Skip to main content

Abstract

NO aspect of the physical environment is more important to insects than temperature. In most environments temperature fluctuates through time, but insects also experience extreme temperature variations in space. A large mass, such as a human body weighing 65 kg, would register no measurable temperature increase by stepping from shade to sunshine for several minutes; a 10 mg fly, however, heats up some 10 ° C in only 10 seconds when it lands in a sunfleck. Needless to say, the thermal environment faced by insects is potentially much more severe than it is to us or to any other vertebrate animal. And it is probably not an exaggeration to claim that insects have evolved some of the most amazing feats of thermal adaptation and thermoregulation in the entire animal kingdom. Yet, little over 20 years ago, that statement would have seemed eccentric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alahiotus, S. N. 1983. Heat shock proteins. A new view on the temperature compensation. Comp. Biochem. Physiol. 75B:379–387.

    Google Scholar 

  • Bartholomew, G. A. 1981. A matter of size: An examination of endothermy in insects and terrestrial vertebrates. In Insect Thermoregulation, ed. B. Heinrich. New York: Wiley.

    Google Scholar 

  • Bennett, A. F., K. M. Dao, and R. E. Lenski. 1990. Rapid evolution in response to high-temperature selection. Nature 346:79–81.

    Article  PubMed  CAS  Google Scholar 

  • Casey, T. M. 1981. Insect flight energetics. In Locomotion and Energetics of Arthropods, ed. C. F. Herreid H and C. R. Fourtner. New York: Plenum.

    Google Scholar 

  • Casey, T. M. 1988. Thermoregulation and heat exchange. Adv. Ins. Physiol. 20:119–146.

    Article  Google Scholar 

  • Cloudsley-Thomson, J. L. 1970. Terrestrial invertebrates. In Comparative Physiology of Thermoregulation,vol. 1, Invertebrates and Nonmammalian Vertebrates,ed. G. C. Whittow, pp. 15–77. New York: Academic Press.

    Google Scholar 

  • Cossins, A. R., and K. Bowler. 1987. Temperature Biology of Animals. New York and London: Chapman and Hall.

    Book  Google Scholar 

  • Gates, D. M. 1980. Biophysical Ecology. New York, Heidelberg, Berlin: Springer-Verlag.

    Google Scholar 

  • Gates, D. M., and R. B. Schmerl, eds. 1975. Perspectives of Biophysical Ecology. New York, Heidelberg, Berlin: Springer-Verlag.

    Google Scholar 

  • Heath, J. E. 1964. Reptilian thermoregulation: Evaluation of field studies. Science 146:784–785.

    Article  PubMed  CAS  Google Scholar 

  • Heath, J. E., and M. S. Heath. 1982. Energetics of locomotion in endothermic insects. Ann. Rev. Physiol. 44:133–143.

    Article  CAS  Google Scholar 

  • Heinrich, B. 1974. Thermoregulation in endothermic insects. Science 185:747–756.

    Article  PubMed  CAS  Google Scholar 

  • Heinrich, B. 1975. Thermoregulation in bumblebees: II. Energetics of warm-up and free flight. J. Comp. Physiol. 96:155–166.

    Google Scholar 

  • Heinrich, B. 1979. Bumblebee Economics. Cambridge, Mass.: Harvard University Press. 245 pp.

    Google Scholar 

  • Heinrich, B. ed. 1981. Insect Thermoregulation. New York: Wiley.

    Google Scholar 

  • Heinrich, B., and C. Pantle. 1975. Thermoregulation in small flies (Syrphus sp.): Basking and shivering. J. Exp. Biol. 62:599–610.

    Google Scholar 

  • Hochachka, P. W., and G. N. Somero. 1984. Biochemical Adaptation. Princeton, N.J.: Princeton University Press.

    Google Scholar 

  • Huey, R. B., E. R. Pianka, and J. A. Hoffman. 1977. Seasonal variation in thermoregulatory behavior and body temperature of diurnal Kalahari lizards. Ecology 58:1066–1075.

    Article  Google Scholar 

  • Huey, R. B., W. D. Crill, J. G. Kingsolver, and K. E. Weber. 1991. A rapid method for measuring heat or cold resistance of Drosophila or other small arthropods. Unpublished manuscript.

    Google Scholar 

  • Kammer, A. E., and B. Heinrich. 1978. Insect flight metabolism. Adv. Insect Physiol. 13:133–228.

    Article  CAS  Google Scholar 

  • Kimura, M. T. 1988. Adaptations to temperate climates and evolution of overwintering strategies in the Drosophila melanogaster species group. Evolution 42:1288–1297.

    Article  Google Scholar 

  • Lee, R. E., Jr., and D. L. Denlinger. 1991. Insects at Low Temperature. New York and London: Chapman and Hall.

    Book  Google Scholar 

  • May, M. L. 1979. Insect Thermoregulation. Ann. Rev. Entomol. 24:313–349.

    Article  Google Scholar 

  • May, M. L. 1985. Thermoregulation. In Comprehensive Insect Physiology, Chemistry and Pharmacology, vol. 4, ed. G. A. Kerkut and G. I. Gilbert, pp. 491–552. Oxford: Pergamon Press.

    Google Scholar 

  • Parry, D. A. 1951. Factors determining the temperature of terrestrial arthropods in sunlight. J. Exp. Biol. 28:445–462.

    Google Scholar 

  • Parsons, P. A. 1978. Boundary conditions for Drosophila resource utilization in temperate regions, especially at low temperatures. Am. Nat. 112:1063–1074.

    Article  Google Scholar 

  • Porter, W. P., and D. M. Gates. 1969. Thermodynamic equilibrium of animals with environment. Ecol. Monogr. 39:96–103.

    Google Scholar 

  • Stone, B., and P. G. Willmer. 1989. Endothermy and temperature regulation in bees: A critique of “grab and stab” measurement of body temperature. J. Exp. Biol. 143:211–223.

    Google Scholar 

  • White, E. B., P. deBach, and M. K. Garber. 1970. Artificial selection for genetic adaptation to temperature extremes in Aphytis lingnanensis Compere (Hymenoptera in Aphelinidae). Hildegardia 40:161–192.

    Google Scholar 

  • Wieser, W. 1973. Effects of Temperature on Ectothermic Organisms. New York, Heidelberg, Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Willmer, P. G. 1982. Microclimate and the environmental physiology of insects. Adv. Insect Physiol. 16:1–57.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Bernd Heinrich

About this chapter

Cite this chapter

Heinrich, B. (1993). Prologue. In: The Hot-Blooded Insects. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10340-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10340-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10342-5

  • Online ISBN: 978-3-662-10340-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics