Advertisement

Comparisons Between Human Perception and Machine “Perception”

  • Hermann Haken
Part of the Springer Series in Synergetics book series (SSSYN, volume 50)

Abstract

In this second part of the book we shall investigate how one can establish relations between the concept and the performance of a synergetic computer and our understanding of cognitive processes in the human brain. Or, to be more modest, we shall ask the question: To what extent can the synergetic computer mimic mental abilities?

Keywords

Human Perception Test Pattern Image Point Matching Feature Fourier Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. H. Haken, J.A.S. Kelso, H. Bunz: Biol. Cybern. 51, 347–356 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  2. W. J. Levelt: Speaking. From Intention to Articulation (MIT Press, Cambridge, MA 1989) G. Schöner, H. Haken, J.A.S. Kelso: Biol. Cybern. 53, 247 (1986)CrossRefGoogle Scholar
  3. S. Del-Prete: Illusorismen, Illusorismes, Illusorisms, 3rd ed. ( Benteli, Bern 1984 )Google Scholar
  4. This section is based largely on. Hönlinger: Diplom Thesis, Stuttgart (1989) andGoogle Scholar
  5. A. Fiorentini, I. Maffei, G. Sandini: Perception 12, 195–201 (1983)CrossRefGoogle Scholar
  6. A.J. O’Toole, R.B. Millward, J.A. Anderson: Neural Networks, Vol. I No. 3 (1988), who also propose an alternative theoretical interpretationGoogle Scholar
  7. Dhond, J.K. Aggarwal: Structure from stereo — a review, IEEE Trans Systems Man Cybern. 19 1489–1510 (1989) Overview of computational and biological models:Google Scholar
  8. S.T. Barnard, M.A. Fischler: Computational stereo, Comput. Surveys 14, 553–572 (1990)CrossRefGoogle Scholar
  9. H.G.E. Hentschel, A. Fine: Statistical mechanics of stereoscopic vision, Phys. Rev. A 40, 3983–3997 (1989)CrossRefGoogle Scholar
  10. S. Geman, D. Geman: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Machine Intell. 6, 721–741 (1984)zbMATHCrossRefGoogle Scholar
  11. A. Yeuille, D. Geiger, H. Bülthoff: Stereo integration, mean field theory and psychophysics, Network 2, 423–442 (1991)CrossRefGoogle Scholar
  12. D. Terzoupulos, A. Witkin, M. Kass: Stereomatching as constrained optimization using scale continuation methods, Optical and Digital Pattern Recognition SPIE 754, 92–99 (1987)Google Scholar
  13. G. Julesz: Foundations of cyclopean perception ( University of Chicago Press, Chicago, 1991 )Google Scholar
  14. D. Reimann, H. Haken: Stereo vision by self-organization, Biol. Cybern. 71, 17–26 (1994)zbMATHCrossRefGoogle Scholar
  15. D. Marr, H. Hildreth: Theory of edge detection, Proc. R. Soc. Lond [Biol] 207, 187–217 (1980) D. Marr, T. Poggio: Cooperative computation of stereo disparity, Science 194 283–287 (1976) D. Man, T. Poggio: A computational theory of human stereo vision, Proc. R. Soc. Lond [Biol] 204 301–328(1979)Google Scholar
  16. D. Reimann, T. Ditzinger, H. Haken: Vergence eye movement control and multivalent perception of autostereograms, Biol. Cybern. 73, 123–128 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Hermann Haken
    • 1
  1. 1.Institut für Theoretische Physik und SynergetikUniversität StuttgartStuttgartGermany

Personalised recommendations