Skip to main content

Surface-Induced Order Detected by Deuteron Nuclear Magnetic Resonance

  • Chapter
Surfaces and Interfaces of Liquid Crystals

Abstract

As many as 30 years ago P. G. de Gennes wrote in the first edition of his book The Physics of Liquid Crystals [1]: “The dual aspects of a nematic phase (liquid-like but uniaxial) are exhibited most spectacularly in the NMR spectrum; the uniaxial symmetry causes certain line splittings, which are absent in the conventional isotropic liquid phase. On the other hand, the lines are relatively narrow; this implies rapid molecular motions and is a natural consequence of the fluidity”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.G. de Gennes, J. Prost:The Physics of Liquid Crystals ( Clarendon Press, Oxford 1993 ).

    Google Scholar 

  2. E. Fukushima, S.B.W. Roeder:Experimental Pulse NMR (Addison-Wesley Publishing Company, Reading, Massachusetts 1981 ).

    Google Scholar 

  3. R.Y. Dong:Nuclear Magnetic Resonance of Liquid Crystals ( Springer Verlag, New York Berlin 1994 ).

    Book  Google Scholar 

  4. J.W. Doane, N.A. Vaz, B.G. Wu, et al: Appl. Phys. Lett.48, 269 (1986).

    Article  ADS  Google Scholar 

  5. G.P. Crawford, M. Vilfan, J.W. Doane, et al: Phys. Rev. A43, 835 (1991).

    Article  ADS  Google Scholar 

  6. G.P. Crawford, D.W. Allender, J.W. Doane et al: Phys. Rev. A44 2570 (1991).

    Article  ADS  Google Scholar 

  7. G.P. Crawford, D.W. Allender, J.W. Doane: Phys. Rev. A45 8693 (1992).

    Article  ADS  Google Scholar 

  8. R. Ondris-Crawford, G.P. Crawford, S. Zumer et al: Phys. Rev. Lett.70, 194 (1993).

    Article  ADS  Google Scholar 

  9. R. Ondris-Crawford, M. Ambrozic, J.W. Doane et al: Phys. Rev. E50, 4773 (1994).

    Article  ADS  Google Scholar 

  10. A. Golemme, S. Zumer, D.W. Allender et al: Phys. Rev. Lett.61, 2937 (1988).

    Article  ADS  Google Scholar 

  11. G.S. Iannacchione, S.H. Qian, D. Finotello et al: Phys. Rev. E56, 554 (1997).

    Article  ADS  Google Scholar 

  12. G. Iannacchione, G.P. Crawford, S. Zumer et al: Phys. Rev. Lett. 71, 2595 (1993).

    Article  ADS  Google Scholar 

  13. T. Jin, D. Finotello: Phys. Rev. Lett. 86, 818.

    Google Scholar 

  14. A. Zidansek, S. Kralj, G. Lahajnar et al: Phys. Rev. E51, 3332 (1995).

    Article  ADS  Google Scholar 

  15. R. Aloe, G. Chidichimo, A. Golemme: Mol. Cryst. Liq. Cryst.202, 9 (1991).

    Article  Google Scholar 

  16. M. Ambrozic, P. Formoso, A. Golemme et al: Phys. Rev. E56, 1825 (1997).

    ADS  Google Scholar 

  17. P.S. Drzaic:Liquid Crystal Dispersions ( World Scientific, Singapore 1995 ).

    Google Scholar 

  18. G.P. Crawford, D.K. Yang, S. Zumer et al: Phys. Rev. Lett.66, 723 (1991).

    Article  ADS  Google Scholar 

  19. G.P. Crawford, R. Stannarius, J.W. Doane: Phys. Rev. A44, 2558 (1991).

    Article  ADS  Google Scholar 

  20. M. Vilfan, N. Vrbancic-Kopac: Nuclear magnetic resonance of liquid crystals with an embedded polymer network. In: Liquid Crystals in Complex Geometries, ed by G.P. Crawford, S. Zumer (Taylor & Francis, London 1996) chap 7.

    Google Scholar 

  21. G.P. Crawford, R. Ondris.Crawford, S. Zumer et al: Phys. R.v. Lett.70, 1838 (1993).

    Article  ADS  Google Scholar 

  22. G.P. Crawford, R. Ondris-Crawford, S. Zumer et al: Phys. Rev. E53, 3647 (1996).

    Article  ADS  Google Scholar 

  23. P. Ziherl, M. Vilfan, N. Vrbancic-Kopac et al: Phys. Rev. E61, 2792 (2000).

    Article  ADS  Google Scholar 

  24. T. Jin, G.P. Crawford, R.J. Crawford, et al: Phys. Rev. Lett.90, 015504 (2003).

    Google Scholar 

  25. T. Jin, B. Zalar, A. Lebar et al, submitted.

    Google Scholar 

  26. T.J. Sluckin, A. Poniewierski: Phys. Rev. Lett.55, 2907 (1985).

    Article  ADS  Google Scholar 

  27. P.I.C. Teixeira, T.J. Sluckin: J. Chem. Phys.97, 1498 (1992).

    Article  ADS  Google Scholar 

  28. B.M. Ocko: Phys. Rev. Lett.64, 2160 (1990).

    Article  ADS  Google Scholar 

  29. T. Moses: Phys. Rev. E64, 010702R (2001).

    Google Scholar 

  30. K. Kocevar, I. Musevic: Phys. Rev. E65, 021703 (2002).

    Google Scholar 

  31. B. Zalar, S. Zumer, D. Finotello: Phys. Rev. Lett.84, 4866 (2000).

    Article  ADS  Google Scholar 

  32. B. Zalar, R. Blinc, S. Zumer et al: Phys. Rev. B65, 041703 (2002).

    Google Scholar 

  33. J. Xue, C.S. Jung, M.W. Kim: Phys. Rev. Lett.69, 474 (1992).

    Article  ADS  Google Scholar 

  34. F. Vandenbrouck, M.P. Valignat, A.M. Cazabat: Phys. Rev. Lett.82, 2693 (1999).

    Article  ADS  Google Scholar 

  35. N. Vrbancic-Kopac: Nuclear Magnetic Resonance Study of Microconfined Liquid Crystals. Ph.D. Thesis, University of Ljubljana, Ljubljana (1997).

    Google Scholar 

  36. P. Ziherl, S. Zumer: Phys. Rev. Lett.78, 682 (1992).

    Article  ADS  Google Scholar 

  37. M. Vilfan, N. Vrbancic-Kopac, B. Zalar et al: Phys. Rev. E59, R4754 (1999).

    Article  ADS  Google Scholar 

  38. E.E. Burnell, M.E. Clark, J.A.M. Hinke et al: Biophys. J.33, 1 (1981).

    Article  Google Scholar 

  39. R. Kimmich, P. Gneiting, K. Kotitschke et al: Mag. Res. Imag.19, 433 (1990).

    Google Scholar 

  40. F. Grinberg, R. Kimmich: Mag. Res. Imag.19, 401 (2001).

    Article  Google Scholar 

  41. S. Zumer, S. Kralj, M. Vilfan: J. Chem. Phys.91, 6411 (1989).

    Article  ADS  Google Scholar 

  42. M. Vilfan, G. Lahajnar, I. Zupancic et al: Mag. Res. Imag.21, 169 (2003).

    Article  Google Scholar 

  43. A.K. Fontecchio, C.C. Bowley, S.M. Chmura et al: J. Opt. Technol.68, 652 (2001).

    Article  ADS  Google Scholar 

  44. M.J. Escuti, J. Qi, G.P. Crawford: Appl. Phys. Lett.83, 1331 (2003).

    Article  ADS  Google Scholar 

  45. M. Vilfan, B. Zalar, A.K. Fontecchio et al: Phys. Rev. E66, 021710 (2002).

    Google Scholar 

  46. A. Lebar, G. Lahajnar, M. Vilfan et al, submitted.

    Google Scholar 

  47. M. Vilfan: Field-cycling NMR relaxometry of a confined mesogenic fluid. 3rd Conference on Field Cycling NMR Relaxometry, Techniques, Applications, Theories, Torino (2003).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vilfan, M., Zalar, B., Crawford, G.P., Finotello, D., Žumer, S. (2004). Surface-Induced Order Detected by Deuteron Nuclear Magnetic Resonance. In: Surfaces and Interfaces of Liquid Crystals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10157-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10157-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05868-4

  • Online ISBN: 978-3-662-10157-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics