Skip to main content

Fever

  • Chapter
  • 313 Accesses

Abstract

THE idea that troublesome organisms can be killed by heat treatments originated with Louis Pasteur. Most bacteria, viruses, and protozoa have inactivation temperatures that are much higher than 45 ° C, the upper limit for many insects. Indeed, heat treatment (pasteurization) of dairy products for tuberculosis and other disease organisms typically involves heating at 62 ° C for 30 minutes, or 72 ° C for 16 seconds. Since the lethal temperatures of most disease organisms are considerably higher than those of their hosts, it seems therefore not at all obvious that animals would have invented heat treatment long before Louis Pasteur thought of it. Nevertheless, it is now clear that fever, one form of heat treatment, is a common survival mechanism (Kluger, 1979).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, W. W., and R. F. Smith. 1958. Some factors influencing the efficiency of Apanteles medicaginis Muesebeck (Hymenoptera: Braconidae) as a parasite of the alfalfa caterpillar, Colias philodice eurytheme Boisduval. Hilgardia 28:1–42.

    Google Scholar 

  • Aruga, H., and S. Tanaka. 1968. Effect of high temperature on the resistance of the silkworm, Bombyx mori L., to flacherie-virus disease. J. Seric. Sci. Jpn. 37:441–444.

    Google Scholar 

  • Bawden, F. C. 1964. Plant Viruses and Viral Diseases. 4th ed. New York: Ronald Press.

    Google Scholar 

  • Bird, F. T. 1955. Virus diseases of sawflies. Can. Entomol. 87:124–127.

    Article  Google Scholar 

  • Boorstein, S. M., and P. W. Ewald. 1987. Costs and benefits of behavioral fever in Melanoplus sanguinipes infected by Nosema acridophagus. Physiol. Zool. 60:586–595.

    Google Scholar 

  • Bronstein, M. S., and W. E. Conner. 1984. Endotoxin-induced behavioral fever in the Madagascar cockroach, Gramphadorhina protentosa. J. Insect Physiol. 30:327–330.

    Article  CAS  Google Scholar 

  • Brooks, M. A. 1963. Symbiosis and aposymbiosis in arthropods. In Symboitic Associations, ed. P. S. Nutman and B. Mosse, pp. 200–231. London: Cambridge University Press.

    Google Scholar 

  • Cabanac, M., and L. Le Guelte. 1980. Temperature regulation and prostaglandin E1 fever in scorpions. J. Physiol. (London) 303:365–370.

    CAS  Google Scholar 

  • Carruthers, R. I., T. S. Larkin, H. Firstencel, and Z. Feng. 1992. Influence of thermal ecology on the mycosis of rangeland grasshoppers. Ecology 73:190–204.

    Article  Google Scholar 

  • Casterlin, M. E., and W. W. Reynolds. 1977. Behavioral fever in crayfish. Hydrobiologia 56:99–101.

    Article  Google Scholar 

  • Casterlin, M. E., and W. W. Reynolds. 1978. Prostaglandin E1 fever in the crayfish Cambarus bartoni. Pharmacol. Biochem. Behay. 9:593–595.

    Article  CAS  Google Scholar 

  • Day, M. F., and E. H. Mercer. 1964. Properties of an iridescent virus from the beetle, Sericesthis pruinosa. Austr. J. Biol. Sci. 17:892–902.

    Google Scholar 

  • De Lestrange, M. Th. 1954. Action de la température sur le virus responsible de la sensibilit à l’anhydride carbonique chez la Drosophile. Compt. Rend. 239:1159–1162.

    Google Scholar 

  • De Lestrange, M. Th. 1963. Contribution à l’étude du virus héréditaire de la Drosophile: action de l’hyperthermie sur le contenu en virus des tissus somatiques de l’hôte. Ann. Genet. 6:39–96.

    Google Scholar 

  • Ewald, P. W. 1980. Evolutionary biology and the treatment of signs and symptoms of infections diseases. J. Therm. Biol. 86:169–176.

    Article  CAS  Google Scholar 

  • Force, D. C., and P. S. Messenger. 1964. Duration of development, generation time, and longevity of three hympenopterous parasites of Therioaphis maculata reared at various temperatures. Ann. Entomol. Soc. Am. 57:405–413.

    Google Scholar 

  • Girard, M. 1865. Note sur la chaleur considérable des larves de la Galleria carella. Ann. Soc. Entomol. Fr. 4:676–677.

    Google Scholar 

  • Guppy, J. C. 1969. Some effects of temperature on immature stages of the armyworm, Pseudaletia unipuncta (Lepidoptera: Noctuidae). Can. Entomol. 101:1320–1327.

    Article  Google Scholar 

  • Huger, A. 1954. Experimentelle Eliminierung der Symbioten aus den Myzetomen des Getreide Kapuziners, Rhizopertha dominca F. Naturwissenschaften 41:170–171.

    Article  Google Scholar 

  • Huger, A. 1956. Experimentelle Untersuchungen über die künstliche Symbiotenelimination bei Vorratsschädlingen: Rhizopertha dominica F. (Bostrychidae) und Oryzaephilus surinamensis L. Z. Morphol. Oekol. Tiere 44:626–701.

    Article  Google Scholar 

  • Inoue, H., C. Ayuzawa, and A. Kawamura, Jr. 1972. Effects of high temperature on the multiplication of infectious flacherie virus in the silkworm, Bombyx mori. Appl. Entomol. Zool. 7:155–160.

    Google Scholar 

  • Inoue, H., and Y. Tanada. 1977. Thermal therapy of the flacherie virus disease in the silkworm, Bombyx mori. J. Invert. Pathol. 29:63–68.

    Google Scholar 

  • Kaya, H. K., and Y. Tanada. 1969. Responses to high temperature of the parasite Apanteles militaris and of its host, the armyworm, Pseudaletia unipuncta. Ann. Entomol. Soc. Am. 62:1303–1306.

    Google Scholar 

  • Kluger, M. J. 1979. Fever, Its Biology, Evolution and Function. Princeton, N.J.: Princeton University Press.

    Google Scholar 

  • Kunkel, L. O. 1936. Heat treatment for the cure of yellows and other virus diseases of peach. Phytopathology 26:809–830.

    Google Scholar 

  • L’Héritier, Ph., and A. Sigot. 1946. Contribution à l’étude du phénomène de la sensibilité au CO2 chez la Drosophile. Influence du chauffage aux différents stades au développement sur la manifestation de la sensibilité chez l’imago. Bull. Biol. France et Belgique 80:171–227.

    Google Scholar 

  • Louis, C., M. Jourdan, and M. Cabanc. 1986. Behavioral fever and therapy in a rickettsia-infected orthopteran. Am. J. Physiol. 250:R991–R995.

    PubMed  CAS  Google Scholar 

  • Lwoff, A., and M. Lwoff. 1958. L’inhibition du développement du virus poliomyélitique à 39 ° et le problème du rôle de l’hyperthermie dans l’évolution des infections virales. Compt. Rend. Acad. Sci. Paris 246:190–192.

    CAS  Google Scholar 

  • MacLeod, D. M. 1963. Entomophthorales infections. In Insect Pathology: An Advanced Treatise, vol. 2, ed. E. A. Steinhaus. New York: Academic.

    Google Scholar 

  • Maramorosch, K. 1950. Influence of temperature on incubation and transmission of the wound-tumor virus. Phytopathology 40:1071–1093.

    Google Scholar 

  • Mathavan, S., and T. J. Pandian 1975. Effect of temperature on food utilization in the monarch butterfly Danaus chrysippus. Oikos 26:6064.

    Google Scholar 

  • McClain, E., P. Magnuson, and S. J. Warner. 1988. Behavioral fever in a Namib Desert tenebrionid beetle, Onymacris plana. J. Insect Physiol. 34:279–284.

    Article  Google Scholar 

  • McLaughlin, R. E. 1962. The effect of temperature upon larval mortality of the armyworm, Pseudaletia unipuncta (Haworth). J. Insect Physiol. 4:279–284.

    Google Scholar 

  • Meeuse, B. J. D. 1966. Production of volatile amines and skatoles at anthesis in some Arum lily species. Plant Physiol. 41:343–347.

    Article  PubMed  Google Scholar 

  • Miyajima, S. 1970. Effects of high temperature on the incidence of infectious flacherie of the silkworm, Bombyx mori L. Tokai Branch, Seri-cultural Society of Japan, Proceedings 18:28.

    Google Scholar 

  • Ono, M., I. Okada, and M. Sasaki. 1987. Heat production by balling in the Japanese honeybee, Apis cerana japonica, as a defensive behavior against the hornet, Vespa simillima xanthoptera (Hymenoptera: Vespidae). Experimenta 43:1031–1032.

    Article  Google Scholar 

  • Raskin, I., A. Ehmann, W. R. Melander, and B. J. D. Meeuse. 1987. Salicylic acid: A natural inducer of heat production in Arum lilies. Science 237:1545–1656.

    Article  Google Scholar 

  • Roberts, D. W., and A. S. Campbell. 1977. Stability of entomopathogenic fungi. Misc. Publ. Entomol. Soc. Am. 10:19–76.

    Google Scholar 

  • Schneider, H. 1956. Morphologische und experimentelle Untersuchungen über die Endosymbiose der Korn-und Reiskäfer (Calandra granaria L. und Calandra oruzae L.) Z. Morphol. Oekol. Tiere 44:555–625.

    Article  Google Scholar 

  • Sherman, P. W., and W. B. Watt. 1973. The thermal ecology of some Colias butterfly larvae. J. Comp. Physiol. 83:25–40.

    Article  Google Scholar 

  • Skubatz, H., T. A. Nelson, A. M. Dong, B. J. D. Meeuse, and A. J. Bendich. 1990. Infrared thermography of Arum lily inforescences. Planta 182:432–436.

    Article  Google Scholar 

  • Suzuki, S., R. Kimura, and K. Suzuki. 1963. Restraining effect of high temperature on occurrence of disease by some viruses in the silkworm, Bombyx mori L. Kanto Branch, Sericultural Society of Japan, Proceedings 14:65.

    Google Scholar 

  • Tanada, Y. 1953. Description and characteristics of a granulosis virus of the imported cabbageworm. Proc. Hawaii. Entomol. Soc. 15:235–260.

    Google Scholar 

  • Tanada, Y. 1967. Effects of high temperatures on the resistance of insects to infectious diseases. J. Seric. Sci. Jpn. 36:333–339.

    Google Scholar 

  • Tanada, Y., and G. Y. Chang. 1968. Resistance of the alfalfa caterpillar, Collas eurytheme, at high temperatures to a cytoplasmic-polyhedrosis virus and thermal inactivation point of the virus. J. Invert. Phathol. 10:79–83.

    Article  CAS  Google Scholar 

  • Tanada, Y. and A. M. Tanabe. 1965. Resistance of Galleria mellonella (Linneaus) to the Tipula iridescent virus at high temperatures. J. Invert. Pathol. 7:184–188.

    Article  CAS  Google Scholar 

  • Thompson, C. G. 1959. Thermal inhibition of certain polyhedrosis virus diseases. J. Insect Pathol. 1:189–190.

    Google Scholar 

  • Van der Walt, E., E. McClain, A. Puren, and N. Savage. 1990. Phylogeny of arthropod immunity: An inducible humoral response in the Kalahari millipede, Triaenostreptus triodus (Attems).

    Google Scholar 

  • Watanabe, H., and Y. Tanada. 1972. Infection of nuclear-polyhedrosis virus in armyworm, Pseudaletia unipuncta Haworth (Lepidoptera Noctuidae), reared at a high temperature. Appl. Entomol. Zool. 7:43–51.

    Google Scholar 

  • Yamaguchi, K., Y. Iwashita, and K. Inoue. 1969. On the midgut-nuclear polyhedrosis in the silkworm, Bombyx mori L. III. Effects of high temperature treatment in the shape of polyhedron of the infected larvae. J. Seric. Sci. Jpn. 38:157–162.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Bernd Heinrich

About this chapter

Cite this chapter

Heinrich, B. (1993). Fever. In: The Hot-Blooded Insects. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10340-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10340-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10342-5

  • Online ISBN: 978-3-662-10340-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics