Advertisement

Flies of All Kinds

Chapter
  • 234 Downloads

Abstract

THE order Diptera, the “true flies,” has been around for a long time. Some of the oldest fly fossils (from Australia) date to the Upper Triassic, about 190 million years ago, and the relatively advanced forms already existing then suggests that Diptera must have appeared much earlier than that, possibly in the Permian period, 220 million years ago (McAlpine, 1979). Dinosaurs emerged at about the same time, but they have been extinct for 65 million years.

Keywords

Thoracic Temperature Tethered Flight Perch Height Continuous Flight Ambient Thermal Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Alahiotus, S. N. 1983. Heat shock proteins: A new view on temperature compensation. Comp. Biochem. Physiol. 75B:379–387.Google Scholar
  2. Asit, B., and C. L. Prosser. 1967. Biochemical changes in tissues of goldfish acclimated to high and low temperatures. I. Protein synthesis. Comp. Biochem. Physiol. 21:449–467.CrossRefGoogle Scholar
  3. Bartholomew, G. A., and J. R. B. Lighton. 1986. Endothermy and energy metabolism of a giant tropical fly, Pantopthalmus tabaninus Thunberg. J. Comp. Physiol. B156:461–467.Google Scholar
  4. Byers, G. W. 1969. Evolution of wing reduction in crane flies (Diptera: Tipulidae). Evolution 23:346–354.CrossRefGoogle Scholar
  5. Byers, G. W. 1983. The crane fly genus Chionea in North America. Univ. Kansas Sci. Bull. 52:59–195.Google Scholar
  6. Chappell, M. A., and K. R. Morgan. 1987. Temperature regulation, endothermy, resting metabolism, and flight energetics of tachinid flies (Nowickia sp.). Physiol. Zool. 60:550–559.Google Scholar
  7. Clavel, J. D., and M. F. Clavel. 1969. Influence de la température sur le nombre, le pourcentage d’éclosion et la taille des oeufs fondus par Drosophila melanogaster. Ann. Soc. Entomol. Fr. 5:161–177.Google Scholar
  8. Connor, M. E. 1924. Suggestions for developing a campaign to control yellow fever. Am. J. Trop. Med. 4:277–307.Google Scholar
  9. Czajka, M., and R. E. Lee, Jr. 1990. A rapid cold-hardening response protecting against cold shock injury in Drosophila melanogaster. J. Exp. Biol. 148:245–254.Google Scholar
  10. Digby, P. S. B. 1955. Factors affecting the temperature excess of insects in sunshine. J. Exp. Biol. 32:279–298.Google Scholar
  11. Dingley, F., and J. Maynard Smith. 1968. Temperature acclimatization in the absence of protein synthesis in Drosophila subobscura. J. Insect Physiol. 14:1185–1194.CrossRefGoogle Scholar
  12. Downes, J. A. 1965. Adaptations of insects in the Arctic. Ann. Rev. En tam a 1. 106:257–274.CrossRefGoogle Scholar
  13. Edney, E. B., and R. Barrass. 1962. The body temperature of the tse-tse fly, Glossina morsitans Westwood (Diptera, Muscidae). J. Insect Physiol. 8:469–481.CrossRefGoogle Scholar
  14. Frison, T. H. 1935. The stoneflies, or Plecoptera, of Illinois. Bull. Ill. Nat. Hist. Survey 20:281–471.Google Scholar
  15. Gerday, C. 1982. Soluble calcium-binding proteins from fish and invertebrate muscle? Molecular Physiol. 2:63–87.Google Scholar
  16. Gilbert, F. S. 1984. Thermoregulation and structure of swarms in Syrphus ribesii (Syrphidae). Oikos 42:249–255.CrossRefGoogle Scholar
  17. Hâgvar, S. 1971. Field observations on the ecology of a snow insect, Chionea arancoides Dalm. (Dipt. Tipulidae). Norsk Entomol. Tidskr. 18:33–37.Google Scholar
  18. Haufe, W. O., and L. Burgess. 1956. Development of Aedes at Fort Churchill, Manitoba and predictions of dates of emergence. Ecology 37:500–519.CrossRefGoogle Scholar
  19. Heinrich, B. 1974. Thermoregulation in endothermic insects. Science 185:747–756.PubMedCrossRefGoogle Scholar
  20. Heinrich, B. 1988. One Man’s Owl. Princeton, N.J.: Princeton University Press.Google Scholar
  21. Heinrich, B., and G. A. Bartholomew. 1971. An analysis of pre-flight warm-up in the sphinx moth, Manduca sexta. J. Exp. Biol. 55:223–239.Google Scholar
  22. Heinrich, B., and C. Pantle. 1975. Thermoregulation in small flies (Syrphus sp.): Basking and shivering. J. Exp. Biol. 62:595–610.Google Scholar
  23. Hochachka, P. W. 1965. Isoenzymes in metabolic adaptation of a poikilotherm: Subunit relationships in lactic dehydrogenase of goldfish. Arch. Biochem. Biophys. 111:96–103.PubMedCrossRefGoogle Scholar
  24. Hocking, B., and C. D. Sharplin. 1965. Flower basking by Arctic insects. Nature 206:215.CrossRefGoogle Scholar
  25. Hosgood, S. M. W., and P. A. Parsons. 1968. Plymorphism in natural populations of Drosophila melanogaster for the ability to withstand temperature shocks. Experimentation (Basel) 24:727–728.Google Scholar
  26. Howe, M. A., and M. J. Lelane. 1986. Post-feed buzzing in the tsetse, Glossina morsitans morsitans, is an endothermic mechanism. Physiol. Entomol. 11:279–286.CrossRefGoogle Scholar
  27. Humphrey, W. F., and S. E. Reynolds. 1980. Sound production and endothermy in the horse bot-fly, Gasterophilus intestinalis. Physiol. Entomol. 5:235–242.CrossRefGoogle Scholar
  28. Jones, J. S., J. A. Coyne, and L. Partridge. 1987. Estimation of the thermal niche of Drosophila melanogaster using a temperature-sensitive mutation. Am. Nat. 130:83–90.CrossRefGoogle Scholar
  29. Kevan, P. G. 1972. Heliotropism in some Arctic flowers. Can. Field Nat. 86:41–44.Google Scholar
  30. Kevan, P. G. 1975. Sun-tracking solar furnaces in High Arctic flowers: Significance for pollination and insects. Science 189:723–726.PubMedCrossRefGoogle Scholar
  31. Kimura, M. T. 1988. Adaptations to temperate climates and evolution of overwintering strategies in the Drosophila melanogaster species group. Evolution 42:1288–1297.CrossRefGoogle Scholar
  32. Kohshima, S. 1984. A novel cold-tolerant insect found in a Himalayan glacier. Nature 30:225–227.CrossRefGoogle Scholar
  33. Littlewood, S. C. 1966. Temperature threshold for flight of Trichocera annulata (Meigen) (Dipt., Trichoceridae). Entomol. Mon. Mag. 102:15–18.Google Scholar
  34. Marden, J. H. 1989. Effects of load-lifting constraints on the mating system of a dance fly. Ecology 70:496–502.CrossRefGoogle Scholar
  35. May, M. L. 1976. Warming rates as a function of body size in periodic endotherms. J. Comp. Physiol. 111:55–70.Google Scholar
  36. Maynard Smith, J. 1957. Temperature tolerance and acclimatization in Drosophila subobscura. J. Exp. Biol. 34:85–96.Google Scholar
  37. Maynard Smith, J. 1963. Temperature and rate of aging in poikilotherms. Nature 199:400–402.CrossRefGoogle Scholar
  38. McAlpine, J. F. 1979. Diptera. In Canada and Its Insect Fauna, ed. H. V. Danks, pp. 389–424. Memoirs of the Entomological Society of Canada, 108.Google Scholar
  39. Meats, A. 1973. Rapid acclimation to low temperature in the Queensland fruit fly, Dacus tryoni. J. Insect Physiol. 19:1903–1911.CrossRefGoogle Scholar
  40. Miyan, J. A., and A. W. Ewing. 1985. Is the “click” mechanism of Dipteran flight an artifact of CC14 anaesthesia? J. Exp. Biol. 116:313–322.Google Scholar
  41. Morgan, K. R., and B. Heinrich. 1987. Temperature regulation in bee-and wasp-mimicking syrphid flies. J. Exp. Biol. 133:59–71.Google Scholar
  42. Morgan, K. R., and T. E. Shelly. 1988. Body temperature regulation in desert robber flies (Diptera: Asilidae). Ecol. Entomol. 14:419–428.CrossRefGoogle Scholar
  43. Morgan, K. R., T. E. Shelly, and L. S. Kimsey. 1985. Body temperature regulation, energy metabolism, and wing loading in light-seeking and shade-seeking robber flies. J. Comp. Physiol. B 151:561–570.Google Scholar
  44. Morrison, W. W., and R. Milkman 1978. Modification of heat resistance in Drosophila by selection. Nature 273:49–50.PubMedCrossRefGoogle Scholar
  45. Murphy, P. A., J. T. Giesel, and M. N. Manlove. 1983. Temperature effects on life history variation in Drosophila simulans. Evolution 37:1181–1192.Google Scholar
  46. O’Neill, K. M., W. P. Kemp, and K. A. Johnson. 1990. Behavioural thermoregulation in three species of robber flies (Diptera, Asilidae: Efferia). Anim. Behay. 39:181–191.CrossRefGoogle Scholar
  47. Parsons, P. A. 1978. Boundary conditions for Drosophila resource utilization in temperate regions, especially at low temperatures. Am. Nat. 112:1063–1074.CrossRefGoogle Scholar
  48. Rowe, M. 1989. The own that traded a hoot for a hiss. Nat. His. 5:3233.Google Scholar
  49. Rowley, W. A., and C. L. Graham. 1968. The effect of temperature and relative humidity on the flight performance of female Aedes aegypti. J. Insect Physiol. 14:1251–1257.PubMedCrossRefGoogle Scholar
  50. Schnebel, E. M., and J. Grossfield. 1984. Mating-temperature range in Drosophila. Evolution 38:1296–1307.CrossRefGoogle Scholar
  51. Schneiderman, D., and C. M. Williams. 1955. An experimental analysis of the discontinuous respiration of the cecropia moth silkworm. Biol. Bull. (Woods Hole) 109:123–143.CrossRefGoogle Scholar
  52. Sotavalta, 0.1947. The flight-bee (wing-beat frequency) of insects. Acta Entomol. Fenn. 4:1–117.Google Scholar
  53. Stone, A., C. W. Sabrosky, W. W. Wirth, R. I. Foote, and J. R. Colson. 1965. A Catalogue of the Diptera of America North of Mexico. USDA Agricultural Handbook, 276.Google Scholar
  54. Sugg, P., J. S. Edwards, and J. Baust. 1983. Phenology and life history of Belgica antarctica, an Antarctic midge (Diptera: Chirominidae). Ecol. Entomol. 8:105–113.CrossRefGoogle Scholar
  55. Thiessen, C. J., and J. A. Mutchmoor. 1967. Some effects of thermal acclimation on muscle apyrase activity and mitochondrial number of Periplaneta americana and Musca domestica. J. Insect Physiol. 13:1837–1842.CrossRefGoogle Scholar
  56. Vinogradskaja, O. N. 1942. Body temperature in Anopheles maculipennis Messeae Fall. Zool. Zh. 21:187–195.Google Scholar
  57. Willmer, P. G. 1982a. Thermoregulatory mechanisms in Sarcophaga. Oecologia (Berlin) 53:382–385.Google Scholar
  58. Willmer, P. G. 1982b. Hygrothermal determinants of insect activity patterns: The Diptera of water-lily leaves. Ecol. Entomol. 7:221–231.CrossRefGoogle Scholar
  59. Willmer, P. G., and D. M. Unwin. 1981. Field analysis of insect heat budgets: Reflectance, size and heating rates. Oecologia (Berlin) 50:250–255.Google Scholar
  60. Yurkiewicz, W. J. 1968. Flight range and energetics of the sheep blowfly during flight at different temperatures. J. Insect Physiol. 14:335–339.CrossRefGoogle Scholar
  61. Yurkiewicz, W. J., and T. Smyth, Jr. 1966a. Effect of temperature on flight speed of the sheep blowfly. J. Insect Physiol. 12:195–226.CrossRefGoogle Scholar
  62. Yurkiewicz, W. J., and T. Smyth, Jr. 1966b. Effects of temperature on oxygen consumption and fuel utilization by the sheep blowfly. J. Insect Physiol. 12:403–408.CrossRefGoogle Scholar

Copyright information

© Bernd Heinrich 1993

Authors and Affiliations

There are no affiliations available

Personalised recommendations