Advertisement

Dragonflies Now and Then

Chapter
  • 233 Downloads

Abstract

IT IS difficult to look at a dragonfly today without being reminded of one of those paintings we’ve all seen of a prehistoric swamp scene, with a giant dragonfly soaring among lush cycads and perhaps an amphibian in the corner pulling itself up from the water onto land. With a wingspread of 70 cm (Wootton, 1981), one of those giant dragonflies (Meganeura monyi) that lived in the Permian or Caboniferous coal swamps of some 300 or 400 million years ago may or may not appear to us to be a scaled-up version of a present-day dragonfly. From considerations of insects in general, however, and from extrapolations of thermoregulation in dragonflies as a function of size in particular as reviewed in this chapter, it is almost certain that this winged monster was not only endothermic but also a good thermoregulator, as are many of its smaller cousins today. Insects were likely the first forms of life to have physiological mechanisms of thermoregulation, by at least 50 million years before the dinosaurs.

Keywords

Flight Muscle Flight Speed Temperature Excess Convective Cool Wing Loading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakker, R. T. 1972. Anatomical and ecological evidence of endothermy in dinosaurs. Nature 238:81–85.CrossRefGoogle Scholar
  2. Bennett, A. F., R. B. Huey, H. John-Alder, and K. A. Nagy. 1984. The parasol tail and thermoregulatory behavior of the Cape ground squirrel Xerus inauris. Physiol. Zool. 57:57–62.Google Scholar
  3. Brogniart. C. 1894. Recherches pour servir â l’histoire des insects fossiles des temps primaries. Thèse Fac. Sci. Paris, no. 821, pp. 1–494.Google Scholar
  4. Carpenter, F. M. 1943. Studies on Carboniferous insects from Commentry, France; Part I. Introduction and families Protagriidae, Meganeuridae, and Campylopteridae. Bull. Geol. Soc. Am. 54:537–554.Google Scholar
  5. Carpenter, F. M. 1947. Lower Permian insects from Oklahoma. Part I. Introduction and the orders Megasecoptera, Protodonata, and Odonata. Proc. Am. Acad. Arts Sci. 76:25–54.CrossRefGoogle Scholar
  6. Chappell, M. A., and G. A. Bartholomew. 1981. Standard operative temperatures and thermal energetics of the antelope ground squirrel Ammospermophilus leucurus. Physiol. Zool. 54:81–93.Google Scholar
  7. Church, N. S. 1960. Heat loss and body temperature of flying insects. II. Heat conduction within the body and its loss by radiation and convection. J. Exp. Biol. 37:186–212.Google Scholar
  8. Corbet, P. S. 1963. A Biology of Dragonflies. Chicago: Quadrangle.Google Scholar
  9. Hankin, E. H. 1921. The soaring flight of dragonflies. Proc. Camb. Phil. Soc. Biol. Sci. 20:460–465.Google Scholar
  10. Heinrich, B. 1976. Heat exchange in relation to blood flow between thorax and abdomen in bumblebees. J. Exp. Biol. 64:561–585.PubMedGoogle Scholar
  11. Heinrich, B. 1977. Why have some animals evolved to regulate a high body temperature? Am. Nat. 111:62 3–640.Google Scholar
  12. Heinrich, B. 1981. Ecological and evolutionary perspectives. In Insect Thermoregulation, ed. B. Heinrich, pp. 235–302. New York: Wiley.Google Scholar
  13. Heinrich, B., and T. M. Casey. 1978. Heat transfer in dragonflies: “Fliers” and “perchers.” J. Exp. Biol. 74:17–36.Google Scholar
  14. Jurzitza, G. 1967. Über einen reversiblen temperaturabhängigen Farbwechsel bei Anax imperatur Leach (Odonata: Aeschnidae). Deut. Entomol. Z. (N.F.) 14:387–389.Google Scholar
  15. Kammer, A. E. 1970. A comparative study of motor patterns during preflight warm-up in hawkmoths. Z. Vergl. Physiol. 70:45–56.CrossRefGoogle Scholar
  16. Kukalova-Peck, J. 1978. Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record. J. Morphol. 156:53–126.CrossRefGoogle Scholar
  17. Marden, J. H. 1989. Bodybuilding dragonflies: Costs and benefits of maximizing flight muscle. Physiol. Zool. 62:505–521.Google Scholar
  18. May, M. 1976a. Thermoregulation and adaptation to temperature in dragonflies (Odonata:Anisoptera). Ecol. Monogr. 46:1–32.CrossRefGoogle Scholar
  19. May, M. 1976b. Physiological color change in New World damselfies (Zygoptera). Odonatologica 5:165–171.Google Scholar
  20. May, M. 1976c. Warming rates as a function of body size in periodic endotherms. J. Comp. Physiol. 111:55–70.Google Scholar
  21. May, M. 1977. Thermoregulation and reproductive activity in tropical dragonflies of the genus Micrathyria. Ecology 58:787–798.CrossRefGoogle Scholar
  22. May, M. 1978. Thermal adaptations of dragonflies. Odonatologica 7:27–47.Google Scholar
  23. May, M. 1979. Energy metabolism of dragonflies (Odonata: Anisoptera) at rest and during endothermic warm-up. J. Exp. Biol. 83:79–94.Google Scholar
  24. May, M. 198la. Allometric analysis of body and wing dimensions of male Anisoptera. Odonatologica 10:279–291.Google Scholar
  25. May, M. 198lb. Wingstroke frequency of dragonflies (Odonata: Anisoptera) in relation of temperature and body size. J. Comp. Physiol. 144:229–240.Google Scholar
  26. May, M. 1982. Heat exchange and endothermy in Protodonata. Evolution 36:1051–1058.CrossRefGoogle Scholar
  27. May, M. 1986. A preliminary investigation of variation in temperature among body regions of Anax junius (Drury) (Anisoptera: Aeshnidae). Odonatologica 15:119–128.Google Scholar
  28. May, M. 1987. Body temperature regulation and responses to temperature by male Tetragoneuria cynosura (Anisoptera: Corduliidae). Adv. Odonatol. 3:103–119.Google Scholar
  29. May, M. 1990. Thermal adaptations of dragonflies revisited. Adv. Odonatol. 5:71–88.Google Scholar
  30. McVey, M. E. 1984. Egg release rates with temperature and body size in libellulid dragonflies (Anisoptera). Odonatologica 13:377–385.Google Scholar
  31. Miller, P. L. 1962. Spiracle control in adult dragonflies (Odonata). J. Exp. Biol. 39:513–535.Google Scholar
  32. Morgan, K. R., T. S. Shelly, and L. S. Kimsey. 1985. Body temperature regulation, energy metabolism, and foraging in light-seeking and shade-seeking robber flies. J. Comp. Physiol. B155:561–570.Google Scholar
  33. O’Farrell, A. F. 1963. Temperature-controlled physiological colour change in some Australian damsel flies (Odonata-Zygoptera). Austr. J. Sci. 25:437–438.Google Scholar
  34. O’Farrell, A. F. 1964. On physiological colour change in some Australian Odonata. J. Entomol. Soc. Austr. (N. S. W.) 1:1–8.Google Scholar
  35. O’Farrell, A. F. 1968. Physiological colour change and thermal adaptation in some Australian Zygoptera. Proc. R. Entomol. Soc. Lond.,ser. C 33:26–29.Google Scholar
  36. Pezalla, V. M. 1979. Behavioral ecology of the dragonfly Libellula pulchella Drury (Odonata: Anisoptera). Am. Midl. Nat. 102:1–22.CrossRefGoogle Scholar
  37. Polcyn, D. M. 1989. The thermal biology of desert dragonflies. Ph.D. dissertation, University of California, Riverside.Google Scholar
  38. Rowe, R. J., and M. J. Winterbourn. 1981. Observations on the body temperature and temperature associated behaviour of three New Zealand dragonflies (Odonata). Mauri Ora 9:15–23.Google Scholar
  39. Shelly, T. E. 1982. Comparative foraging behavior of light versus shade-seeking adult damselflies in a lowland neotropical forest (Odonata:Zygoptera). Physiol. Zool. 55:335–343.Google Scholar
  40. Singer, F. 1987. A physiological basis of variation in post-copulatory behaviour in a dragonfly Sympterum obtrusum. Anim. Behay. 35:1575–1577.CrossRefGoogle Scholar
  41. Sternberg, K. 1987. On reversible, temperature-dependent colour change in males of the dragonfly Aeshna caerulea (Strom) (Anisoptera: Aeshnidae). Odonatologica 16:57–66.Google Scholar
  42. Tracy, C. R., B. J. Tracy, and D. Dobkin. 1979. The role of posturing in behavioral thermoregulation by black dragons (Hagenius selys; Odonata). Physiol. Zool. 52:565–571.Google Scholar
  43. Tsubaki, Y., and T. Ono. 1987. Effects of age and body size on the male territorial system of the dragonfly Nannophya pygmaea Rambur (Odonata: Libellulidae). Anim. Behay. 35:518–525.CrossRefGoogle Scholar
  44. Veron, J. E. N. 1973. The physiological control of the chromatophores of Austrolestes annulosus (Odonata). J. Insect Physiol. 19:1689–1703.CrossRefGoogle Scholar
  45. Veron, J. E. N. 1974. The role of physiological color change in the thermoregulation of Austrolestes annulosus (Selys) (Odonata). Austr. J. Zool. 22:457–469.CrossRefGoogle Scholar
  46. Veron, J. E. N. 1976. Responses of Odonata chromatophores to environmental stimuli. J. Insect Physiol. 22:19–30.CrossRefGoogle Scholar
  47. Vogt, D., and B. Heinrich. 1983. Thoracic temperature variations in the onset of flight in dragonflies (Odonata: Anisoptera). Physiol. Zool. 56:236–241.Google Scholar
  48. Wasserthal, L. T. 1975. The role of butterfly wings in regulation of body temperature. J. Insect Physiol. 21:1921–1930.CrossRefGoogle Scholar
  49. Wootton, R. J. 1981. Paleozoic insects. Ann. Rev. Entomol. 26:319–344.CrossRefGoogle Scholar

Copyright information

© Bernd Heinrich 1993

Authors and Affiliations

There are no affiliations available

Personalised recommendations