Skip to main content

The Hardy—Littlewood Theorems

  • Chapter
Tauberian Theory

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 329))

  • 1744 Accesses

Abstract

In various contexts — think of Fourier series or analytic continuation — it is important to have a method which sums a given infinite series Σ n =0 a n . It may be difficult to determine the sum of a convergent series directly, or one may wish to assign a reasonable sum to a possibly divergent series. The simplest summability method is Cesàro’s or the method of arithmetic means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Korevaar, J. (2004). The Hardy—Littlewood Theorems. In: Tauberian Theory. Grundlehren der mathematischen Wissenschaften, vol 329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10225-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10225-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05919-3

  • Online ISBN: 978-3-662-10225-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics