Skip to main content

Liquid Crystal Alignment on Surfaces with Orientational Molecular Order: A Microscopic Model Derived from Soft X-ray Absorption Spectroscopy

  • Chapter

Abstract

To investigate the microscopic origin of liquid crystal alignment on rubbed polymer surfaces several novel experimental techniques have been developed, which allow probing of the liquid crystal-polymer interface on a molecular level. The understanding of the alignment mechanism presented in this Chapter is based on the detection of the molecular orientation at rubbed polymer surfaces by surface sensitive, polarization dependent soft x-ray absorption spectroscopy resolving the near edge x-ray absorption fine structure (NEXAFS) of the absorption coefficient. NEXAFS spectroscopy is a powerful experimental technique for the investigation of ordering phenomena in thin films and at surfaces with element specificity, chemical selectivity, and sensitivity to the presence of orientational order. Its sampling depth can be tuned from the outermost surface layer only to a few ten nanometers deep into the film bulk. Also, this technique is especially powerful for the investigation of ordering phenomena in the absence of long-range order, as often the case in polymers, due to the local nature of the x-ray absorption process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. de Groot, J. Elec. Spectrosc. Relat. Phenom. 67, 529 (1994).

    Article  Google Scholar 

  2. K. Siegbahn, ESCA; Atomic, Molecular, and Solid State Structure Studied by means of Electron Spectroscopy, Almqvist & Wiksells, Uppsala, 1967.

    Google Scholar 

  3. J. Stöhr and M.G. Samant, J. Elec. Spectrosc. Relat. Phenom. 98, 189 (1999).

    Article  Google Scholar 

  4. I. Mori, T. Araki, H. Ishii, Y. Ouchi, K. Seki, and K. Kondo, J. Elec. Spectrosc. Relat. Phenom. 78, 371 (1996).

    Article  Google Scholar 

  5. J. Stöhr, H.A. Padmore, S. Anders, T. Stammler, and M.R. Scheinfein, Surface Review and Letters 5, 1297 (1998).

    Article  ADS  Google Scholar 

  6. J. Stöhr, NEXAFS Spectroscopy, Springer Series in Science, Vol. 25, Heidelberg, 1992.

    Google Scholar 

  7. J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley, London, 1967.

    Google Scholar 

  8. E.W. Thulstrup and J. Michl, Elementary Polarization Spectroscroscopy, VCH Publishers, Inc., New York, 1989.

    Google Scholar 

  9. P.G. De Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford, 1993.

    Google Scholar 

  10. B.T. Thole, G. van der Laan, J.C. Fuggle, G.A. Sawatzky, R.C. Karnatak, and J.M. Esteva, Phys. Rev. B 32 5107 (1985).

    Article  ADS  Google Scholar 

  11. S. Tanuma, C. Powell, and D. Penn, Surface and Interface Analysis 21, 165 (1994).

    Article  Google Scholar 

  12. N. van Aerie, Liquid Crystals 17, 585 (1994).

    Article  Google Scholar 

  13. S. Ishihara, H. Wakemoto, K. Nakazima, and Y. Matsuo, Liquid Crystals 4, 669 (1989).

    Article  Google Scholar 

  14. Y. Ouchi, I. Mori, M. Sei, E. Ito, T. Araki, H. Ishii, K. Seki, and K. Kondo, Physica B 209, 407 (1995).

    Article  ADS  Google Scholar 

  15. M.G. Samant, J. Stöhr, H.R. Brown, T.P. Russell, J.M. Sands, and S.K. Kumar, Macromolecules 29, 8334 (1996).

    Article  ADS  Google Scholar 

  16. K. Weiss, C. Wöll, E. Böhm, B. Fiebranz, G. Forstmann, B. Peng, V. Scheumann,, and D. Johannsmann, Macromolecules 31, 1930 (1998).

    Article  ADS  Google Scholar 

  17. J. Stöhr, M.G. Samant, A. Cossy-Favre, J. Diaz, Y. Momoi, S. Odahara, and T. Nagata, Macromolecules 31, 1942 (1998).

    Article  ADS  Google Scholar 

  18. Y. Liu, T.P. Russell, M.G. Samant, J. Stöhr, H.R. Brown, A. Cossy-Favre, and J. Diaz, Macromolecules 30, 7768 (1997).

    Article  ADS  Google Scholar 

  19. J.M. Geary, J.W. Goodby, A.R. Kmetz, and J.S. Patel, J. Appl. Phys. 62, 4100 (1987).

    Article  ADS  Google Scholar 

  20. S. Kobayashi and Y. Iimura, Proc. SPIE, Liquid Crystal Materials, Devices, and Applications III, edited by Ranganathan Shashidhar, 2175, 122 (1994).

    Google Scholar 

  21. K.W. Lee, S.H. Paek, A. Lien, C. Durning, and H. Fukuro, Macromolecules 29, 8894 (1996).

    Article  ADS  Google Scholar 

  22. K.-W. Lee, S. Paek, A. Lien, C. Durning, and H. Fukuro, in K.L. Mittal and K.-W. Lee, editors, Polymer Surfaces and Interfaces: Characterization, Modification and Application, VSP, The Netherlands, 1996.

    Google Scholar 

  23. H. Mada and T. Sonoda, Jpn. J. Appl. Phys. Part 2 Lett. 32, L1245 (1993).

    Article  Google Scholar 

  24. M.F. Toney, T.P. Russell, J.A. Logan, H. Kikuchi, J.M. Sands, and S.K. Kumar, Nature 374, 709 (1995).

    Article  ADS  Google Scholar 

  25. X. Zhuang, D. Wilk, L. Marrucci, and Y.R. Shen, Phys. Rev. Lett. 75, 2144 (1995).

    Article  ADS  Google Scholar 

  26. K. Okano, N. Matsuura, and S. Kobayashi, Jpn. J. Appl. Phys. 21, L109 (1982).

    Article  ADS  Google Scholar 

  27. K. Okano, Jpn. J. Appl. Phys. Part 2 Lett. 22, L343 (1983).

    Article  Google Scholar 

  28. H. Aoyama, Y. Yamazaki, N. Matsuura, H. Mada, and S. Kobayashi, Mol. Cryst. Liq. Cryst. 72, 127 (1981).

    Article  Google Scholar 

  29. W.M. Gibbons, P.J. Shannon, S.T. Sun, and B.J. Swetlin, Nature 351, 49 (1991).

    Article  ADS  Google Scholar 

  30. P.J. Shannon, W.M. Gibbons, and S.T. Sun, Nature 368, 532 (1994).

    Article  ADS  Google Scholar 

  31. M. Schadt, H. Seiberle, and A. Schuster, Nature 381, 212 (1996).

    Article  ADS  Google Scholar 

  32. P. Chaudhari, J.A. Lacey, S.C.A. Lien, and J.L. Speidell, Jpn. J. Appl. Phys. Part 2 Lett. 37, L55 (1998).

    Article  Google Scholar 

  33. S.C.A. Lien, P. Chaudhari, J.A. Lacey, R.A. John, and J.L. Speidell, IBM J. Res. Develop. 42, 537 (1998).

    Article  Google Scholar 

  34. J. Stöhr, M.G. Samant, J. Lüning, A.C. Callegari, P. Chaudhari, J.P. Doyle, J.A. Lacey, S.A. Lien, S. Purushothaman, J.L. Speidell, Science 292, 2299 (2001).

    Article  ADS  Google Scholar 

  35. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.C.A. Lien, A. Callegari, G. Hougham, N.D. Lang, P.S. Andry, R. John, K.H. Yang, M.H. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M.G. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, Nature 411, 56 (2001).

    Article  ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lüning, J., Samant, M.G. (2004). Liquid Crystal Alignment on Surfaces with Orientational Molecular Order: A Microscopic Model Derived from Soft X-ray Absorption Spectroscopy. In: Surfaces and Interfaces of Liquid Crystals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10157-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10157-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05868-4

  • Online ISBN: 978-3-662-10157-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics