The ECG pp 299-321 | Cite as

Electrolyte Imbalances and Disturbances

  • Marc Gertsch


Clinically important abnormalities of electrolytes concern potassium (K) more often than calcium (Ca). A pathologic cellular or serum level of sodium (Na) is not detectable in the ECG, and this is also the case for Hypomagnesemia, which is often combined with hypokalemia. Generally there is a disappointingly low correlation (10%-30%) between the ECG and definitively pathologic serum levels of electrolytes. More importantly, severe or extreme electrolyte imbalance is detectable in the ECG in up to 90%. The recognition of typical ECG patterns or arrhythmias may even represent the first hint for a severe electrolyte disturbance. For instance, an extremely broad QRS may be due to hyperkalemia, and a ventricular tachycardia of the type torsade de pointes may indicate hypokalemia.

Note that in many cases of electrolyte imbalance the etiology is known in advance. In other instances, the reader may find a detailed checklist useful, such as the one provided in Appendix 1 at the end of this chapter.


Ventricular Tachycardia Sinus Rhythm Osteitis Fibrosa Terminal Renal Failure Severe Hyperkalemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ohmae M, Rabkin SW. Hyperkalemia-induced bundle-branch block and complete heart block. Clin Cardiol 198;14:43–6Google Scholar
  2. 2.
    Mohacsi P, Rieben R, Sigurdsson G, et al. Successful treatment of a B-type allograft into an O-type man with 3 year clinical follow-up. Transplantation 2001;72:1328–30PubMedCrossRefGoogle Scholar
  3. 3.
    Tamm M, Ritz R, Truniger B. Der hyperkaliämische Notfall: Ursache, Diagnose und Therapie. Schweiz med Wschr 1990;120:1031–6PubMedGoogle Scholar
  4. 4.
    Acker CG, Johnson JP, Palevsky PM, Greenberg A. Hyperkalemia in hospitalized patients. Arch Intern Med 1998;158:917–24PubMedCrossRefGoogle Scholar
  5. 5.
    Greenberg A. Hyperkalemia: Treatment options. Sem in Nephrol 1998;18:46–57Google Scholar
  6. 6.
    Dreifus LS, Pick A. A clinical correlative study of the electrocardiogram in electrolyte imbalance. Circulation 1956;14:815PubMedCrossRefGoogle Scholar
  7. 7.
    Surawicz B. Relationship of electrocardiogram and electrolytes. Am Heart J 1967;73:814PubMedCrossRefGoogle Scholar
  8. 8.
    Fletcher GF, Hurst JW, Schlant RC. Electrocardiographic changes in severe hypokalemia. A reappraisal. Am J Cardiol 1967;20:628–31PubMedCrossRefGoogle Scholar
  9. 9.
    Halperin ML, Kamel KS. Potassium. Lancet 1998;352:135–40PubMedGoogle Scholar
  10. 10.
    Bronsky D, Dubin A, Kushner DS, et al. Calcium and the electrocardiogram. III. The relationship of the intervals of the electrocardiogram to the level of serum calcium. Am J Cardiol 1961;7:840CrossRefGoogle Scholar
  11. 11.
    Bronsky D, Dubin A, Waldstein SS, et al. Calcium and the electrocardiogram. I. The electrocardiographic manifestations of hyperparathyroidism and of marked hypercalcemia from various other etiologies. Amer J Cardiol 1961;7:833CrossRefGoogle Scholar
  12. 12.
    Bronsky D, Dubin A, Waldstein SS et al. The electrocardiographic manifestations of hypoparathyroidism. Amer J Cardiol 1961;7:823CrossRefGoogle Scholar
  13. 13.
    Miller JR, van Dellen TR. Electrocardiographic changes following the intravenous administration of magnesium sulfate. J Lab Clin Med 1941;26:1116Google Scholar
  14. 14.
    Smith PK. Pharmacologic actions of parenterally administered magnesium salts. Anesthesiology 1942;3:323CrossRefGoogle Scholar
  15. 15.
    Brugada P. Magnesium: an antiarrhythmic drug, but only against very specific arrhythmias (Editorial). Eur Heart J 2000;21:1116PubMedCrossRefGoogle Scholar
  16. 16.
    Stuehlinger HG. The wider use of magnesium (letter). Eur Heart J 2001;22:713–4PubMedCrossRefGoogle Scholar
  17. 17.
    DiCarlo LA, Morady F, Buitleir M, et al. Effects of magnesium sulphate on cardiac conduction and refractoriness in humans. J Am Coll Cardiol 1986;7:1356–62PubMedCrossRefGoogle Scholar
  18. 18.
    Kulick DL, Hong R, Ryzen E, et al. Electrophysiologic effects of intravenous magnesium in patients with normal conduction system and no clinical evidence of cardiac disease. Am Heart J 1988;115:367–73PubMedCrossRefGoogle Scholar
  19. 19.
    The Task Force of the Working Group on Arrhythmias of the European Society of Cardiology. The ‘Sicilian Gambit’. Review. Europ Heart J 1991;12:1112–31Google Scholar
  20. 20.
    Vaughan Williams EM. A classification of antiarrhythmic actions reassessed after a decade of new drugs. J Clin Pharmacol 1984;24:129–47PubMedCrossRefGoogle Scholar
  21. 21.
    Vaughan Williams EM. Significance of classifying antiarrhythmic actions since the cardiac arrhythmia suppression trial. J Clin Pharmacol 1991;31:123–35PubMedCrossRefGoogle Scholar
  22. 22.
    Garratt CJ, Griffith MJ. The Sicilian gambit: an opening move that loses the game? Eur Heart J 1996;17(3):341–3PubMedCrossRefGoogle Scholar
  23. 23.
    Anon. The search for novel antiarrhythmic strategies. Sicilian Gambit. Eur Heart J 1998;19:1178–96CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Marc Gertsch
    • 1
  1. 1.Department of Cardiology, Swiss Cardiovascular Center BernUniversity Clinic InselspitalBernSwitzerland

Personalised recommendations