Advertisement

Fever

Chapter
  • 227 Downloads

Abstract

THE idea that troublesome organisms can be killed by heat treatments originated with Louis Pasteur. Most bacteria, viruses, and protozoa have inactivation temperatures that are much higher than 45 ° C, the upper limit for many insects. Indeed, heat treatment (pasteurization) of dairy products for tuberculosis and other disease organisms typically involves heating at 62 ° C for 30 minutes, or 72 ° C for 16 seconds. Since the lethal temperatures of most disease organisms are considerably higher than those of their hosts, it seems therefore not at all obvious that animals would have invented heat treatment long before Louis Pasteur thought of it. Nevertheless, it is now clear that fever, one form of heat treatment, is a common survival mechanism (Kluger, 1979).

Keywords

Horseshoe Crab Lethal Temperature Thermal Preference Febrile Response Disease Organism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, W. W., and R. F. Smith. 1958. Some factors influencing the efficiency of Apanteles medicaginis Muesebeck (Hymenoptera: Braconidae) as a parasite of the alfalfa caterpillar, Colias philodice eurytheme Boisduval. Hilgardia 28:1–42.Google Scholar
  2. Aruga, H., and S. Tanaka. 1968. Effect of high temperature on the resistance of the silkworm, Bombyx mori L., to flacherie-virus disease. J. Seric. Sci. Jpn. 37:441–444.Google Scholar
  3. Bawden, F. C. 1964. Plant Viruses and Viral Diseases. 4th ed. New York: Ronald Press.Google Scholar
  4. Bird, F. T. 1955. Virus diseases of sawflies. Can. Entomol. 87:124–127.CrossRefGoogle Scholar
  5. Boorstein, S. M., and P. W. Ewald. 1987. Costs and benefits of behavioral fever in Melanoplus sanguinipes infected by Nosema acridophagus. Physiol. Zool. 60:586–595.Google Scholar
  6. Bronstein, M. S., and W. E. Conner. 1984. Endotoxin-induced behavioral fever in the Madagascar cockroach, Gramphadorhina protentosa. J. Insect Physiol. 30:327–330.CrossRefGoogle Scholar
  7. Brooks, M. A. 1963. Symbiosis and aposymbiosis in arthropods. In Symboitic Associations, ed. P. S. Nutman and B. Mosse, pp. 200–231. London: Cambridge University Press.Google Scholar
  8. Cabanac, M., and L. Le Guelte. 1980. Temperature regulation and prostaglandin E1 fever in scorpions. J. Physiol. (London) 303:365–370.Google Scholar
  9. Carruthers, R. I., T. S. Larkin, H. Firstencel, and Z. Feng. 1992. Influence of thermal ecology on the mycosis of rangeland grasshoppers. Ecology 73:190–204.CrossRefGoogle Scholar
  10. Casterlin, M. E., and W. W. Reynolds. 1977. Behavioral fever in crayfish. Hydrobiologia 56:99–101.CrossRefGoogle Scholar
  11. Casterlin, M. E., and W. W. Reynolds. 1978. Prostaglandin E1 fever in the crayfish Cambarus bartoni. Pharmacol. Biochem. Behay. 9:593–595.CrossRefGoogle Scholar
  12. Day, M. F., and E. H. Mercer. 1964. Properties of an iridescent virus from the beetle, Sericesthis pruinosa. Austr. J. Biol. Sci. 17:892–902.Google Scholar
  13. De Lestrange, M. Th. 1954. Action de la température sur le virus responsible de la sensibilit à l’anhydride carbonique chez la Drosophile. Compt. Rend. 239:1159–1162.Google Scholar
  14. De Lestrange, M. Th. 1963. Contribution à l’étude du virus héréditaire de la Drosophile: action de l’hyperthermie sur le contenu en virus des tissus somatiques de l’hôte. Ann. Genet. 6:39–96.Google Scholar
  15. Ewald, P. W. 1980. Evolutionary biology and the treatment of signs and symptoms of infections diseases. J. Therm. Biol. 86:169–176.CrossRefGoogle Scholar
  16. Force, D. C., and P. S. Messenger. 1964. Duration of development, generation time, and longevity of three hympenopterous parasites of Therioaphis maculata reared at various temperatures. Ann. Entomol. Soc. Am. 57:405–413.Google Scholar
  17. Girard, M. 1865. Note sur la chaleur considérable des larves de la Galleria carella. Ann. Soc. Entomol. Fr. 4:676–677.Google Scholar
  18. Guppy, J. C. 1969. Some effects of temperature on immature stages of the armyworm, Pseudaletia unipuncta (Lepidoptera: Noctuidae). Can. Entomol. 101:1320–1327.CrossRefGoogle Scholar
  19. Huger, A. 1954. Experimentelle Eliminierung der Symbioten aus den Myzetomen des Getreide Kapuziners, Rhizopertha dominca F. Naturwissenschaften 41:170–171.CrossRefGoogle Scholar
  20. Huger, A. 1956. Experimentelle Untersuchungen über die künstliche Symbiotenelimination bei Vorratsschädlingen: Rhizopertha dominica F. (Bostrychidae) und Oryzaephilus surinamensis L. Z. Morphol. Oekol. Tiere 44:626–701.CrossRefGoogle Scholar
  21. Inoue, H., C. Ayuzawa, and A. Kawamura, Jr. 1972. Effects of high temperature on the multiplication of infectious flacherie virus in the silkworm, Bombyx mori. Appl. Entomol. Zool. 7:155–160.Google Scholar
  22. Inoue, H., and Y. Tanada. 1977. Thermal therapy of the flacherie virus disease in the silkworm, Bombyx mori. J. Invert. Pathol. 29:63–68.Google Scholar
  23. Kaya, H. K., and Y. Tanada. 1969. Responses to high temperature of the parasite Apanteles militaris and of its host, the armyworm, Pseudaletia unipuncta. Ann. Entomol. Soc. Am. 62:1303–1306.Google Scholar
  24. Kluger, M. J. 1979. Fever, Its Biology, Evolution and Function. Princeton, N.J.: Princeton University Press.Google Scholar
  25. Kunkel, L. O. 1936. Heat treatment for the cure of yellows and other virus diseases of peach. Phytopathology 26:809–830.Google Scholar
  26. L’Héritier, Ph., and A. Sigot. 1946. Contribution à l’étude du phénomène de la sensibilité au CO2 chez la Drosophile. Influence du chauffage aux différents stades au développement sur la manifestation de la sensibilité chez l’imago. Bull. Biol. France et Belgique 80:171–227.Google Scholar
  27. Louis, C., M. Jourdan, and M. Cabanc. 1986. Behavioral fever and therapy in a rickettsia-infected orthopteran. Am. J. Physiol. 250:R991–R995.PubMedGoogle Scholar
  28. Lwoff, A., and M. Lwoff. 1958. L’inhibition du développement du virus poliomyélitique à 39 ° et le problème du rôle de l’hyperthermie dans l’évolution des infections virales. Compt. Rend. Acad. Sci. Paris 246:190–192.Google Scholar
  29. MacLeod, D. M. 1963. Entomophthorales infections. In Insect Pathology: An Advanced Treatise, vol. 2, ed. E. A. Steinhaus. New York: Academic.Google Scholar
  30. Maramorosch, K. 1950. Influence of temperature on incubation and transmission of the wound-tumor virus. Phytopathology 40:1071–1093.Google Scholar
  31. Mathavan, S., and T. J. Pandian 1975. Effect of temperature on food utilization in the monarch butterfly Danaus chrysippus. Oikos 26:6064.Google Scholar
  32. McClain, E., P. Magnuson, and S. J. Warner. 1988. Behavioral fever in a Namib Desert tenebrionid beetle, Onymacris plana. J. Insect Physiol. 34:279–284.CrossRefGoogle Scholar
  33. McLaughlin, R. E. 1962. The effect of temperature upon larval mortality of the armyworm, Pseudaletia unipuncta (Haworth). J. Insect Physiol. 4:279–284.Google Scholar
  34. Meeuse, B. J. D. 1966. Production of volatile amines and skatoles at anthesis in some Arum lily species. Plant Physiol. 41:343–347.PubMedCrossRefGoogle Scholar
  35. Miyajima, S. 1970. Effects of high temperature on the incidence of infectious flacherie of the silkworm, Bombyx mori L. Tokai Branch, Seri-cultural Society of Japan, Proceedings 18:28.Google Scholar
  36. Ono, M., I. Okada, and M. Sasaki. 1987. Heat production by balling in the Japanese honeybee, Apis cerana japonica, as a defensive behavior against the hornet, Vespa simillima xanthoptera (Hymenoptera: Vespidae). Experimenta 43:1031–1032.CrossRefGoogle Scholar
  37. Raskin, I., A. Ehmann, W. R. Melander, and B. J. D. Meeuse. 1987. Salicylic acid: A natural inducer of heat production in Arum lilies. Science 237:1545–1656.CrossRefGoogle Scholar
  38. Roberts, D. W., and A. S. Campbell. 1977. Stability of entomopathogenic fungi. Misc. Publ. Entomol. Soc. Am. 10:19–76.Google Scholar
  39. Schneider, H. 1956. Morphologische und experimentelle Untersuchungen über die Endosymbiose der Korn-und Reiskäfer (Calandra granaria L. und Calandra oruzae L.) Z. Morphol. Oekol. Tiere 44:555–625.CrossRefGoogle Scholar
  40. Sherman, P. W., and W. B. Watt. 1973. The thermal ecology of some Colias butterfly larvae. J. Comp. Physiol. 83:25–40.CrossRefGoogle Scholar
  41. Skubatz, H., T. A. Nelson, A. M. Dong, B. J. D. Meeuse, and A. J. Bendich. 1990. Infrared thermography of Arum lily inforescences. Planta 182:432–436.CrossRefGoogle Scholar
  42. Suzuki, S., R. Kimura, and K. Suzuki. 1963. Restraining effect of high temperature on occurrence of disease by some viruses in the silkworm, Bombyx mori L. Kanto Branch, Sericultural Society of Japan, Proceedings 14:65.Google Scholar
  43. Tanada, Y. 1953. Description and characteristics of a granulosis virus of the imported cabbageworm. Proc. Hawaii. Entomol. Soc. 15:235–260.Google Scholar
  44. Tanada, Y. 1967. Effects of high temperatures on the resistance of insects to infectious diseases. J. Seric. Sci. Jpn. 36:333–339.Google Scholar
  45. Tanada, Y., and G. Y. Chang. 1968. Resistance of the alfalfa caterpillar, Collas eurytheme, at high temperatures to a cytoplasmic-polyhedrosis virus and thermal inactivation point of the virus. J. Invert. Phathol. 10:79–83.CrossRefGoogle Scholar
  46. Tanada, Y. and A. M. Tanabe. 1965. Resistance of Galleria mellonella (Linneaus) to the Tipula iridescent virus at high temperatures. J. Invert. Pathol. 7:184–188.CrossRefGoogle Scholar
  47. Thompson, C. G. 1959. Thermal inhibition of certain polyhedrosis virus diseases. J. Insect Pathol. 1:189–190.Google Scholar
  48. Van der Walt, E., E. McClain, A. Puren, and N. Savage. 1990. Phylogeny of arthropod immunity: An inducible humoral response in the Kalahari millipede, Triaenostreptus triodus (Attems).Google Scholar
  49. Watanabe, H., and Y. Tanada. 1972. Infection of nuclear-polyhedrosis virus in armyworm, Pseudaletia unipuncta Haworth (Lepidoptera Noctuidae), reared at a high temperature. Appl. Entomol. Zool. 7:43–51.Google Scholar
  50. Yamaguchi, K., Y. Iwashita, and K. Inoue. 1969. On the midgut-nuclear polyhedrosis in the silkworm, Bombyx mori L. III. Effects of high temperature treatment in the shape of polyhedron of the infected larvae. J. Seric. Sci. Jpn. 38:157–162.Google Scholar

Copyright information

© Bernd Heinrich 1993

Authors and Affiliations

There are no affiliations available

Personalised recommendations