Social Thermoregulation



THE nests of ants, termites, and social bees and wasps serve as incubators for raising the immatures and as refuges from enemies and temperature extremes. The importance of these thermal refuges, where the microclimate is often rigidly controlled, cannot be overemphasized in any study of the life strategies of social insects. Indeed, most treatises on the social life of insects discuss numerous facets of this fascinating thermoregulatory behavior at length. Heat generation of honeybee colonies has been well known for at least 250 years (Réaumur, 1742), and an overall review of thermoregulation by insect societies is available (Seeley and Heinrich, 1981). Work on ants has recently been updated (Hölldobler and Wilson, 1990). Given that much information on social thermoregulation is available elsewhere, I here refrain from covering the topic in detail and attempt only a summary of the main features and a limited critique of some controversial viewpoints.


Heat Production Fungus Garden Nest Temperature Colony Cycle Brood Nest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, M., and J. M. Pasteels. 1977. Nest-moving behaviour in the ant Myrmica rubra. Proceedings of the Eighth International Congress of the International Union for the Study of Social Insects, Wagenigen, Netherlands, p. 286.Google Scholar
  2. Alford, D. V. 1975. Bumblebees. London: Davis-Poynter.Google Scholar
  3. Allen, M. D. 1959. Respiration rates of worker honeybees at different ages and temperatures. J. Exp. Biol. 36:92–101.Google Scholar
  4. Andrews, E. A. 1927. Ant mounds as to temperature and sunshine. J. Morphol. Physiol. 44:608–615.CrossRefGoogle Scholar
  5. Belt, T. 1874. The Naturalist in Nicaragua. London: John Murray.Google Scholar
  6. Bouillon, A. 1970. Termites of the Ethiopian region. In Biology of Termites, vol. 2, ed. K. Krishna and F. M. Weesner. New York: Academic.Google Scholar
  7. Brian, M. V. 1952. The structure of a dense natural ant population. J. Anim. Ecol. 21:12–24.CrossRefGoogle Scholar
  8. Brian, M. V. 1956. The natural density of Myrmica rubra and associated ants in West Scotland. Insectes Sociaux 3:474–487.Google Scholar
  9. Brian, M. V. 1973. Temperature choice and its relevance to brood survival and caste determination in the ant Myrmica rubra L. Physiol. Zool. 46:245–252.Google Scholar
  10. Brian, M. V., and A. D. Brian. 1948. Nest construction by queens of Vespula sylvestres Scop. (Hym., Vespidae). Entomol. Mon. Mag. 84:193–198.Google Scholar
  11. Brian, M. V. 1951. Insolation and ant populations in the west of Scotland. Trans. R. Entomol. Soc. Lend. 102:303–330.CrossRefGoogle Scholar
  12. Bruckner, D. 1975. Die Abhängigkeit der Temperaturregulierung von der genetischen Variabilität der Honigbiene (Apis mellifera L.). Apidologie 6:361–380.CrossRefGoogle Scholar
  13. Brian, M. V. 1976. Vergleichende Untersuchungen zur Temperaturpraeferenz von ingezüchteten und nichtingezüchtigten Arbeiterinnen der Honigbiene (Apis mellifera). Apidologie 7:139–149.Google Scholar
  14. Bruman, F. 1928. Die Luftzirkulation im Bienenstock. Z. Vergl. Physiol. 8: 366–370.CrossRefGoogle Scholar
  15. Büdel, A. 1960. Bienenphysik. In Biene und Bienenzucht, ed. A. Büdel and E. Herold. Munich: Ehrenwirth.Google Scholar
  16. Büdel, A. 1968. Le Microclimat de la ruche. In Traité de Biologie de l’Abeille, vol. 4, ed. R. Chauvin. Paris: Masson.Google Scholar
  17. Cahill, K., and S. Lustick. 1976. Oxygen consumption and thermoregulation in Apis mellifica workers and drones. Comp. Biochem. Physiol. 55A:355–357.CrossRefGoogle Scholar
  18. Ceusters, R. 1977. Social homeostasis in colonies of Formica polyctena Foerst. (Hymenoptera, Formicidae): Nestform and temperature preferences. Proceedings of the Eighth International Congress of the International Union for the Study of Social Insects, Wageningen, Netherlands, pp. 111–112.Google Scholar
  19. Chadwick, P. C. 1931. Ventilation of the hive. Glean. Bee Cult. 59:356–358.Google Scholar
  20. Coaton, W. G. H. 1948. Trinervitermes species: The snouted harvester termites. USDA Agric. Bull. 290:1–24.Google Scholar
  21. Coenen-Stass, D., B. Schaarschmidt, and I. Lamprecht. 1980. Temperature distribution and colorimetric determination of heat production in the nest of the wood ant, Formica polyctena (Hymenoptera, Formicidae). Ecology 61:238–244.CrossRefGoogle Scholar
  22. Cooper, P., W. M. Schaffer, and S. L. Buchmann. 1985. Temperature regulation of honey bees (Apis mellifera) foraging in the Sonoran Desert. J. Exp. Biol. 114:1–15.Google Scholar
  23. Corkins, C. L. 1930. The metabolism of the honey bee colony during winter. Bull. Wyo. Arranger. Exp. Sta. 175:1–54.Google Scholar
  24. Corkins, C. L. 1932. The temperature relationship of the honeybee cluster under controlled temperature conditions. J. Econ. Entomol. 25:820–825.Google Scholar
  25. Corkins, C. L., and C. S. Gilbert. 1932. The metabolism of honey-bees in winter. Bull. Wyo. Agr. Exp. Sta. 187:1–30.Google Scholar
  26. Cowles, R. B. 1930. The life history of Varanus niloticus (Lin.) as observed in Natal, South Africa. J. Entomol. Zool. 22:1–31.Google Scholar
  27. Cumber, R. A. 1949. The biology of bumble-bees with special references to the production of the worker caste. Trans. Roy. Entomol. Soc. Lond. 100:1–45.CrossRefGoogle Scholar
  28. Darchen, R. 1973. La thermorégulation et l’écologie de quelques espèces d’abeilles sociales d’Afrique (Apidae, Trigonini et Apis mellifica var. adansonii). Apidologie 4:341–370.CrossRefGoogle Scholar
  29. Délye, G. 1967. Physiologie et comportement de quelques fourmis (Hym. Formicidae) du Sahara en rapport avec les principaux facteurs du climat. Insectes Sociaux 14:323–338.CrossRefGoogle Scholar
  30. Dreyer, W. A. 1942. Further observations on the occurrence and size of ant mounds with reference to their age. Ecology 23:486–490.CrossRefGoogle Scholar
  31. Dunham, W. E. 1929. The influence of external temperature on the hive temperatures during the summer J. Econ. Entomol. 22:798–801.Google Scholar
  32. Dunham, W. E. 1931. A colony of bees exposed to high external temperatures. J. Econ. Entomol. 24:606–611.Google Scholar
  33. Dunham, W. E. 1933. Hive temperatures during the summer. Glean. Bee Cult. 61:527–529.Google Scholar
  34. Ebner, R. 1926. Einige Beobachtungen an Termitenbauten. Denkschr. Akad. Wiss. Wien, Math.-Nat. Kl. 100:75–76.Google Scholar
  35. Elton, C. 1932. Orientation of the nests of Formica turncorum in north Norway. J. Anim. Ecol. 1:192–193.CrossRefGoogle Scholar
  36. Emerson, A. E. 1938. Termite nests, a study of the phylogeny of behaviour. Ecol. Monogr. 8:247–284.CrossRefGoogle Scholar
  37. Emerson, A. E. 1956. Regenerative behaviour and social homeostasis of termites. Ecology 37:245–258.CrossRefGoogle Scholar
  38. Esch, H. 1960. Über die Körpertemperaturen und den Wärmehaushalt von Apis mellifica. Z. Vergl. Physiol. 43:305–335.CrossRefGoogle Scholar
  39. Etterschank, G. 1971. Some aspects of the ecology and the nest micro-climatology of the meat ant, Iridomyrmex purpureus (Sm.). Proc. Roy. Soc. Victoria 84:137–152.Google Scholar
  40. Fabritius, M. 1976. Experimentelle Untersuchung des Wärmeverhaltens der Hornissen (Vespa crabro). Dissertation, Frankfurt.Google Scholar
  41. Fahrenholz, L. 1986. Die soziale Thermoregulation im Stock der Honigbiene (Apis mellifera carnica) und die kalorimetrische Bestimmung der Wärmeproduktion bei Einzeltieren. Diplomaarbeit, Freie Universität, Berlin.Google Scholar
  42. Farrar, C. L. 1943. An interpretation of the problems of wintering the honeybee colony. Glean. Bee Cult. 71:513–518.Google Scholar
  43. Fielde, A. M. 1904. Observations on ants in their relation to temperature and to submergence. Biol. Bull. (Woods Hole) 7:170–174.CrossRefGoogle Scholar
  44. Forel, A. 1874. Les Mourmis de la Suisse. Zurich: Société Helvétique des Sciences Naturelles.Google Scholar
  45. Franks, N. R. 1989. Thermoregulation in army ant bivouacs. Physiol. Zool. 14:397–404.Google Scholar
  46. Free, J. B., and C. G. Butler. 1959. Bumblebees. London: CollinsGoogle Scholar
  47. Free, J. B., and J. Simpson. 1963. The respiratory metabolism of honeybee colonies at low temperatures. Ent. Exp. Appl. 6:234–238.CrossRefGoogle Scholar
  48. Free, J. B., and H. Y. Spencer-Booth. 1958. Observations on the temperature regulation and food consumption of honey-bee (Apis mellifica). J. Exp. Biol. 35:930–937.Google Scholar
  49. Free, J. B., and H. Y. Spencer-Booth. 1960. Chill-coma and cold death temperatures of Apis mellifica. Entomol. Exp. Appl. 3:222–2 30.Google Scholar
  50. Frisch, K. von. 1974. Animal Architecture. New York: Harcourt Brace Jovanovich.Google Scholar
  51. Fye, R. E., and J. T. Medler. 1954. Temperature studies in bumblebee domiciles. J. Econ. Entomol. 47:847–852.Google Scholar
  52. Gates, B. N. 1914. The temperature of the bee colony. Bull. U.S. Dept. Agric. 96:1–29.Google Scholar
  53. Gaul, A. T. 1952a. Additions to vespine biology. IX. Temperature regulation in the colonly. Bull. Brooklyn Entomol. Soc. 47:79–82.Google Scholar
  54. Gaul, A. T. 1952b. Metabolic cycles and the flight of vespine wasps. J. N.Y. Entomol Soc. 60:21–24.Google Scholar
  55. Gay, F. J., and J. H. Calaby. 1970. Termites from the Australian region. In Biology of Termites, vol. 2, ed. K. Krishna and F. M. Weesner. New York: Academic.Google Scholar
  56. Geyer, J. W. 1951. A comparison between the temperatures in a termite supplementary fungus garden and in the soil at equal depth. J. Entomol. Soc. S. Africa 14:36–43.Google Scholar
  57. Gibo, D. L., R. M. Yarascavitch, and H. E. Dew. 1974a. Thermoregulation in colonies of Vespula arenaria and Vespula maculata (Hymenoptera: Vespidae) under normal conditions and under cold stress. Can. Entomol. 106:873–879.CrossRefGoogle Scholar
  58. Gibo, D. L., H. E. Dew and A. S. Hajduk. 1974b. Thermoregulation in colonies of Vespula arenaria and Vespula maculata (Hymenoptera: Vespidae). II. The relation between colony biomass and calorie production. Can. Entomol. 106:873–879.CrossRefGoogle Scholar
  59. Gibo, D. L., A. Temporale, T. P. Lamarre, B. M. Soutar, and H. E. Dew. 1977. Thermoregulation in colonies of Vespula arenaria and Vespula maculata (Hymenoptera: Vespidae). III. Heat production in queen nests. Can. Entomol. 109:615–620.CrossRefGoogle Scholar
  60. Grassé, P. P. 1944. Recherches sur la biologie des termites champignonnistes (Macrotermitinae). Ann. Sci. Nat. Zool. 6:97–171; 7(1945):115146.Google Scholar
  61. Grassé, P. P. 1949. Ordre des Isoptères ou Termites. In Traité de Zoologie, vol. 9, ed. P. P. Grassé. Paris: Masson.Google Scholar
  62. Grassé, P. P., and C. Noirot. 1958. Le comportement des termites à l’égard de l’air libre. L’atmosphère des termitières et son renouvellement. Ann. Sci. Nat. Zool. 20:1–28.Google Scholar
  63. Greaves, T. 1964. Temperature studies of termite colonies in living trees. Aust. J. Zool. 12:250–262.CrossRefGoogle Scholar
  64. Greaves, T. 1967. Experiments to determine the populations of tree-dwelling colonies of termites Coptotermes acinaciformis (Froggat) and C. frenchi (Hill). Division of Entomology Technical Paper No. 7, Commonwealth Scientific and Industrial Research Organization, Australia.Google Scholar
  65. Grigg, G. C. 1973. Some consequences of the shape and orientation of “magnetic” termite mounds. Aust. J. Zool. 21:231–237.CrossRefGoogle Scholar
  66. Grigg, G. C., and A. J. Underwood. 1977. An analysis of the orientation of “magnetic” termite mounds. Aust. J. Zool. 25:87–94.CrossRefGoogle Scholar
  67. Grigg, G., P. Jacklyn, and L. Taplin. 1988. The effect of buried magnets on colonies of Amitermes spp. building magnetic mounds in northern Australia. Physiol. Zool. 13:285–289.Google Scholar
  68. Harkness, R. D., and R. Wenner. 1977. Cataglyphis. Endeavour, new ser. 1:115–121.Google Scholar
  69. Hasselrot, T. B. 1960. Studies on Swedish bumblebees (genus Bombus Latr.). Opusc. Entomol., Suppl. 17:1–200.Google Scholar
  70. Hazelhoff, E. H. 1954. Ventilation in a bee-hive during summer. Physiologia Comp. Oecol. 3:343–364.Google Scholar
  71. Heimann, M. 1963. Zum Wärmehaushalt der kleinen roten Waldameise (Formica polyctena Foerst.). Waldhygiene 5:1–21.Google Scholar
  72. Heinrich, B. 1974a. Pheromone-induced brooding behavior in Bombus vosnesenskii and B. edwardsii (Hymenoptera: Bombidae). J. Kans. Entomol. Soc. 47:396–404.Google Scholar
  73. Heinrich, B. 1974b. Thermoregulation in bumblebees. I. Brood incubation by Bombus vosnesenskii queens. J. Comp. Physiol. 88:129–140.CrossRefGoogle Scholar
  74. Heinrich, B. 197a. Bumblebee Economics. Cambridge, Mass.: Harvard University Press.Google Scholar
  75. Heinrich, B. 1979b. Thermoregulation of African and European honeybeesGoogle Scholar
  76. during foraging, attack, and hive exits and returns. J. Exp. Biol. 80:217–229.Google Scholar
  77. Heinrich, B. 198la. Energetics of honeybee swarm thermoregulation. Science 212:565–566.Google Scholar
  78. Heinrich, B. 1981b. The mechanisms and energetics of honeybee swarm temperature regulation. J. Exp. Biol. 91:25–55.Google Scholar
  79. Heinrich, B. 1981c. The regulation of temperature in the honeybee swarm. Sci. Am. 244:146–160.CrossRefGoogle Scholar
  80. Heinrich, B. 1985. The social physiology of temperature regulation in honeybees. In Fortschritte der Zoologie, vol. 31, ed. B. Hölldobler and M. Lindauer. Stuttgart, New York: F. Fisher.Google Scholar
  81. Hepburn, H. R., E. Armstrong, and S. Kurstjens. 1983. The ductility of native beeswax is optimally related to honeybee colony temperature. S. Afr. J. Sci. 79:416–417.Google Scholar
  82. Heran, J. 1952. Untersuchungen über den Temperatursinn der Honigbiene unter besonderer Berücksichtigung der Wahrnehmung strahlender Wärme. Z. Vergl. Physiol. 34:179–206.CrossRefGoogle Scholar
  83. Hess, W. R. 1926. Die Temperaturregulierung im Bienenvolk. Z. Vergl. Physiol. 4:465–487.CrossRefGoogle Scholar
  84. Hill, G. F. 1942. Termites (Isoptera) from the Australian Region. Melbourne: Commonwealth Scientific and Industrial Research Organization.Google Scholar
  85. Himmer, A. 1926. Der soziale Wärmehaushalt der Honigbiene. I. Die Wärme im nichtbrütenden Wintervolk. Erlanger Jahrb. Bienenk. 4:151.Google Scholar
  86. Himmer, A. 1927. Ein Beitrag zur Kenntnis des Wärmehaushalts im Nestbau sozialer Hautflügler. Z. Vergl. Physiol. 5:375–389.Google Scholar
  87. Himmer, A. 1931. Über die Wärme im Hornissennest. Z. Vergl. Physiol. 13:748–761.Google Scholar
  88. Himmer, A. 1932. Die Temperaturverhältnisse bei den sozialen Hymenopteren. Biol. Rev. 7:224–253.CrossRefGoogle Scholar
  89. Himmer, A. 1933. Die Nestwärme bei Bombus agrorum F. Biol. Zentralbi. 53:270–276.Google Scholar
  90. Holdaway, F. G., and F. J. Gay. 1948. Temperature studies of the habitat of Eutermes exitiosus with special reference to the temperature within the mound. Aust. J. Sci. Res. B1:464–493.Google Scholar
  91. Hölldobler, B., and E. O. Wilson. 1990. The Ants. Cambridge, Mass.: Harvard University Press.Google Scholar
  92. Horstmann, K., and H. Schmid. 1986. Temperature regulation in nests of the wood ant, Formica polyctena (Hymenoptera Formicidae). Entomol. Gen. 11:229–236.Google Scholar
  93. Hubbard, M. D., and W. G. Cunningham. 1977. Orientation of mounds in the ant Solenopsis invicta (Hymenoptera, Formicidae, Myrmicinae). Insectes Sociaux 24:3–8.CrossRefGoogle Scholar
  94. Huber, P. 1810. Recherches sur les Moeurs des Fourmis Indigènes. Paris: Paschoud.Google Scholar
  95. Hunter, J. 1792. Observations on bees. Phil. Trans. Roy. Soc. Land. 82:128–196.CrossRefGoogle Scholar
  96. Ishay, J. 1972. Thermoregulatory pheromones in wasps. Experientia 28:1185–1187.CrossRefGoogle Scholar
  97. Ishay, J. 1973. Thermoregulation by social wasps: Behavior and pheromones. Trans. N.Y. Acad. Sci. 35:447–462.PubMedCrossRefGoogle Scholar
  98. Ishay, J. and R. Ikan. 1968a. Food exchange between adults and larvae in Vespa orientalis F. Anim. Behay. 16:298–303.CrossRefGoogle Scholar
  99. Ishay, J. 1968b. Gluconeogensis in the oriental hornet, Vespa orientalis F. Ecology 49:169–171.CrossRefGoogle Scholar
  100. Ishay, J., and F. Runner. 1971. Thermoregulation im Hornissennest. Z. Vergl. Physiol. 72:423–434.Google Scholar
  101. Ishay, J., H. Bytinski-Salz, and A. Shulov. 1967. Contributions to the bionomics of the oriental hornet (Vespa orientalis Fab.). Isr. J. Entomol. 2:45–106.Google Scholar
  102. Jackson, W. B. 1957. Microclimate patterns in the army ant bivouac. Ecology 38:276–285.CrossRefGoogle Scholar
  103. Janet, C. 1895. Études sur les Fourmis, les Guêpes et les Abeilles. Neuvième note. Sur Vespa crabro L. Mém. Soc. Zool. Fr. 8:1–140.Google Scholar
  104. Jordan, R. 1936. Beobachtung der Arbeitsteilung im Hummelstaate (Bornbus muscorum). Arch. Bienenk. 17:81–91.Google Scholar
  105. Josens, G. 1971. Variations thermiques dans les nids de Trinervitermes geminatus Wassermann, en relation avec le milieu extérieur, dans la savane de Lamto (Côte d’Ivoire). Insectes Sociaux 18:1–14.CrossRefGoogle Scholar
  106. Kato, M. 1939. The diurnal rhythm of temperature in the mound of an ant, Formica truncorum truncorum var. Yessenni Forel, widely distributed at Mt. Hakkoda. Sci. Rep. Tohoku Univ. Sendai 14:53–64.Google Scholar
  107. Kiechle, H. 1961. Die soziale Regulation der Wassersammeltätigkeit im Bienenstaat und deren physiiologische Grundlage. Z. Vergl. Physiol. 45:154–192.CrossRefGoogle Scholar
  108. Kneitz, G. 1964. Untersuchungen zum Aufbau und zur Erhaltung des Nestwärmehaushaltes bei Formica polyctena Foerst. (Hym. Formicidae). Dissertation, Würzburg.Google Scholar
  109. Kneitz, G. 1970. Saisonale Veränderungen des Nestwärmehaushaltes bei Waldameisen in Abhängigkeit von der Konstitution und dem Verhalten der Arbeiterinnen also Beispiel vorteilhafter Anpassung eines Insektenstaates an das Jahreszeitenklima. Verh. Dtsch. Zool. Ges. 64:318–322.Google Scholar
  110. Koeniger, N. 1975. Experimentelle Untersuchungen über das Wärmen der Brut bei Vespa crabro und Apis mellifica. Verh. Dtsch. Zool. Ges., 148.Google Scholar
  111. Kneitz, G. 1978. Das Wärmen der Brut bei der Honigbiene (Apis mellifera L.). Apidologie 9:305–320.CrossRefGoogle Scholar
  112. Kondoh, M. 1968. Bioeconomic studies on the colony of an ant species, Formica japonica Motschulsky, I. Nest structure and seasonal change of the colony members. Jap. J. Ecol. 18:124–133.Google Scholar
  113. Kronenberg, F. 1979. Characteristics of colonial thermoregulation in honey bees. Ph.D. thesis, Stanford University, Stanford, Calif.Google Scholar
  114. Kronenberg, F. and H. C. Heller, 1982. Colonial thermoregulation in honeybees (Apis mellifera). J. Comp. Physiol. 148:65–76.Google Scholar
  115. Kukal, O., and D. L. Pattie. 1988. Colonization of snow bunting, Plectrophenax nivalis, nests by bumblebees, Bombus polaris, in the High Arctic. Can. Entomol. 102:544.Google Scholar
  116. Lacher, V. 1964. Elektrophysiologische Untersuchungen en einzelnen Rezeptoren für Geruch, Luftfeuchtigkeit und Temperatur auf den Antenne der Arbeitsbiene und der Drohne. Z. Vergl. Physiol. 48:587–623.CrossRefGoogle Scholar
  117. Lange, R. 1959. Experimentelle Untersuchungen über den Nestbau der Waldameisen: Nesthügel und Volkstärke. Entomophaga 4:47–55.CrossRefGoogle Scholar
  118. Lee, K. E., and T. G. Wood. 1971. Termites and Soils New York: Academic.Google Scholar
  119. Lensky, Y. 1964. Comportement d’une colonie d’abeilles a des températures extremes. J. Insect Physiol. 10:1–12.CrossRefGoogle Scholar
  120. Lindauer, M. 1954. Temperaturregulierung und Wasserhaushalt im Bienenstaat. Z. Vergl. Physiol. 36:391–432.CrossRefGoogle Scholar
  121. Lindauer, M., and W. E. Kerr. 1958. Die gegenseitige Verständigung bei den stachellosen Bienen. Z. Vergl. Physiol. 41:405–434.CrossRefGoogle Scholar
  122. Linder, C. 1908. Observations sur les Fourmilières-Boussoles. Bull. Soc. Vaudoise Sci. Nat., ser. 544:303–310.Google Scholar
  123. Lindhard, E. 1912. Humlebien som Husdyr. Spredt Traek of nogle danske Humlebiarters Biologi. Tidsskr. Plavl. 19:335–352.Google Scholar
  124. Loos, R. 1964. A sensitive anemometer and its use for the measurement of air currents in the nests of Macrotermes natalensis (Haviland). In Études sur les Termites Africains, ed. A. Bouillon. Paris: Masson.Google Scholar
  125. Löscher, M. 1951. Significance of “fungus gardens” in termite nests. Nature 167:34–35.CrossRefGoogle Scholar
  126. Löscher, M. 1955. Der Sauerstoffverbrauch bei Termiten und die Ventilation des Nestes bei Macrotermes natalensis (Haviland). Acta Trop. 12:289–307.Google Scholar
  127. Löscher, M. 1961. Air-conditioned termite nests. Sci. Am. 205:138–145.CrossRefGoogle Scholar
  128. MacKay, W. P., and E. MacKay. 1985. Temperature modification of the nest of Pogonomyrmex montanus (Hymenoptera: Formicidae). Southw. Nat. 30:307–309.CrossRefGoogle Scholar
  129. Makino, S., and S. Yamane 1980. Heat production by the foundress of Vespa simillima, with description of its embryo nest (Hymenoptera: Vespidae). Insecta Matsumurana 19:89–101.Google Scholar
  130. Mardan, M., and P. K. Kevan. 1989. Honeybees and “yellow rain.” Nature 341:191.CrossRefGoogle Scholar
  131. Martin, M. A., and J. S. Martin. 1978. Cellulose digestion in the midgut of the fungus-growing termite Macrotermes natalensis: The role of acquired digestive enzymes. Science 199:1453–1455.PubMedCrossRefGoogle Scholar
  132. Maschwitz, U. 1966. Das Speichelsekret der Wespenlarven und seine biologische Bedeutung. Z. Vergl. Physiol. 53:228–252.CrossRefGoogle Scholar
  133. Meudec, M. 1977. Le comportement de transport du couvain lors d’une perturbation du nid chez Tapinoma erraticum (Dolichoderinae). Rôle de l’individu. Insectes Sociaux 24:345–353.CrossRefGoogle Scholar
  134. Meyer, W. 1956. Arbeitsteilung im Bienenschwarm. Insectes Sociaux 3:303–323.CrossRefGoogle Scholar
  135. Michener, C. D. 1974. The Social Behavior of the Bees: A Comparative Study. Cambridge, Mass.: Harvard University Press.Google Scholar
  136. Michener, C. D., and A. Wille. 1961. The bionomics of a primitively social bee, Lasioglossum inconspicuum. Univ. Kans. Sci. Bull. 42:1123–1202.Google Scholar
  137. Michener, C. D., R. B. Lange, J. J. Bigarella, and R. Salamuni. 1958. Factors influencing the distribution of bees’ nests in earth banks. Ecology 29:207–217.CrossRefGoogle Scholar
  138. Möglich, M. 1978. Social organization of nest emigration in Leptothorax (Hym., Form). Insectes Sociaux 25:205–225.CrossRefGoogle Scholar
  139. Morimoto, R. 1960. Experimental study on the trophallactic behavior in Polistes (Hymenoptera, Vespidae). Acta Hymenoptera 1:99–103.Google Scholar
  140. Nagy, K. A., and J. N. Stallone. 1976. Temperature maintenance and CO2 concentration in a swarm cluster of honeybees, Apis mellifera. Comp. Biochem. Physiol. 55A:169–171.CrossRefGoogle Scholar
  141. Neuhaus, W., and R. Wohlgemuth. 1960. Über das Fächeln der Bienen und dessen Verhältnis zum Fliegen. Z. Vergl. Physiol. 43:615–641.CrossRefGoogle Scholar
  142. Nielsen, E. T. 1938. Temperatures in a nest of Bombus hypnorum L. Vidensk. Medd. Dan. Naturhist. Foren. Khobenhavn 102:1–6.Google Scholar
  143. Noirot, C. 1970. The nests of termites. In Biology of Termites, vol. 2, ed. K. Krishna and F. M. Weesner. New York: Academic.Google Scholar
  144. Nolan, W. J. 1925. The brood-rearing cycle of the honeybee. Bull. U.S. Dept. Agric. 1349:1–56.Google Scholar
  145. Nye, P. H. 1955. Some soil-forming processes in the humid tropics. IV. The action of the soil fauna. J. Soil Sci. 6:73–83.CrossRefGoogle Scholar
  146. Ofer, J. 1970. Polyrachis simplex, the weaver ant of Israel. Insectes Sociaux 17:49–82.Google Scholar
  147. Omholt, S. W. 1987. Thermoregulation in the winter cluster of the honeybee, Apis mellifera. J. Theor. Biol. 128:219–231.CrossRefGoogle Scholar
  148. Phillips, E. F., and G. S. Demuth. 1914. The temperature of the honeybee cluster in winter. Bull. U.S. Dept. Agric. 93:1–16.Google Scholar
  149. Plowright, R. C. 1977. Nest architecture and the biosystematics of bumblebees. Proceedings of the Eighth International Congress of the International Union for the Study of Social Insects, Wageningen, Netherlands, pp. 183–185.Google Scholar
  150. Pontin, A. J. 1960. Field experiments on colony foundation by Lasius niger (L.) and L. flavus (F.) (Hym., Formicidae). Insectes Sociaux 7:227–230.CrossRefGoogle Scholar
  151. Pontin, A. J. 1963. Further considerations of competition and the ecology of the ants Lasius flavus (F.) and L. niger (L.) J. Anim. Ecol. 32:565–574.CrossRefGoogle Scholar
  152. Postner, M. 1951. Biologisch-Ökologische Untersuchungen an Hummeln und ihren Nestern. Veröff. Mus. (Bremen) 1:46–86.Google Scholar
  153. Raignier, A. 1948. L’économie thermique d’une colonie polycalique de la fourmi des Bois (Formica rufa polyctena Foerst). Cellule 51:281–368.Google Scholar
  154. Réaumur, R. A. F. de. 1742. Mémoires pour Servir d l’Histoire des Insectes, vol. 6. Paris: Royale.Google Scholar
  155. Ribbands, C. R. 1953. The Behaviour and Social Life of Honeybees. London: Bee Research Association.Google Scholar
  156. Richards, K. W. 1973. Biology of Bombus polaris Curtis and B. hypereus Schönherr at Lake Hazen, Northwest Territories (Hymenoptera: Bombini). Quest. Entomol. 9:115–157.Google Scholar
  157. Ritter, W. 1978. Der Einfluss der Brut auf die Änderung der Wärmebildung in Bienenvölkern (Apis mellifera carnica). Verh. Dtsch. Zool. Ges.,p. 220.Google Scholar
  158. Ritter, W., and N. Koeniger. 1977. Influence of the brood on the thermoregulation of honeybee colonies. Proceedings of the Eighth International Congress of the International Union for the Study of Social Insects, Wageningen, Netherlands, pp. 283–284.Google Scholar
  159. Roland, C. 1969. Rôle de l’involucre et du nourissement au sucre dans la régulation thermique à l’intérieur d’un nid de Vespides. C.R. Hebd. Seances Acad. Sci. 269:914–916.Google Scholar
  160. Rosengren, R., W. Fortelius, K. Lindström, and A. Luther. 1987. Phenology and causation of nest heating and thermoregulation in red wood ants of the Formica rufa group studied in coniferous forest habitats in southern Finland. Ann. Zool. Fennici 24:147–155.Google Scholar
  161. Roth, M. 1965. La production de chaleur chez Apis mellifica L. Ann. Abeille 8:5–77.CrossRefGoogle Scholar
  162. Roubik, D. W., and F. J. A. Peralta. 1983. Thermodynamics in nests of two Melipona species in Brazil. Acta Amazonica 13:453–466.Google Scholar
  163. Ruelle, J. E. 1964. L’architecture du nid de Macrotermes natalensis et son sens fonctionel. In Études sur les Termites Africains, ed. A. Bouillon. Paris: Masson.Google Scholar
  164. Ruttner, F. 1968. Les Races d’Abeilles. In Traitée de Biologie de l’Abeille, vol. 1, ed. R. Chauvin. Paris: Masson.Google Scholar
  165. Sakagami, S. F. 1971. Ethosoziologischer Vergleich zwischen Honigbienen und Stachellosen Bienen. Z. Tierpsychol. 28:337–350.CrossRefGoogle Scholar
  166. Sakagami, S. F., and K. Hayashida. 1961. Biology of the primitive social bee Halictus duplex Dalle Torre. III. Activities in spring solitary phase. J. Fac. Sci. Hokkaido Univ., ser. 6, Zool. 14:639–682.Google Scholar
  167. Sakagami, S. F., and C. D. Michener. 1962. The Nest Architecture of the Sweat Bees. Lawrence: University of Kansas.Google Scholar
  168. Sanders, C. J. 1972. Seasonal and daily activity patterns of carpenter ants (Camponotus spp.) in Northwestern Ontario (Hymenoptera: Formicidae). Can. Entomol. 104:1681–1687.CrossRefGoogle Scholar
  169. Sands, W. A. 1969. The association of termites and fungi. In Biology of Termites, vol. 1, ed. K. Krishna and F. M. Weesner. New York: Academic.Google Scholar
  170. Scherba, G. 1958. Reproduction, nest orientation and population structure of an aggregation of mound nests of Formica ulkei Emery. Insectes Sociaux 5:201–213.CrossRefGoogle Scholar
  171. Scherba, G. 1962. Mound temperatures of the ant Formica ulkei Emery. Am. Midl. Nat. 67:373–385.CrossRefGoogle Scholar
  172. Schneirla, T. C., R. Z. Brown, and F. C. Brown. 1954. The bivouac or temporary nest as an adaptive factor in certain terrestrial species of army ants. Ecol. Monogr. 24:269–296.CrossRefGoogle Scholar
  173. Seeley, T. D. 1977. Measurement of nest cavity volume by the honey bee (Apis mellifera). Behay. Ecol. Sociobiol. 2:201–227.Google Scholar
  174. Seeley, T. D., and B. Heinrich. 1981. Regulation in the nests of social insects. In Insect Thermoregulation, ed. B. Heinrich. New York: Wiley.Google Scholar
  175. Seeley, T. D., and R. A. Morse. 1976. Nest site selection by the honey bee, Apis mellifera. Insectes Sociaux 25:323–337.CrossRefGoogle Scholar
  176. Seeley, T. D., and P. K. Visscher. 1985. Survival of honeybees in cold climates. The critical timing of colony growth and reproduction. Ecol. Entomol. 10:81–88.CrossRefGoogle Scholar
  177. Simpson, J. 1961. Nest climate regulation in honey bee colonies. Science 133:1327–1333.PubMedCrossRefGoogle Scholar
  178. Skaife, S. H. 1955. Dwellers in Darkness. London: Longmans Green.Google Scholar
  179. Sladen, F. W. L. 1912. The Bumble-bee, Its Life-History and How to Domesticate It, with Descriptions of All the British Species of Bombus and Psithyrus. London: Macmillan.CrossRefGoogle Scholar
  180. Snyder, T. E. 1926. Preventing damage by termites or white ants. U.S. Dept. Agric. Farmers’ Bull. 1472:1–21.Google Scholar
  181. Southwick, E. E. 1982. Metabolic energy of intact honeybee colonies. Comp. Biochem. Physiol. 71A:277–281.CrossRefGoogle Scholar
  182. Southwick, E. E. 1983. The honey bee cluster as a homeothermic superorganism. Comp. Biochem. Physiol. 75A:641–645.CrossRefGoogle Scholar
  183. Southwick, E. E. 1984. Metabolismus von Honigbienen und Einfluss der Traubengrösse bei niedrigen Temperaturen. Apidologie 15:267–269.Google Scholar
  184. Southwick, E. E. 1985. Allometric relations, metabolism and heat conductance in clusters of honey bees at cool temperatures. J. Comp. Physiol. B 156:143–149.Google Scholar
  185. Southwick, E. E. 1987. Cooperative metabolism in honey bees: An alternative to antifreeze and hibernation. J. Therm. Biol. 12:155–158.CrossRefGoogle Scholar
  186. Southwick, E. E. 1988. Thermoregulation in honey-bee colonies. In Africanized Honey Bees and Bee Mites. ed. G. R. Needham, R. E. Page Jr., M. Delfmado-Baker, and C. E. Bowman. New York: Halsted Press.Google Scholar
  187. Southwick, E. E. 1990. The colony as a thermoregulating superorganism. In The Behavior and Physiology of Bees, ed. L. J. Goodman and R. C. Fisher. Wallingford, U.K.: CAB International.Google Scholar
  188. Southwick, E. E., and G. Heldmaier. 1987. Temperature control in honey bee colonies. Bioscience 37:395–399.CrossRefGoogle Scholar
  189. Southwick, E. E., and R. F. A. Moritz. 1987. Social control of air ventilation in colonies of honey bees, Apis mellifera. J. Insect Physiol. 33:623–626.CrossRefGoogle Scholar
  190. Southwick, E. E., and J. N. Mugaas. 1971. A hypothetical homeotherm: The honeybee hive. Comp. Biochem. Physiol. 40A:935–944.CrossRefGoogle Scholar
  191. Southwick, E. E., D. W. Roubik, and J. M. Williams 1990. Comparative energy balance in groups of Africanized and European honey bees: Ecological implications. Comp. Biochem. Physiol. 97A:1–7.CrossRefGoogle Scholar
  192. Steiner, A. 1924. Über den sozialen Wärmehaushalt der Waldameise (Formica rufa var. rufo-pratensis For.). Z. Vergl. Physiol. 2:23–56.CrossRefGoogle Scholar
  193. Steiner, A. 1926. Temperaturmessungen in den Nestern der Waldameise (Formica rufa var. rufa-pratensis) und der Wegameise “(Lasius niger) während des Winters. Mitt. Naturforsch. Ges. Bern pp. 1–19.Google Scholar
  194. Steiner, A. 1929. Temperaturuntersuchungen in Ameisennestern mit Erdkuppeln, im Nest von Formica exsecta Nyl. und in Nestern unter Steinen. Z. Vergl. Physiol. 9:1–66.Google Scholar
  195. Steiner, A. 1930. Die Temperaturregulation im Nest der Feldwespe (Polistes gallica var. biglumis L.). Z. Vergl. Physiol. 11:461–502.Google Scholar
  196. Steiner, A. 1932. Die Arbeitsteilung der Feldwespe Polistes dubia K. Z. Vergl. Physiol. 17:101–151.Google Scholar
  197. Stuart, A. M. 1977. A polyethic and homeostatic response to a simple stimulus in a tropical termite. Proceedings of the Eighth International Congress of the International Union for the Study of Social Insects Wageningen, Netherlands, pp. 149–151.Google Scholar
  198. Stussi, T. 1972a. Réaction de thermogenèse au froid chez la guêpe ouvrière et autres Hyménoptères sociaux. C.R. Hebd. Seances Acad. Sci. 274:2687–2689.Google Scholar
  199. Stussi, T. 1972b. L’heterothermie de l’abeille. Arch. Sci. Physiol. 26:131–159.Google Scholar
  200. Sudd, J. H., J. M. Douglas, T. Gaynard, D. M. Murray, and J. M. Stock-dale. 1977. The distribution of wood-ants (Formica lugubris Zetterstedt) in a northern English forest. Ecol. Entomol. 2:301–313.CrossRefGoogle Scholar
  201. Tschinkel, W. R. 1987. Seasonal life history and nest architecture of a winter-active ant, Prenolepis imparis. Insectes Sociaux 34:143–164.CrossRefGoogle Scholar
  202. Underwood, B. A. 1990. Seasonal nesting cycle and migration patterns of the Himalayan honey bee Apis laboriosa. Natl. Geogr. Res. 6:276–290.Google Scholar
  203. Vanderplank, F. L. 1960. The bionomics and ecology of the red tree ant Oecophylla sp., and its relationship to the coconut bug Pseudotheraptus wayi (Brown) (Coreidae). J. Anim. Ecol. 29:15–33.CrossRefGoogle Scholar
  204. Veith, H. J., and N. Koeniger. 1978. Identifizierung von cis-9 Pentacosen als Auslöser für das Wärmen der Brut bei der Hornisse. Naturwissenschaften 65:263.CrossRefGoogle Scholar
  205. Villa, J. D. 1987. Africanized and European colony conditions at different elevations in Colombia. Am. Bee J. 127:53–57.Google Scholar
  206. Vogt, F. D. 1986a. Thermoregulation in bumblebee colonies. I. Thermo-regulatory versus brood-maintenance behaviors during acute changes in ambient temperature. Physiol. Zool. 59:55–59.Google Scholar
  207. Vogt, F. D. 1986b. Thermoregulation in bumblebee colonies. II. Behavioral and demographic variation throughout the colony cycle. Physiol. Zool. 59:60–68.Google Scholar
  208. Waloff, N., and R. E. Blacklith. 1962. The growth and distribution of the mounds of Lasius flavus (Fabricius) (Hym. Formicidae) in Silwood Park, Berkshire. J. Anim. Ecol. 31:421–437.CrossRefGoogle Scholar
  209. Wasmann, E. 1915. Das Gesellschaftsleben der Ameisen. Münster: Aschendorf.Google Scholar
  210. Weir, J. S. 1973. Air flow, evaporation and mineral accumulation in mounds of Macrotermes subhyalinus (Rambur). J. Anim. Ecol. 42:509–520.CrossRefGoogle Scholar
  211. Wellenstein, G. 1928. Beiträge zur Biologie der roten Waldameise (Formica rufa L.) mit besonderer Berücksichtigung klimatischer und förstlicher Verhältnisse. Z. Angew. Entomol. 14:1–68.CrossRefGoogle Scholar
  212. Wellenstein, G. 1967. Zur Frage der Standortansprüche hügelbauender Waldameisen (F. rufa-Gruppe). Z. Angew. Zool. 54:139–166.Google Scholar
  213. Weyrauch, W. 1936. Das Verhalten sozialer Wespen bei Nestüberhitzung. Z. Vergl. Physiol. 23:51–63.Google Scholar
  214. Wille, A. 1976. Las abejas jicótes del género Melipona (Apidae: Meliponini) de Costa Rica. Rev. Biol. Trop. 24:123–147.Google Scholar
  215. Wilson, E. O. 1959. Some ecological characteristics of ants in New Guinea rain forest. Ecology 40:437–447.CrossRefGoogle Scholar
  216. Wilson, E. O. 1971. The Insect Societies Cambridge, Mass.: Harvard University Press.Google Scholar
  217. Wohlgemuth, R. 1957. Die Temperaturregulation des Bienenvolkes unter regeltheoretischen Gesichtspunkten. Z. Vergl. Physiol. 40:119–161.CrossRefGoogle Scholar
  218. Wójtowski, F. 1963. Studies on heat and water economy in bumble-bee nests. Zool. Poloniae 13:19–36.Google Scholar
  219. Woodworth, C. E. 1936. Effect of reduced temperature and pressure on honeybee respiration. J. Econ. Entomol. 29:1128–1138.Google Scholar
  220. Zahn, M. 1958. Temperatursinn, Wärmehaushalt und Bauweise der Roten Waldameise. Zool. Beiträge new ser. 3:127–194.Google Scholar
  221. Zucchi, R., and S. F. Sakagami. 1972. Capacidade termo-reguladora em Trigona spinipes e em algumas outras espécies de abelhas sem ferráo. In Homenagem à Warwick E. Kerr. Brazil: Rio Claro.Google Scholar

Copyright information

© Bernd Heinrich 1993

Authors and Affiliations

There are no affiliations available

Personalised recommendations