work. Cambridge. Cambridge University Press.Google Scholar
  98. Schwartz, L. M., and J. W. Truman. 1984. Hormonal control of muscle atrophy and degeneration in the moth Antheraea polyphemus. J. Exp. Biol. 111:13–30.Google Scholar
  99. Shotwell, R. L. 1941. Life histories and habits of some grasshoppers of economic importance on the great plains Tech. Bull. U.S. Dept. Agric. 774.Google Scholar
  100. Skovmand, O., and S. B. Pedersen. 1983. Song recognition and song pattern in a short-horned grasshopper. J. Comp. Physiol. 153:393–401.CrossRefGoogle Scholar
  101. Stevens, E. D., and R. K. Josephson. 1977. Metabolic rate and body temperature in singing katydids. Physiol. Zool. 50:31–42.Google Scholar
  102. Stower, W. J., and J. F. Griffiths. 1966. The body temperature of the desert locust (Schistocerca gregaria). Entomol. Exp. Appl. 9:127–178.CrossRefGoogle Scholar
  103. Truman, J. W. 1973. Temperature sensitive programming of the silkmoth flight clock: A mechanism for adapting to the seasons. Science 182: 727–729.CrossRefGoogle Scholar
  104. Walker, T. J. 1957. Specificity in the responses of female tree crickets (Orthoptera, Gryllidae, Oecanthinae) to calling songs of males. Ann. Entomol. Soc. Am. 50:626–636.Google Scholar
  105. Walker, T. J. 1962. Factors responsible for intra-specific variation in the calling song of crickets. Evolution 16:407–428.CrossRefGoogle Scholar
  106. Walker, T. J. 1969a. Systematics and acoustic behavior of United States crickets of the genus Orocharis (Orthoptera: Gryllidae). Ann. Entomol. Soc. Am. 62:752–762.Google Scholar
  107. Walker, T. J. 1969b. Systematics and acoustic behavior of United States crickets of the genus Cyrtoxipha (Orthoptera: Gryllidae). Ann. Entomol. Soc. Am. 62:945–952.Google Scholar
  108. Walker, T. J. 1975a. Effects of temperature, humidity, and age on stridulatory rates in Atlanticus spp. (Orthoptera: Tettigoniidae: Decticinae). Ann. Entomol. Soc. Am. 68:607–611.Google Scholar
  109. Walker, T. J. 1975b. Effects of temperature on rates in poikilotherm nervous systems in evidence for calling songs of meadow crickets (Orthoptera: Tettogoniidae: Orchelimum) and reanalysis of published data. J. Comp. Physiol. 101:57–69.CrossRefGoogle Scholar
  110. Waloff, Z. 1963. Field studies on solitary and transient desert locusts in the Red Sea area. Anti-Locust Bull. 40:1–93.Google Scholar
  111. Walsh, J. 1986. Return of the locust: A cloud over Africa. Science 234:1719.Google Scholar
  112. Weis-Fogh, T. 1952. Fat combustion and metabolic rate of flying locusts (Schistocerca gregaria Forskal). Phil. Trans. Roy. Soc. Lond. B237:1–36.Google Scholar
  113. Walker, T. J. 1964a. Functional design of the tracheal system of flying insects as compared with the avian lung. J. Exp. Biol. 41:207–227.Google Scholar
  114. Walker, T. J. 1964b. Biology and physics of locust flight. VIII. Lift and metabolic rate of flying locusts. J. Exp. Biol. 41:257–271.Google Scholar
  115. Walker, T. J. 1967. Respiration and tracheal ventilation in locusts and other flying insects. J. Exp. Biol. 47:561–587.Google Scholar
  116. Whitman, D. W. 1986. Developmental thermal requirements for the grasshopper Taeniopoda eques (Orthoptera: Acrididae). Ann. Entomol. Soc. Am. 79:711–714.Google Scholar
  117. Whitman, D. W. 1987. Thermoregulation and daily activity patterns in a black desert grasshopper, Taeniopoda eques. Anim. Behay. 35:1814–1826.CrossRefGoogle Scholar
  118. Whitman, D. W. 1988. Function and evolution of thermoregulation in the desert grasshopper Taeniopoda eques. J. Anim. Ecol. 57:369–383.CrossRefGoogle Scholar
  119. Whitman, D W., M. S. Blum, and C. G. Jones. 1985. Chemical defense in Taeniopa eques (Orthoptera: Acrididae): Role of the metathoracic secretion. Ann. Entomol. Soc. Am. 78:451–455.Google Scholar
  120. Whitman, D. W., and L. Orsak. 1985. Biology of Taeniopoda eques (Orthoptera: Acrididae) in southeastern Arizona. Ann. Entomol. Soc. Am. 78:811–825.Google Scholar
  121. Wigglesworth, V. B., and J. D. Gillett. 1934. The function of the antennae in Rhodnius prolixus (Hemiptera) and the mechanism of orientation to the host. J. Exp. Biol. 11:120–139.Google Scholar
  122. Wilson, D. M. 1961. The central nervous control of flight in the locust. J. Exp. Biol. 38:471–490.Google Scholar
  123. Wilson, D. M. 1968. The nervous control of insect flight and related behavior. Adv. Insect Physiol. 5:289–338.CrossRefGoogle Scholar
  124. Wilson, D. M., and T. Weis-Fogh. 1962. Patterned activity of co-ordinated motor units, studied in flying locusts. J. Exp. Biol. 39:643–667.Google Scholar

Copyright information

© Bernd Heinrich 1993

Authors and Affiliations

There are no affiliations available

Personalised recommendations