Skip to main content

An Introduction

Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology

  • Chapter
Synergetics

Abstract

Over the past years the field of synergetics has been mushrooming. An ever-increasing number of scientific papers are published on the subject, and numerous conferences all over the world are devoted to it. Depending on the particular aspects of synergetics being treated, these conferences can have such varied titles as “Nonequilibrium Nonlinear Statistical Physics,” “Self-Organization,” “Chaos and Order,” and others. Many professors and students have expressed the view that the present book provides a good introduction to this new field. This is also reflected by the fact that it has been translated into Russian, Japanese, Chinese, German, and other languages, and that the second edition has also sold out. I am taking the third edition as an opportunity to cover some important recent developments and to make the book still more readable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References, Further Reading, and Comments

1. Goal

  • H. Haken, R. Graham: Synergetik-Die Lehre vom Zusammenwirken. Umschau 6. 191 (1971)

    Google Scholar 

  • H. Haken (ed.): Synergetics (Proceedings of a Symposium on Synergetics. Elmau 1972 ) ( B. G. Teubner, Stuttgart 1973 )

    Google Scholar 

  • H. Haken (ed.): Cooperative Effects, Progress in Synergetics ( North Holland, Amsterdam 1974 )

    Google Scholar 

  • H. Haken: Cooperative effects in systems far from thermal equilibrium and in nonphysical systems. Rev. Mod. Phys. 47, 67 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  • H. Haken (ed.): Springer Series in Synergetics,Vols. 2–20 (Springer, Berlin, Heidelberg, New York)

    Google Scholar 

  • For a popularisation see H. Haken: Erfolgsgeheimnisse der Natur (Deutsche Verlagsanstalt, Stuttgart 1981 ) English edition in preparation.

    Google Scholar 

  • J. T. Bonner, D. S. Barkley, E. M. Hall, T. M. Konijn, J. W. Mason, G. O’Keefe, P. B. Wolfe: Develop. Biol. 20, 72 (1969)

    Article  Google Scholar 

  • T. M. Konijn: Advanc. Cycl. Nucl. Res. 1, 17 (1972)

    Google Scholar 

  • A. Robertson, D. J. Drage, M. H. Cohen: Science 175, 333 (1972)

    Article  ADS  Google Scholar 

  • G. Gerisch, B. Hess: Proc. nat. Acad. Sci (Wash.) 71, 2118 (1974)

    Article  Google Scholar 

  • G. Gerisch: Naturwissenschaften 58, 430 (1971)

    Article  ADS  Google Scholar 

2. Probability

  • Kai Lai Chung: Elementary Probability Theory with Stochastic Processes ( Springer, Berlin-Heidelberg-New York 1974 )

    Book  MATH  Google Scholar 

  • W. Feller: An Introduction to Probability Theory and Its Applications, Vol. 1 (Wiley, New York 1968 ), Vol. 2 ( Wiley, New York 1971 )

    Google Scholar 

  • R.C. Dubes: The Theory of Applied Probability (Prentice Hall, Englewood Cliffs, N.J. 1968 )

    Google Scholar 

  • Yu. V. Prokhorov, Yu. A. Rozanov: Probability Theory. In Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 157 (Springer, Berlin-Heidelberg-New York 1968 )

    Google Scholar 

  • J. L. Doob: Stochastic Processes ( Wiley, New York-London 1953 )

    MATH  Google Scholar 

  • M. Loève: Probability Theory (D. van Nostrand, Princeton, N.J.-Toronto-New York-London 1963 )

    Google Scholar 

  • R. von Mises: Mathematical Theory of Probability and Statistics ( Academic Press, New York-London 1964 )

    MATH  Google Scholar 

3. Information

  • Monographs on this subject are: L. Brillouin: Science and Information Theory ( Academic Press, New York-London 1962 )

    Google Scholar 

  • L. Brillouin: Scientific Uncertainty and Information ( Academic Press, New York-London 1964 )

    MATH  Google Scholar 

  • Information theory was founded by C. E. Shannon: A mathematical theory of communication. Bell System Techn. J. 27, 370–423, 623–656 (1948)

    Google Scholar 

  • C. E. Shannon: Bell System Techn. J. 30, 50 (1951)

    Article  MATH  Google Scholar 

  • C. E. Shannon, W. Weaver: The Mathematical Theory of Communication (Univ. of Illin. Press, Urbana 1949 )

    Google Scholar 

  • Some conceptions, related to information and information gain (H-theorem!) were introduced by L. Boltzmann: Vorlesungen über Gastheorie, 2 Vols. (Leipzig 1896, 1898 )

    Google Scholar 

  • For a detailed treatment and definition see S. Kullback: Ann. Math. Statist. 22, 79 (1951)

    Article  Google Scholar 

  • S. Kullback: Information Theory and Statistics (Wiley, New York 1951 ) Here we follow our lecture notes.

    Google Scholar 

  • We follow in this chapter essentially E. T. Jaynes: Phys. Rev. 106, 4, 620 (1957); Phys. Rev. 108, 171 (1957)

    Google Scholar 

  • E. T. Jaynes: In Delaware Seminar in the Foundations of Physics (Springer, Berlin-Heidelberg-New York 1967)

    Google Scholar 

  • Early ideas on this subject are presented in W. Elsasser: Phys. Rev. 52, 987 (1937); Z. Phys. 171, 66 (1968)

    Google Scholar 

  • The approach of this chapter is conceptually based on Jaynes’ papers, I.c. Section 3.3. For textbooks giving other approaches to thermodynamics see

    Google Scholar 

  • Landau-Lifshitz: In Course of Theoretical Physics,Vol. 5: Statistical Physics (Pergamon Press. London-Paris 1952)

    Google Scholar 

  • R. Becker: Theory of Heat ( Springer, Berlin-Heidelberg-New York 1967 )

    Book  Google Scholar 

  • A. Münster: Statistical Thermodynamics, Vol. 1 (Springer, Berlin-Heidelberg-New York 1969 ) H. B. Callen: Thermodynamics ( Wiley, New York 1960 )

    Google Scholar 

  • P. T. Landsberg: Thermodynamics ( Wiley, New York 1961 )

    MATH  Google Scholar 

  • R. Kubo: Thermodynamics ( North Holland, Amsterdam 1968 )

    Google Scholar 

  • W. Brenig: Statistische Theorie der Wärme ( Springer, Berlin-Heidelberg-New York 1975 )

    Book  Google Scholar 

  • W. Weidlich: Thermodynamik and statistische Mechanik ( Akademische Verlagsgesellschaft, Wiesbaden 1976 )

    Google Scholar 

  • An interesting and promising link between irreversible thermodynamics and network theory has been established by

    Google Scholar 

  • A. Katchalsky, P. F. Curran: Nonequilibrium Thermodynamics in Biophysics ( Harvard University Press, Cambridge Mass. 1967 )

    Google Scholar 

  • For a recent representation including also more current results see

    Google Scholar 

  • J. Schnakenberg: Thermodynamic Network Analysis of Biological Systems, Universitext ( Springer, Berlin-Heidelberg-New York 1977 )

    Google Scholar 

  • For detailed texts on irreversible thermodynamics see

    Google Scholar 

  • I. Prigogine: Introduction to Thermodynamics of Irreversible Processes (Thomas, New York 1955 ) I. Prigogine: Non-equilibrium Statistical Mechanics ( Interscience, New York 1962 )

    Google Scholar 

  • S. R. De Groot, P. Mazur: Non-equilibrium Thermodynamics (North Holland, Amsterdam 1962 ) R. Haase: Thermodynamics of Irreversible Processes (Addison-Wesley, Reading, Mass. 1969 )

    Google Scholar 

  • D. N. Zubarev: Non-equilibrium Statistical Thermodynamics ( Consultants Bureau, New York-London 1974 )

    Google Scholar 

  • Here, we present a hitherto unpublished treatment by the present author.

    Google Scholar 

  • For the problem subjectivistic-objectivistic see for example

    Google Scholar 

  • E. T. Jaynes: Information Theory. In Statistical Physics, Brandeis Lectures, Vol. 3 ( W. A. Benjamin, New York 1962 )

    Google Scholar 

  • Coarse graining is discussed by A. Münster: In Encyclopedia of Physics, ed. by S. Flügge, Vol. 1I1/2: Principles of Thermodynamics and Statistics ( Springer, Berlin-Göttingen-Heidelberg 1959 )

    Google Scholar 

  • The concept of entropy is discussed in all textbooks on thermodynamics, cf. references to Section 3.4.

    Google Scholar 

4. Chance

  • For detailed treatments of Brownian motion see for example

    Google Scholar 

  • N. Wax, ed.: Selected Papers on Noise and Statistical Processes (Dover Publ. Inc., New York 1954) with articles by S. Chandrasekhar, G. E. Uhlenbeck and L. S. Ornstein, Ming Chen Wang and G. E. Uhlenbeck, M. Kac

    Google Scholar 

  • T. T. Soong: Random Differential Equations in Science and Engineering ( Academic Press, New York 1973 )

    MATH  Google Scholar 

  • See for instance M. Kac: Am. Math. Month. 54, 295 (1946)

    Google Scholar 

  • M. S. Bartlett: Stochastic Processes (Univ. Press, Cambridge 1960 )

    Google Scholar 

  • See references on stochastic processes, Chapter 2. Furthermore

    Google Scholar 

  • R. L. Stratonovich: Topics in the Theory of Random Noise (Gordon Breach, New York-London, Vol. 1 1963, Vol. II 1967 )

    Google Scholar 

  • M. Lax: Rev. Mod. Phys. 32, 25 (1960); 38, 358 (1965); 38, 541 (1966)

    MathSciNet  MATH  Google Scholar 

  • Path integrals will be treated later in our book (Section 6.6), where the corresponding references may be found.

    Google Scholar 

  • How to Use Joint Probabilities. Momrats. Characteristic Function. Gaussian Processes Same references as on Section 4. 3.

    Google Scholar 

  • The master equation does not only play an important role in (classical) stochastic processes, but also in quantum statistics. Here are some references with respect to quantum statistics:

    Google Scholar 

  • H. Pauli: Probleme der Modernen Physik. Festschrift zum 60. Geburtstage A. Sommerfelds, cd. by P. Debye ( Hirzel, Leipzig 1928 )

    Google Scholar 

  • L. van Hove: Physica 23, 441 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • S. Nakajiama: Progr. Theor. Phys. 20, 948 (1958)

    Article  ADS  Google Scholar 

  • R. Zwanzig: J. Chem. Phys. 33, 1338 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  • E. W. Montroll: Fundamental Problems in Statistical Mechanics, compiled by E. D. G. Cohen (North Holland, Amsterdam 1962 )

    Google Scholar 

  • P. N. Argyres, P. L. Kelley: Phys. Rev. 134, A98 (1964)

    Article  ADS  Google Scholar 

  • For a recent review see F. Haake: In Springer Tracts in Modern Physics, Vol. 66 ( Springer, Berlin-Heidelberg-New York 1973 ) p. 98.

    Google Scholar 

  • H. Haken: Phys. Lett. 46A, 443 (1974); Rev. Mod. Phys. 47, 67 (1975), where further discussions are given.

    Google Scholar 

  • R. Landauer: J. Appl. Phys. 33, 2209 (1962)

    Article  ADS  Google Scholar 

  • G. Kirchhoff: Ann. Phys. Chem., Bd. LXXII 1847, Bd. 12, S. 32

    Google Scholar 

  • G. Kirchhoff: Poggendorffs Ann. Phys. 72, 495 (1844)

    Google Scholar 

  • R. Bott, J. P. Mayberry: Matrices and Trees, Economic Activity Analysis ( Wiley. New York 1954 )

    Google Scholar 

  • E. L. King, C. Altmann: J. Phys. Chem. 60, 1375 (1956)

    Article  Google Scholar 

  • T. L. Hill: J. Theor. Biol. 10, 442 (1966)

    Article  Google Scholar 

  • A very elegant derivation of Kirchhoff’s solution was recently given by W. Weidlich; Stuttgart (unpublished)

    Google Scholar 

  • I. Schnakenberg: Rev. Mod. Phys. 48, 571 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  • J. Keizer: On the Solutions and the Steady States of a Master Equation ( Plenum Press, New York 1972 )

    Google Scholar 

  • P. and T. Ehrenfest: Phys. Z. 8, 311 (1907) and also A. Münster: In Encyclopedia of Physics, ed. by S. Flügge, Vol. III/2; Principles of Thermodynamics and Statistics ( Springer, Berlin-Göttingen-Heidelberg 1959 )

    Google Scholar 

5. Necessity

  • Monographs on dynamical systems and related topics are N. N. Bogoliubov, Y. A. Mitropolsky: Asymptotic Methods in the Theory of Nonlinear Oscillations (Hindustan Publ. Corp., Delhi 1961 )

    Google Scholar 

  • N. Minorski: Nonlinear Oscillations ( Van Nostrand, Toronto 1962 )

    Google Scholar 

  • A. Andronov, A. Vitt, S. E. Khaikin: Theory of Oscillators ( Pergamon Press, London-Paris 1966 )

    MATH  Google Scholar 

  • D. H. Sattinger In Lecture Notes in Mathematics, Vol. 309: Topics in Stability and Bifurcation Theory, ed. by A. Dold, B. Eckmann ( Springer, Berlin-Heidelberg-New York 1973 )

    Google Scholar 

  • M. W. Hirsch, S. Smale: Differential Equations, Dynamical Systems, and Linear Algebra ( Academic Press, New York-London 1974 )

    Google Scholar 

  • V. V. Nemytskn, V. V. Stepanov: Qualitative Theory of Differential Equations (Princeton Univ. Press, Princeton, N.J. 1960 )

    Google Scholar 

  • Many of the basic ideas are duc to

    Google Scholar 

  • H. Poincaré: Oeuvres, Vol. 1 ( Gauthiers-Villars, Paris 1928 )

    Google Scholar 

  • H. Poincaré: Sur l’equilibre d’une masse fluide animée d’un mouvement de rotation. Acta Math. 7 (1885)

    Google Scholar 

  • H. Poincaré: Figures d’equilibre d’une masse fluide (Paris 1903)

    Google Scholar 

  • H. Poincaré: Sur le problème de trois corps et les équations de la dynamique. Acta Math. 13 (1890) H. Poincaré: Les méthodes nouvelles de la méchanique céleste ( Gauthier-Villars, Paris 1892–1899 )

    Google Scholar 

  • J. La Salle, S. Lcfshctz: Stability by Ljapunov’s Direct Method with Applications ( Academic Press, New York-London 1961 )

    Google Scholar 

  • W. Hahn: Stability of Motion. In Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Bd. 138 ( Springer, Berlin-Heidelberg-New York 1967 )

    Google Scholar 

  • D. D. Joseph: Stability of Fluid Motions I and 17, Springer Tracts in Natural Philosophy, Vols. 27, 28 ( Springer, Berlin-Heidelberg-New York 1976 )

    Google Scholar 

  • Exercises 5.3: F. Schlögl: Z. Phys. 243, 303 (1973)

    Google Scholar 

  • A. Lotka: Proc. Nat. Acad. Sci. (Wash.) 6, 410 (1920)

    Article  ADS  Google Scholar 

  • V. Volterra: Leçons sur la théorie mathematiques de la lutte pour la vie (Paris 1931)

    Google Scholar 

  • N. S. God, S. C. Maitra, E. W. Montroll: Rev. Mod. Phys. 43, 231 (1971)

    Article  ADS  Google Scholar 

  • B. van der Pol: Phil. Mag. 43, 6, 700 (1922); 2, 7, 978 (1926); 3, 7, 65 (1927)

    Google Scholar 

  • H. T. Davis: Introduction to Nonlinear Differential and Integral Equations (Dover Publ. Inc., New York 1962 )

    Google Scholar 

  • G. Ioss, D. D. Joseph: Elementary Stability and Bifurcation Theory (Springer, Berlin, Heidelberg, New York 1980 )

    Google Scholar 

  • R. Thom: Structural Stability and Morphogenesis (W. A. Benjamin, Reading, Mass. 1975 ) Thom’s book requires a good deal of mathematical background. Our “pedestrian’s” approach provides a simple access to Thom’s classification of catastrophes. Our interpretation of how to apply these results to natural sciences, for instance biology is, however, entirely different from Thom’s.

    Google Scholar 

  • T. Poston, I. Steward: Catastrophe Theory and its Applications ( Pitman, London 1978 )

    MATH  Google Scholar 

  • E. C. Zeeman: Catastrophe Theory ( Addison-Wesley, New York 1977 )

    MATH  Google Scholar 

  • P. T. Sounders: An Introduction to Catastrophe Theory ( Cambridge University Press, Cambridge 1980 )

    Book  Google Scholar 

6. Chance and Necessity

  • For general approaches see R. L. Stratonovich: Topics in the Theory of Random Noise, Vol. 1 ( Gordon * Breach, New York-London 1963 )

    Google Scholar 

  • M. Lax: Rev. Mod. Phys. 32, 25 (1960); 38, 358, 541 (1966); Phys. Rev. 145, 110 (1966)

    Google Scholar 

  • H. Haken: Rev. Mod. Phys. 47, 67 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  • with further references P. Hänggi, H. Thomas: Phys. Rep. 88, 208 (1982)

    Article  Google Scholar 

  • Here we present a simple example. For general approaches see R. Zwanzig: J. Stat. Phys. 9, 3, 215 (1973)

    Article  Google Scholar 

  • H. Haken: Rev. Mod. Phys. 47, 67 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  • R. L. Stratonovich: Topics in the Theory of Random Noise, Vol. 1 (Gordon * Breach, New York-London 1963 )

    Google Scholar 

  • The more general case for systems in detailed balance is treated by

    Google Scholar 

  • R. Graham, H. Haken: Z. Phys. 248, 289 (1971)

    MathSciNet  ADS  Google Scholar 

  • R. Graham: Z. Phys. B40, 149 (1981)

    Article  Google Scholar 

  • H. Risken: Z. Phys. 251, 231 (1972);

    Article  ADS  Google Scholar 

  • H. Haken: Rev. Mod. Phys. 47, 67 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  • The solution of the n-dimensional Fokker-Planck equation with linear drift and constant diffusion coefficients was given by

    Google Scholar 

  • M. C. Wang, G. E. Uhlenbeck: Rev. Mod. Phys. 17, 2 and 3 (1945)

    Google Scholar 

  • For a short representation of the results see

    Google Scholar 

  • H. Haken: Rev. Mod. Phys. 47, 67 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  • L. Onsager, S. Machlup: Phys. Rev. 91, 1505, 1512 (1953)

    MathSciNet  ADS  MATH  Google Scholar 

  • I. M. Gelfand, A. M. Yaglome: J. Math. Phys. 1, 48 (1960)

    Article  ADS  Google Scholar 

  • R. P. Feynman, A. R. Hibbs: Quantum Mechanics and Path Integrals ( McGraw-Hill, New York 1965 )

    MATH  Google Scholar 

  • F. W. Wiegel: Path Integral Methods in Statistical Mechanics, Physics Reports I6C, No. 2 ( North Holland, Amsterdam 1975 )

    Google Scholar 

  • R. Graham: In Springer Tracts in Modern Physics, Vol. 66 ( Springer, Berlin-Heidelberg-New York 1973 ) p. 1

    Google Scholar 

  • A critical discussion of that paper gives W. Horsthemke, A. Bach: Z. Phys. B22, 189 (1975)

    Google Scholar 

  • We follow essentially H. Haken: Z. Phys. B24,321 (1976) where also classes of solutions of Fokker-Planck equations are discussed.

    Google Scholar 

  • The theory of phase transitions of systems in thermal equlibrium is presented, for example, in the following books and articles

    Google Scholar 

  • L. D. Landau, I. M. Lifshitz: In Course of Theoretical Physics,Vol. 5: Statistical Physics (Perga-mon Press, London-Paris 1959)

    Google Scholar 

  • R. Brout: Phase Transitions ( Benjamin, New York 1965 )

    Google Scholar 

  • L. P. Kadanoff, W. Götze, D. Hamblen, R. Hecht, E. A. S. Lewis, V. V. Palcanskas, M. Rayl

    Google Scholar 

  • J. Swift, D. Aspnes, J. Kane: Rev. Mod. Phys. 39, 395 (1967)

    Article  ADS  Google Scholar 

  • M. E. Fischer: Repts. Progr. Phys. 30, 731 (1967)

    Article  Google Scholar 

  • H. E. Stanley: Introduction to Phase Transitions and Critical Phenomena. Internat. Series of Monographs in Physics (Oxford University, New York 1971 )

    Google Scholar 

  • A. Münster: Statistical Thermodynamics, Vol. 2 ( Springer, Berlin-Heidelberg-New York and Academic Press, New York-London 1974 )

    Google Scholar 

  • C. Domb, M. S. Green, eds.: Phase Transitions and Critical Phenomena,Vols. 1–5 (Academic Press, London 1972–76)

    Google Scholar 

  • The modern and powerful renormalization group technique of Wilson is reviewed by

    Google Scholar 

  • K. G. Wilson, J. Kogut: Phys. Rep. 12 C, 75 (1974)

    Google Scholar 

  • S.-K. Ma: Modern Theory of Critical Phenomena (Benjamin, London 1976 )

    Google Scholar 

  • The profound and detailed analogies between a second order phase transition of a system in thermal equilibrium (for instance a superconductor) and transitions of a non-equilibrium system were first derived in the laser-case in independent papers by

    Google Scholar 

  • R. Graham, H. Haken: Z. Phys. 213,420 (1968) and in particular Z. Phys. 237,31 (1970), who treated the continuum mode laser, and by

    Google Scholar 

  • V. DeGiorgio, M. O. Scully: Phys. Rev. A2, 1170 (1970)

    Google Scholar 

  • For further references elucidating the historical development see Section 13.

    Google Scholar 

  • The Ginzburg-Landau theory is presented, for instance, by

    Google Scholar 

  • N. R. Werthamer: In Superconductivity, Vol. 1, ed. by R. D. Parks ( Marcel Dekker Inc., New York 1969 ) p. 321

    Google Scholar 

  • with further references The exact evaluation of correlation functions is due to D. J. Scalapino, M. Sears, R. A. Ferrell: Phys. Rev. B6, 3409 (1972)

    Google Scholar 

  • Further papers on this evaluation are:

    Google Scholar 

  • L. W. Gruenberg, L. Gunther: Phys. Lett. 38A, 463 (1972)

    Article  Google Scholar 

  • M. Nauenberg, F. Kuttner, M. Fusman: Phys. Rev. A13, 1185 (1976)

    Article  ADS  Google Scholar 

  • R. Graham, H. Haken: Z. Phys. 237, 31 (1970) Furthermore the Chapter 8 and 9

    Google Scholar 

7. Self-Organization

  • H. Haken: unpublished material

    Google Scholar 

  • A different approach to the problem of self-organization has been developed by

    Google Scholar 

  • J. v. Neuman: Theory of Self-reproducing Automata. ed. and completed by Arthur W. Burks (University of Illinois Press, 1966 )

    Google Scholar 

  • For a detailed discussion of reliability as well as switching, especially of computer elements, see R. Landauer: IBM Journal 183 (July 1961)

    Google Scholar 

  • R. Landauer: J. Appl. Phys. 33, 2209 (1962)

    Article  ADS  Google Scholar 

  • R. Landauer, J. W. F. Woo: In Synergetics, ed. by H. Haken ( Teubner, Stuttgart 1973 )

    Google Scholar 

  • H. Haken: Z. Phys. B 20, 413 (1975)

    Google Scholar 

  • Haken: unpublished References, Further Reading, and Comments

    Google Scholar 

  • H. Haken: Z. Phys. B21, 105 (1975)

    Google Scholar 

  • H. Haken: Z. Phys. B22, 69 (1975); B23, 388 (1975)

    Article  Google Scholar 

  • For another treatment of the slaving principle see A. Wunderlin, H. Haken: Z. Phys. B44, 135 (1981) H. Haken, A. Wundcrlin: Z. Phys. B47, 179 (1982)

    Google Scholar 

  • A. Wunderlin, H. Haken: Z. Phys. B21, 393 (1975)

    Google Scholar 

  • For related work see E. Hopf: Berichte der Math.-Phys. Klasse der Sächsischen Akademie der Wissenschaften, Leipzig XCIV, 1 (1942)

    Google Scholar 

  • A. Schlüter, D. Lortz, F. Busse. J. Fluid Mech. 23, 129 (1965)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • A. C. Newell, J. A. Whitehead: J. Fluid Mech. 38, 279 (1969)

    Article  ADS  MATH  Google Scholar 

  • R. C. Diprima, W. Eckhaus, L. A. Segel: J. Fluid Mech. 49, 705 (1971)

    Article  ADS  MATH  Google Scholar 

8. Physical Systems

  • H. Haken: Rev. Mod. Phys. 47, 67 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  • H. Haken, ed.: Synergetics ( Teubner, Stuttgart 1973 )

    MATH  Google Scholar 

  • H. Haken, M. Wagner, eds.: Cooperative Phenomena ( Springer, Berlin-Heidelberg-New York 1973 )

    MATH  Google Scholar 

  • H. Haken, cd.: Cooperative Effects ( North Holland, Amsterdam 1974 )

    Google Scholar 

  • H. Haken (ed.): Springer Series in Synergetics Vols. 2–20 (Springer, Berlin-Heidelberg-New York)

    Google Scholar 

  • The dramatic change of the statistical properties of laser light at laser threshold was first derived and predicted by

    Google Scholar 

  • H. Haken: Z. Phys. 181, 96 (1964)

    Article  ADS  Google Scholar 

  • For a detailed review on laser theory see

    Google Scholar 

  • H. Haken: In Encyclopedia of Physics,Vol. XXV!c: Laser Theory (Springer, Berlin-HeidelbergNew York 1970)

    Google Scholar 

  • Compare especially H. Haken: Rev. Mod. Phys. 47, 67 (1975)

    Article  Google Scholar 

  • The laser distribution function was derived by H. Risken: Z. Phys. 186, 85 (1965) and

    Google Scholar 

  • R. D. Hempstead, M. Lax: Phys. Rev. 161, 350 (1967)

    Article  ADS  Google Scholar 

  • For a fully quantum mechanical distribution function cf. W. Weidlich, H. Risken, H. Haken: Z. Phys. 201, 396 (1967)

    Article  Google Scholar 

  • M. Scully, W. E. Lamb: Phys. Rev. 159, 208 (1967): 166, 246 (1968)

    Article  Google Scholar 

  • H. Haken: Z. Phys. 219, 246 (1969)

    Article  ADS  Google Scholar 

  • For a somewhat different treatment see R. Graham, H. Haken: Z. Phys. 237, 31 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  • J. F. Scott, M. Sargentlll, C. D. Cantrell: Opt. Commun. 15, 13 (1975)

    Article  ADS  Google Scholar 

  • W. W. Chow, M. O. Scully, E. W. van Stryland: Opt. Commun. 15, 6 (1975)

    Article  ADS  Google Scholar 

  • We follow essentially H. Haken, H. Ohno: Opt. Commun. 16, 205 (1976)

    Article  ADS  Google Scholar 

  • H. Ohno, H. Haken: Phys. Lett. 59A, 261 (1976), and unpublished work

    Google Scholar 

  • For a machine calculation see H. Risken, K. Nummedal: Phys. Lett. 26A, 275 (1968); J. appl. Phys. 39, 4662 (1968)

    Article  ADS  Google Scholar 

  • For a discussion of that instability see also

    Google Scholar 

  • R. Graham, H. Haken: Z. Phys. 213, 420 (1968)

    Article  ADS  Google Scholar 

  • For temporal oscillations of a single mode laser cf.

    Google Scholar 

  • K. Tomita, T. Todani, H. Kidachi: Phys. Lett. 51 A, 483 (1975)

    Google Scholar 

  • For further synergetic effects see R. Bonifacio (ed.): Dissipative Systems in Quantum Optics, Topics Current Phys., Vol. 27 ( Springer, Berlin-Heidelberg-New York 1982 )

    Google Scholar 

  • Some monographs in hydrodynamics: L. D. Landau, E. M. Lifshitz: In Course of Theoretical Physics,Vol. 6: Fluid Mechanics (Perga-mon Press, London-New York-Paris-Los Angeles 1959)

    Google Scholar 

  • Chia-Shun-Yih: Fluid Mechanics ( McGraw Hill, New York 1969 )

    Google Scholar 

  • G. K. Batchelor: An Introduction to Fluid Dynamics ( University Press, Cambridge 1970 )

    Google Scholar 

  • S. Chandrasekhar: Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford 1961, Stability problems are treated particularly by Chandrasekhar I.c. and by C. C. Lin: Hydrodynamic Stability (University Press, Cambridge 1967 ) We follow essentially

    Google Scholar 

  • H. Haken: Phys. Lett. 46A, 193 (1973) and in particular Rev. Mod. Phys. 47, 67 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  • For related work see R. Graham: Phys. Rev. Lett. 31, 1479 (1973): Phys. Rev. 10, 1762 (1974)

    Article  Google Scholar 

  • A. Wunderlin: Thesis, Stuttgart University (1975)

    Google Scholar 

  • J. Swift, P. C. Hohenberg: Phys. Rev. A15, 319 (1977)

    Article  ADS  Google Scholar 

  • For the analysis of mode-configurations, but without fluctuations, cf. A. Schlüter, D. Lortz, F. Busse: J. Fluid Mech. 23, 129 (1965)

    Article  MathSciNet  Google Scholar 

  • F. H. Busse: J. Fluid Mech. 30. 625 (1967)

    Article  ADS  MATH  Google Scholar 

  • A. C. Newell, J. A. Whitehead: J. Fluid Mech. 38, 279 (1969)

    Article  ADS  MATH  Google Scholar 

  • R. C. Diprima, H. Eckhaus, L. A. Segel: J. Fluid Mech. 49, 705 (1971)

    Article  ADS  MATH  Google Scholar 

  • Higher instabilities are discussed by F. H. Busse: J. Fluid Mech. 52, 1, 97 (1972)

    Article  Google Scholar 

  • D. Ruelle, F. Takens: Comm. Math. Phys. 20, 167 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • J. B. McLaughlin, P. C. Martin: Phys. Rev. Al2, 186 (1975)

    Google Scholar 

  • J. Gollup, S. V. Benson: In Pattern Formation by Dynamic Systems and Pattern Recognition. (ed. by H. Haken), Springer Series in Synergetic Vol. 5 (Springer, Berlin-Heidelberg-New York 1979) where further references may be found.

    Google Scholar 

  • A review on the present status of experiments and theory give the books

    Google Scholar 

  • Fluctuations, Instabilities and Phase Transitions,ed. by T. Riste (Plenum Press, New York 1975)

    Google Scholar 

  • H. L. Swinney, J. P. Gollub (eds.): Hydrodynamic Instabilities and the Transitions to Turbulence. Topics App1. Phys., Vol. 45 ( Springer, Berlin-Heidelberg-New York 1981 )

    Google Scholar 

  • For a detailed treatment of analogies between fluid and laser instabilities c.f.

    Google Scholar 

  • M. G. Velarde: In Evolution of Order and Chaos,ed. by H. Haken, Springer Series in Synergetics, Vol.17 (Springer, Berlin-Heidelberg-New York 1982) where further references may be found.

    Google Scholar 

  • J. B. Gunn: Solid State Commun. 1, 88 (1963)

    Article  ADS  Google Scholar 

  • J. B. Gunn: IBM J. Res. Develop. 8, (1964)

    Google Scholar 

  • For a theoretical discussion of this and related effects see for instance H. Thomas: In Synergetics, ed. by H. Haken ( Teubner, Stuttgart 1973 )

    Google Scholar 

  • Here, we follow essentially K. Nakamura: J. Phys. Soc. Jap. 38, 46 (1975)

    Article  Google Scholar 

  • Introductions to this field give J. M. T. Thompson, G. W. Hunt: A General Theory of Elastic Stability ( Wiley. London 1973 )

    MATH  Google Scholar 

  • K. Huseyin: Nonlinear Theory of Elastic Stability ( Nordhoff, Leyden 1975 )

    MATH  Google Scholar 

9. Chemical and Biochemical Systems

  • In this chapter we particularly consider the occurrence of spatial or temporal structures in chemical reactions.

    Google Scholar 

  • Concentration oscillations were reported as early as 1921 by

    Google Scholar 

  • C. H. Bray: J. Am. Chem. Soc. 43, 1262 (1921)

    Article  Google Scholar 

  • A different reaction showing oscillations was studied by

    Google Scholar 

  • B. P. Belousov: Sb. ref. radats. med. Moscow (1959)

    Google Scholar 

  • This work was extended by Zhabotinsky and his coworkers in a series of papers

    Google Scholar 

  • V. A. Vavilin, A. M. Zhabotinsky, L. S. Yaguzhinsky: Oscillatory Processes in Biological and Chemical Systems (Moscow Science Publ. 1967 ) p. 181

    Google Scholar 

  • A. N. Zaikin, A. M. Zhabotinsky: Nature 225, 535 (1970)

    Article  ADS  Google Scholar 

  • A. M. Zhabotinsky, A. N. Zaikin: J. Theor. Biol. 40, 45 (1973)

    Article  Google Scholar 

  • A theoretical model accounting for the occurrence of spatial structures was first given by A. M. Turing: Phil. Trans. Roy. Soc. B 237, 37 (1952)

    Article  Google Scholar 

  • Models of chemical reactions showing spatial and temporal structures were treated in numerous publications by Prigogine and his coworkers.

    Google Scholar 

  • P. Glansdorff, I. Prigogine: Thermodynamik Theory of Structures, Stability and Fluctuations (Wiley, New York 1971) with many references, and

    Google Scholar 

  • G. Nicolis, I. Prigogine: Self-organization in Non-equilibrium Systems (Wiley, New York 1977) Prigogine has coined the word “dissipative structures”. Glansdorff and Prigogine base their work on entropy production principles and use the excess entropy production as means to search for the onset of an instability. The validity of such criteria has been critically investigated by R. Landauer: Phys. Rev. A 12, 636 (1975). The Glansdorff-Prigogine approach does not give an answer to what happens at the instability point and how to determine or classify the new evolving structures. An important line of research by the Brussels school, namely chemical reaction models, comes closer to the spirit of Synergetics.

    Google Scholar 

  • A review of the statistical aspects of chemical reactions can be found in

    Google Scholar 

  • D. McQuarry: Supplementary Review Series in Appl. Probability (Methuen, London 1967 ) A detailed review over the whole field gives the

    Google Scholar 

  • Faraday Symposium 9: Phys. Chemistry of Oscillatory Phenomena, London (1974) Y. Schiffmann: Phys. Rep. 64, 88 (1980)

    Google Scholar 

  • For chemical oscillations see especially

    Google Scholar 

  • G. Nicolis, J. Portnow: Chem. Rev. 73, 365 (1973)

    Article  Google Scholar 

  • We essentially follow F. Schlögl: Z. Phys. 253, 147 (1972)

    Google Scholar 

  • who gave the steady state solution. The transient solution was determined by

    Google Scholar 

  • H. Ohno: Stuttgart (unpublished)

    Google Scholar 

  • We give here our own nonlinear treatment (A. Wunderlin, H. Haken, unpublished) of the reac- tion-diffusion equations of the “Brusselator” reaction, originally introduced by Prigogine and coworkers, 1.c. For related treatments see

    Google Scholar 

  • J. F. G. Auchmuchty, G. Nicolis: Bull. Math. Biol. 37, 1 (1974)

    Google Scholar 

  • Y. Kuramoto, T. Tsusuki: Progr. Theor. Phys. 52, 1399 (1974)

    Article  ADS  Google Scholar 

  • M. Herschkowitz-Kaufmann: Bull. Math. Biol. 37, 589 (1975)

    Article  Google Scholar 

  • The Belousov-Zhabotinsky reaction is described in the already cited articles by Belousov and Zhabotinsky.

    Google Scholar 

  • The “Oregonator” model reaction was formulated and treated by

    Google Scholar 

  • R. J. Field, E. Korös, R. M. Noyes: J. Am. Chem. Soc. 49, 8649 (1972) R. J. Field, R. M. Noyes: Nature 237, 390 (1972)

    Google Scholar 

  • R. J. Field, R. M. Noyes: J. Chem Phys. 60, 1877 (1974)

    Article  ADS  Google Scholar 

  • R. J. Field, R. M. Noyes: J. Am. Chem. Soc. 96, 2001 (1974)

    Google Scholar 

  • A first treatment of this model is due to

    Google Scholar 

  • V. J. McNeil, D. F. Walls: J. Stat. Phys. 10, 439 (1974)

    Article  ADS  Google Scholar 

  • The master equation with diffusion is derived by

    Google Scholar 

  • H. Haken: Z. Phys. B20, 413 (1975)

    Google Scholar 

  • C. H. Gardiner, K. J. McNeil, D. F. Walls, I. S. Matheson: J. Stat. Phys. 14. 4. 307 (1976)

    Article  ADS  Google Scholar 

  • Related to this chapter are the papers by

    Google Scholar 

  • G. Nicolis, P. Aden, A. van Nypelseer: Progr. Theor. Phys. 52, 1481 (1974)

    Article  ADS  Google Scholar 

  • M. Malek-Mansour, G. Nicolis: preprint Febr. 1975 We essentially follow

    Google Scholar 

  • H. Haken: Z. Phys. B 20. 413 (1975)

    Article  ADS  Google Scholar 

  • Related to this chapter are G. F. Oster, A. S. Perelson: Chem. Reaction Dynamics. Arch. Rat. Mech. Anal. 55. 230 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  • A. S. Perelson, G. F. Oster: Chem. Reaction Dynamics, Part IL Reaction Networks. Arch Rat. Mech. Anal. 57, 31 (1974/75)

    Google Scholar 

  • G. F. Oster, A. S. Perelson, A. Katchalsky: Quart. Rev. Biophys. 6, 1 (1973)

    Article  Google Scholar 

  • O. E. Rössler: In Lecture Notes in Biomathematics, Vol. 4 ( Springer, Berlin-Heidelberg-New York 1974 ) p. 419

    Google Scholar 

  • O. E. Rössler: Z. Naturforsch. Ma, 255 (1976)

    Google Scholar 

10. Applications to Biology

  • For general treatments see N. S. Goel, N. Richter-Dyn: Stochastic Models in Biology ( Academic Press. New York 1974 )

    Google Scholar 

  • D. Ludwig: In Lecture Notes in Biomathematics, Vol. 3: Stochastic Population Theories, ed. by S. Levin (Springer, Berlin-Heidelberg-New York 1974 )

    Google Scholar 

  • For a different treatment of the problem of this section see V. T. N. Reddy: J. Statist. Phys. 13, 1 (1975)

    Article  Google Scholar 

  • The equations discussed here seem to have first occurred in the realm of laser physics, where they explained mode-selection in lasers (H. Haken, H. Sauermann: Z. Phys. 173, 261 (1963)). The application of laser-type equations to biological processes was suggested by

    Google Scholar 

  • H. Haken: Talk at the Internat. Conference From Theoretical Physics to Biology, ed. by M. Marois, Versailles 1969

    Google Scholar 

  • H. Haken: In From Theoretical Physics to Biology, ed. by M. Marois ( Karger, Basel 1973 )

    MATH  Google Scholar 

  • A comprehensive and detailed theory of evolutionary processes has been developed by M. Eigen: Die Naturwissenschaften 58, 465 (1971).

    Article  Google Scholar 

  • With respect to the analogies emphasized in our book it is interesting to note that Eigen’s “Bewertungsfunktion” is identical with the saturated gain function (8.35) of multimode lasers.

    Google Scholar 

  • An approach to interpret evolutionary and other processes as games is outlined by M. Eigen, R. Winkler-Oswatitsch: Das Spiel ( Piper, München 1975 )

    Google Scholar 

  • An important new concept is that of hypercycles and, connected with it, of “quasi-species” M. Eigen, P. Schuster: Naturwissensch. 64, 541 (1977); 65, 7 (1978): 65, 341 (1978)

    Google Scholar 

  • We present here a model due to Gicrer and Meinhardt cf.

    Google Scholar 

  • A. Gierer, M. Meinhardt: Biological pattern formation involving lateral inhibition. Lectures on Mathematics in the Life Sciences 7, 163 (1974)

    MathSciNet  Google Scholar 

  • H. Meinhardt: The Formation of Morphogenetic Gradients and Fields. Ber. Deutsch. Bot. Ges. 87, 101 (1974)

    Google Scholar 

  • H. Meinhardt, A. Gicrer: Applications of a theory of biological pattern formation based on lateral inhibition. J Cell. Sci. 15, 321 (1974)

    Google Scholar 

  • H. Meinhardt: preprint 1976

    Google Scholar 

  • H. Meinhardt: Models of Biological Pattern Formation ( Academic, London 1982 )

    Google Scholar 

  • We present here results by H. Haken and H. Olbrich. J. Math. Biol. 6, 317 (1978)

    Google Scholar 

11. Sociology and Economics

  • We present here Weidlich’s model.

    Google Scholar 

  • W. Weidlich: Collective Phenomena 1, 51 (1972)

    Google Scholar 

  • W. Weidlich: Brit. J. math. stat. Psycho!. 24, 251 (1971)

    Article  MATH  Google Scholar 

  • W. Weidlich: In Svnergetics, ed. by H. Haken ( Teubner, Stuttgart 1973 )

    Google Scholar 

  • The following monographs deal with a mathematization of sociology:

    Google Scholar 

  • J. S. Coleman: Introduction to Mathematical Sociology ( The Free Press, New York 1964 )

    Google Scholar 

  • D. J. Bartholomew: Stochastic Models for Social processes ( Wiley, London 1967 )

    Google Scholar 

  • W. Weidlich, G. Haag: Concepts and Models of a Quantitative Sociology, Springer Ser. Synergetics, Vol. 14 ( Springer, Berlin-Heidelberg-New York 1983 )

    Google Scholar 

  • I present here my “translation” [first published in the German version: Synergetik. Eine Einführung (Springer, Berlin Heidelberg, New York 1982)] of an economic model by G. Mensch et al. into the formalism and language of synergetics.

    Google Scholar 

  • G. Mensch, K. Kaasch, A. Kleinknecht, R. Schnapp: “Innovation Trends, and Switching Between Full-and Under-Employment Equilibria”, IIMjdp 80–5, Discussion paper series International Institute of Management, Wissenschaftszentrum Berlin (1950–1978)

    Google Scholar 

12. Chaos

13. Some Historical Remarks and Outlook

  1. J. F. G. Auchmuchty, G. Nicolis: Bull. Math. Biol. 37, 323 (1975)

    Google Scholar 

  2. L. von Bertalanffi: Blätter für Deutsche Philosophie 18. Nr. 3 and 4 (1945); Science 111, 23 (1950); Brit. J. Phil. Sci. 1, 134 (1950): Biophysik des Fließgleichgewichts ( Vieweg, Braunschweig 1953 )

    Google Scholar 

  3. G. Czajkowski: Z. Phys. 270, 25 (1974)

    Article  ADS  Google Scholar 

  4. V. DeGiorgio, M. O. Scully: Phys. Rev. A 2, 117a (1970)

    Article  ADS  Google Scholar 

  5. P. Glansdorff, I. Prigogine: Thermodynamic Theory of Structure, Stability and Fluctuations ( Wiley, New York 1971 )

    MATH  Google Scholar 

  6. R. Graham, H. Haken: Z. Phys. 213, 420 (1968); 237, 31 (1970)

    Article  Google Scholar 

  7. H. Haken: Z. Phys. 181, 96 (1964)

    Article  ADS  Google Scholar 

  8. M. Herschkowitz-Kaufman: Bull. Math. Biol. 37, 589 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. K. H. Janssen: Z. Phys. 270, 67 (1974)

    Article  ADS  Google Scholar 

  10. G. J. Klir: The Approach to General Systems Theory ( Van Nostrand Reinhold Comp., New York 1969 )

    Google Scholar 

  11. G. J. Klir, ed.: Trends in General Systems Theory ( Wiley, New York 1972 )

    MATH  Google Scholar 

  12. R. Landauer: IBM J. Res. Dev. 5, 3 (1961); J. Appl. Phys. 33, 2209 (1962); Ferroelectrics 2, 47 (1971)

    Google Scholar 

  13. E. Laszlo (cd.): The Relevance of General Systems Theory ( George Braziller, New York 1972 )

    Google Scholar 

  14. I. Matheson, D. F. Walls, C. W. Gardiner: J. Stat. Phys. 12, 21 (1975)

    Article  ADS  Google Scholar 

  15. A. Nitzan, P. Ortoleva, J. Deutch, J. Ross: J. Chem. Phys. 61, 1056 (1974)

    Article  ADS  Google Scholar 

  16. Prigogine, G. Nicolis: J. Chem. Phys. 46, 3542 (1967)

    Article  ADS  Google Scholar 

  17. I. Prigogine, R. Lefever: J. Chem. Phys. 48, 1695 (1968)

    Article  ADS  Google Scholar 

  18. A. M. Turing: Phil. Trans. Roy. Soc. B 234, 37 (1952)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haken, H. (2004). An Introduction. In: Synergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10184-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10184-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07405-9

  • Online ISBN: 978-3-662-10184-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics