Advertisement

Warm Caterpillars and Hot Maggots

Chapter

Abstract

IT IS difficult to imagine two kinds of animals more different from each other than the larva and the adult of a holometabolous insect-an insect that undergoes complete metamorphosis in its life cycle. Consider a caterpillar and a moth. The larva of a Cocytius moth, a sphinx moth, is a huge, slug-like creature that weighs up to 36 g (D. Janzen, personal communication). It eats green leaves, and like most other insect larvae, it is presumably poikilothermic. But the adult form of the same individual weighs about 6 g and has wings and a scaly covering. It is highly endothermic, and it regulates a T thx near 46 ° C while in hovering flight, harvesting nectar from flowers.

Keywords

Gypsy Moth Temperature Excess Mojave Desert Convective Cool Pitcher Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Ayres, M. P., and S. F. MacLean, Jr. 1987. Molt as a component of insect development: Galerucella sagittariae (Chrysomelidae) and Espirrita autumnata (Geometridae). Oikos 48:273–279.CrossRefGoogle Scholar
  2. Brett, J. R. 1971. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Am. Zool. 11:99–113.Google Scholar
  3. Buchmann, S. L., and H. G. Spangler. 1992. Social thermoregulation by Galleria mellonella L. (Lepidoptera: Pyralidae) larvae and its possible function. Unpublished manuscript.Google Scholar
  4. Capinera, J. L., L. F. Wiener, and P. R. Anamosa. 1980. Behavioral thermoregulation by late-instar range caterpillar larvae Hemileuca oliviae Cockerell (Lepidoptera: Saturniidae). J. Kansas Entomol. Soc. 53:631–638.Google Scholar
  5. Casey, T. M. 1976. Activity patterns, body temperature and thermal ecology of two desert caterpillars (Lepidoptera: Sphingidae). Ecology 56:485–497.CrossRefGoogle Scholar
  6. Casey, T. M. 1977. Physiological responses to temperature of caterpillars of desert populations of Manduca sexta. Comp. Biochem. Physiol. 57A:485–487.Google Scholar
  7. Casey, T. M., and J. R. Hegel. 1981. Caterpillar setae: Insulation for an ectotherm. Science 214:1131–1133.PubMedCrossRefGoogle Scholar
  8. Casey, T. M., B. Joos, T. D. Fitzerald, M. E. Yurlina, and P. A. Young. 1988. Synchronized group foraging, thermoregulation and growth of eastern tent caterpillars. Physiol. Zool. 61:372–377.Google Scholar
  9. Casey, T. M., and R. Knapp. 1987. Caterpillar thermal adaptation: Behavioral differences reflect metabolic thermal sensitivities. Comp. Biochem. Physiol. 86A:679–682.CrossRefGoogle Scholar
  10. Damman, H 1987. Leaf quality and enemy avoidance by the larvae of a pyralid moth. Ecology 68:88–97.CrossRefGoogle Scholar
  11. Downes, J. A. 1965. Adaptations of insects in the Arctic. Ann. Rev. Entomol. 106:257–274.CrossRefGoogle Scholar
  12. Edwards, D. K. 1964. Activity rhythms in lepidopterous defoliators. II. Halisidota argentata Pack (Arctiidae) and Nephystia phastasmaria Stkr. (Geometridae). Can. J. Zool. 42:939–958.CrossRefGoogle Scholar
  13. Eisner, T., E. von Tassel, and J. E. Carrel. 1967. Defense use of a “fecal shield” by a beetle larva. Science 158:1471.PubMedCrossRefGoogle Scholar
  14. Fields, P. G., and J. N. McNeil. 1988. The importance of seasonal variation in hair coloration for thermoregulation of Ctenucha virginica larvae (Lepidoptera: Arctiidae). Physiol. Zool. 13:165–175.Google Scholar
  15. Fitzgerald, T. D. 1980. An analysis of daily foraging patterns of laboratory colonies of the eastern tent caterpillar, Malacosoma americanum (Lepidoptera: Lasiocampidae), recorded photoelectrically. Can. Entomol. 112:731–738.CrossRefGoogle Scholar
  16. Gerould, J. H. 1921. Blue-green caterpillars: The origin and ecology of a mutuation in hemolymph color in Colias (Eurymus) philodice. J. Exp. Biol. 34:385–414.Google Scholar
  17. Girard, M. 1865. Note sur la chaleur considérable des larves de la Galleria cerella. Ann. Soc. Entomol. Fr. 4:676–677.Google Scholar
  18. Girard, M. 1869. Études sur la chaleur libre degagée par les animaux invertebrés et spécialement les insectes. Ann. Sci. Nat. Zool., ser. 5 11:135–274.Google Scholar
  19. Green, G. W. 1955. Temperature relations of ant-lion larvae (Neuroptera: Myemeleontidae). Can. Entomol. 87:441–459.CrossRefGoogle Scholar
  20. Grossmueller, D. W., and R. C. Lederhouse. 1985. Oviposition site selection: An aid to rapid growth and development in the tiger swollentail butterfly, Papilio glaucus. Oecologia (Berlin) 66:68–73.Google Scholar
  21. Haufe, W. O. 1957. Physical environment and behavior of immature stages of Aedes communis (Deq.) in subarctic Canada. Can. Entomol. 89:120–139.CrossRefGoogle Scholar
  22. Heinrich, B. 1971. The effect of leaf geometry on the feeding behavior of the caterpillar of Manduca sexta (Sphingidae). Anim. Behay. 19:119–124.CrossRefGoogle Scholar
  23. Heinrich, B. 1977. Why have some animals evolved to regulate a high body temperature? Am. Nat. 111:62 3–640.Google Scholar
  24. Heinrich, B. 1979. Foraging strategies of caterpillars: Leaf damage and possible avoidance strategies. Oecologia (Berlin) 42:325–337.Google Scholar
  25. Heinrich, B. 1992. Avian predators as constraint on caterpillar foraging. In Ecological and Evolutionary Constraints on Foraging of Caterpillars, ed. N. E. Stamps and T. M. Casey. New York: Chapman and Hall.Google Scholar
  26. Heinrich, B., and S. L. Collins. 1983. Caterpillar leaf damage, and the game of hide-and-seek with birds. Ecology 64:592–602.CrossRefGoogle Scholar
  27. Heinrich, B., and M. Heinrich. 1984. The pit-trapping foraging strategy of the ant lion, Myrmeleon immaculatus DeGeer (Neuroptera: Myrmeleontidae). Behay. Ecol. Sociobiol. 14:151–160.CrossRefGoogle Scholar
  28. Hochachka, P. W., and G. N. Somero. 1973. Strategies of Biochemical Adaptation. Philadelphia: Saunders.Google Scholar
  29. Hsiao, T., and G. Fraenkel. 1969. Properties of Leptinotarsa: A toxic hemolymph protein from the Colorado potato beetle. Toxicon 7:119–130.PubMedCrossRefGoogle Scholar
  30. Huey, R. B. 1982. Temperature, physiology, and ecology of reptiles. In Biology of Reptilia,vol. 12, ed. C. Gans and F. H. Pough, pp. 25–91. London: Academic Press.Google Scholar
  31. Heinrich, B. 1992. Physiological consequences of habitat selection. Am. Nat. 137 (Suppl.): S91–S115.Google Scholar
  32. Huey, R. B., and P. E. Hertz. 1984. Is a jack-of-all-temperatures a master of none? Evolution 38:441–444.CrossRefGoogle Scholar
  33. Jones, J. S., J. A. Coyne, and L. Partridge. 1987. Estimation of the thermal niche of Drosophila melanogaster using a temperature-sensitive mutation. Am. Nat. 130:83–90.CrossRefGoogle Scholar
  34. Joos, B., T. M. Casey, T. D. Fitzgerald, and W. A. Buttemer. 1988. Roles of the tent in behavioral thermoregulation of eastern tent caterpillars. Ecology 69:2004–2011.CrossRefGoogle Scholar
  35. Kavaliers, M. 1981. Rhythmical thermoregulation in larval cranefly (Diptera: Tipulidae). Can. J. Zool. 59:555–558.CrossRefGoogle Scholar
  36. Kevan, P. G., T. W. Jensen, and J. D. Shorthouse. 1982. Body temperatures and behavioral thermoregulation of High Arctic woolly-bear caterpillars and pupae (Gynaephora rossii, Lymantriidae: Lepidoptera) and the importance of sunshine. Arct. Alp. Res. 14:125–136.CrossRefGoogle Scholar
  37. Kingsolver, J. G. 1979. Thermal and hydric aspects of environmental heterogeneity in the pitcher plant mosquito. Ecol. Monogr. 49:357–376.CrossRefGoogle Scholar
  38. Knisley, C. B. and D. L. Pearson. 1981. The function of turret building behaviour in the larval tiger beetle, Cicindela willistoni (Coleoptera: Cicindelidae). Ecol. Entomol. 6:401–410.CrossRefGoogle Scholar
  39. Knapp, R., and T. M. Casey. 1986. Thermal ecology, behavior and growth of gypsy moth and eastern tent caterpillars. Ecology 67:598–608.CrossRefGoogle Scholar
  40. Kukal, O. 1988. Caterpillars on ice: Methuselahs of the insect world, Arctic woolly bears spend most of their long lives in a deep freeze. Nat. Hist. 97:36–41.Google Scholar
  41. Kukal, O., and T. E. Dawson. 1989. Temperature and food quality influences feeding behavior, assimilation efficiency and growth rate of Arctic woolly-bear caterpillars. Oecologia (Berlin) 79:526–532.Google Scholar
  42. Kukal, O., J. D. Duman, and A. S. Serianni. 1989. Cold-induced mitochondrial degradation and cryoprotectant synthesis in freeze-tolerant Arctic caterpillars. J. Comp. Physiol. B158:661–671.Google Scholar
  43. Kukal, O., B. Heinrich, and J. G. Duman. 1988. Behavioural thermoregulation in the freeze-tolerant Arctic caterpillar Gynaephora groenlandica. J. Exp. Biol. 138:181–193.Google Scholar
  44. Kukal, O., and P. G. Kevan. 1987. The influence of parasitism on the life history of a High Arctic insect, Gynaephora groenlandica (Wöcke) (Lepidoptera: Lymantriidae). Can. J. Zool. 65:156–163.CrossRefGoogle Scholar
  45. Markl, H., and J. Tautz. 1975. The sensitivity of hair receptors in caterpillars of Barathra brassicae L. (Lepidoptera, Noctuidae) to particle movement in a sound field. J. Comp. Physiol. 99:79–87.CrossRefGoogle Scholar
  46. Marsh, A. C. 1987. Thermal responses and temperature tolerances of a desert ant-lion larva. J. Therm. Biol. 12:295–300.CrossRefGoogle Scholar
  47. May, M. L. 1982. Body temperature and thermoregulation of the Colorado potato beetle, Leptinotarsa decemlineata. Entomol. Exp. Appl. 31:413–420.CrossRefGoogle Scholar
  48. Minnich, D. E. 1925. The reactions of larva of Vanessa antiopa L. to sounds. J. Exp. Zool. 42:443–469.CrossRefGoogle Scholar
  49. Morris, R. F. 1972a. Predation by insects and spiders inhabiting colonial webs of Hyphantria cunae. Can. Entomol. 104:1197–1207.CrossRefGoogle Scholar
  50. Morris, R. F. 1972b. Predation by wasps, birds, and mammals on Hyphantria cunea. Can. Entomol. 105:1581–1591.CrossRefGoogle Scholar
  51. North, F., and H. Lillywhite. 1980. The function of burrow turrets in a gregariously nesting bee. Southw. Nat. 25:373–378.CrossRefGoogle Scholar
  52. Porter, K. 1982. Basking behaviour in larvae of the butterfly Euphydras aurinia. Oikos 38:308–312.CrossRefGoogle Scholar
  53. Morris, R. F. 1989. Sunshine, sex-ratio and behaviour of Euphydras aurinia larvae. In The Biology of Butterflies, ed. R. I. Vane-Wright and P. R. Ackery, pp. 309–311. Princeton, N.J.: Princeton University Press.Google Scholar
  54. Rawlins, J. E., and R. C. Lederhouse. 1981. Developmental influences of thermal behavior on monarch caterpillars (Danaus plexippus): An adaptation for migration (Lepidoptera: Nymphalidae: Danaidae). J. Kansas Entomol. Soc. 54:387–408.Google Scholar
  55. Regal, P. J. 1967. Voluntary hypothermia in reptiles. Science 155:1551–1553.PubMedCrossRefGoogle Scholar
  56. Schweitzer, D. 1974. Notes on the biology and distribution of the Cuculiinae (Noctuidae). J. Lepid. Soc. 28:5–21.Google Scholar
  57. Seymour, R. S. 1974. Convective and evaporative cooling in the sawfly larvae. J. Insect Physiol. 20:2447–2457.PubMedCrossRefGoogle Scholar
  58. Sherman, P. W., and W. B. Watt. 1973. The thermal ecology of some Colias butterfly larvae. J. Comp. Physiol. 83:25–40.CrossRefGoogle Scholar
  59. Stamp, N. E., and M. D. Bowers. 1990. Variation in food quality and temperature constrain foraging of gregarious caterpillars. Ecology 71:1031–1039.CrossRefGoogle Scholar
  60. Stewart, P. A. 1969. House sparrows and a field infestation of tobacco homworm larvae infecting tobacco. J. Econ. Entomol. 62:956–957.Google Scholar
  61. Thurston, R., and O. Prachuabmoh. 1971. Predation by birds on tobacco hornworm larvae. J. Econ. Entomol. 64:1548–1549.Google Scholar
  62. Wellington, W. G. 1950. Effects of radiation on the temperatures of insectan habitats. Sci. Agric. 30:209–234.Google Scholar
  63. Youthed, G. J. 1973. Some adaptations of myrmeleontid (Neuroptera) and rhagionid (Diptera) larvae to life in hot dry sand. Ph.D. thesis, Rhodes University, Grahamstown, South Africa.Google Scholar

Copyright information

© Bernd Heinrich 1993

Authors and Affiliations

There are no affiliations available

Personalised recommendations