Skip to main content

Survey of Wave Types and Characteristics

  • Chapter
Structure-Borne Sound

Abstract

In solids, as in liquids and gases, there can also occur pure longitudinal waves—that is, waves in which the direction of the particle displacements coincides with the direction of wave propagation. One may readily visualize such waves by studying the motion of two planes which in the undisturbed medium are parallel to each other and perpendicular to the direction of propagation. In pure longitudinal wave motion, these planes experience absolute displacements from their positions of equilibrium and the distance between them also changes in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, R.: Gesundheitsingenieur (1913) 433.

    Google Scholar 

  2. Lord Rayleigh: Theory of Sound I, 186, London, 1877.

    Google Scholar 

  3. Timoshenko, S. P.: Phil. Mag., Ser. 6, 41 (1921) 744;

    Article  Google Scholar 

  4. Timoshenko, S. P.: Schwingungsprobleme der Technik, Abschnitt 41, Berlin: Springer 1932.

    Google Scholar 

  5. Lord Rayleigh: Theory of Sound I, § 173.

    Google Scholar 

  6. Cremer, L.: Archiv Elektr. trbertr. 2 (1948) 136.

    Google Scholar 

  7. Lord Rayleigh: Proc. Math. Soc. London 17 (1885) 4.

    Article  Google Scholar 

  8. Lord Rayleigh: Proc. Lond. Math. Soc. XX (1889) 225.

    Google Scholar 

  9. Lamb, H.: Proc. Roy. Soc. Lond. Ser. A 93 (1917) 114.

    Article  ADS  MATH  Google Scholar 

  10. Timoshenko, S. P.: Phil. Mag. Ser. 6, 43 (1922) 125.

    Article  Google Scholar 

  11. Schoch, A.: Ergeb. exakt. Naturwiss. 23 (1950) 172ff.

    Google Scholar 

  12. Schoch, A.: Ergebn. exakt. Naturw. 23 (1950) 172ff.

    Google Scholar 

  13. Götz, J.: Akust. Z. 8 (1943) 145.

    Google Scholar 

  14. Firestone, F. A.: Non-destructive-testing 7 (1948) Nr. 2.

    Google Scholar 

  15. Naake, H. J., Tamm, K.: Acustica 8 (1958) 65.

    Google Scholar 

  16. Timoshenko, S. P.: Phil. Mag. Ser. 6, 43 (1922) 125.

    Article  Google Scholar 

  17. Tamm, K., Weiss, O.: Acustica 9 (1959) 275.

    Google Scholar 

  18. Epstein, P. S., J. Math. Phys. 21, (1942), 198–209.

    MATH  Google Scholar 

  19. Epstein, P. S., J. Math. Phys., 21 (1942) 198–209.

    MATH  Google Scholar 

  20. Kennard. E. H., J. Appl. Mech., 20 (1953) 33–40.

    MathSciNet  MATH  Google Scholar 

  21. Leissa, A. W., 1973, NASA SP-288.

    Google Scholar 

  22. Donell, L. H., “Discussion of thin shell-theory.” Proc. 5th International Congress for Applied Mechanics, 1939; p. 66.

    Google Scholar 

  23. Cremer, L., Acustica, 5 (1955) 245–256.

    Google Scholar 

  24. Heckl, M., J. Acoust. Soc. Amer., 34 (1962) 1553–1557.

    Google Scholar 

  25. Reissner, E., Quart. Appl. Math., 13 (1955) 169–1976.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cremer, L., Heckl, M. (1988). Survey of Wave Types and Characteristics. In: Structure-Borne Sound. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10121-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10121-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10123-0

  • Online ISBN: 978-3-662-10121-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics