Sound Radiation from Structures

  • L. Cremer
  • M. Heckl


Any discussion of structure-borne sound would be incomplete without a thorough treatment of sound radiation, because in practice one usually cares much less about the magnitude of the structural vibrations and about how they are transmitted and distributed than about the loudness of the sound that is radiated to the surroundings. In order to predict this sound radiation with some confidence, one needs to know the vibration amplitudes as functions of frequency, as well as their spatial distribution. For radiation into a relatively dense medium, such as water, loading of the vibrating bodies by the ambient medium also often plays a significant role. Thus, one needs to have a considerable amount of detailed information (of the type discussed in the previous chapters) before one can evaluate the airborne sound produced by structural vibrations.


Sound Pressure Loss Factor Sound Source Critical Frequency Transmission Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    After W. Pflaum and W. Hempel (CIMAC Report, London, 1965). The curve shown corresponds to the average of measurements made on several high-speed diesels rated between 100 and 200 hp.Google Scholar
  2. 1.
    Cremer, L.: Die wissenschaftlichen Grundlagen der Raumakustik (The Scientific Fundamentals of Room Acoustics), Vol. III, No. 62. Leipzig: Hirzel 1950.Google Scholar
  3. 1.
    Brillouin, J.: Acustica 2 (1952) 65.Google Scholar
  4. 1.
    For other applications, see Stenzel, H., Brosze, O.: Leitfaden zur Berechnung von Schallvorgängen (Guidelines for Analysis of Acoustic Processes). Berlin/Göttingen/Heidelberg: Springer 1958; and McLachlan, N. W.: Loudspeakers: Theory, Performance, Testing, and Design. New York: Dover Publications 1960.Google Scholar
  5. 1.
    Jahnke, E., Emde, F.: (Tables of Functions. New York: Dover Publications 1945.Google Scholar
  6. 2.
    Westphal, W.: Acustica 4 (1954) 1303.Google Scholar
  7. 1.
    Cremer, L., Eisenberg, A.: Bauplan u. Bautechnik 2 (1948) 235. corresponding critical frequencyGoogle Scholar
  8. 1.
    Gösele, K.: Acustica 3 (1953) 243. 6. Radiation from Bending Waves 487Google Scholar
  9. Lyon, R.. H., Maidanik, G.: J. Acoust. Soc. Amer. 34 (1962) 623. 2 Maidanik, G.: J. Acoust. Soc. Amer. 34 (1962) 809.Google Scholar
  10. 1.
    Gösele, Iï.: Acustica 6 (1956) 94.Google Scholar
  11. 2.
    Iihlman, T.: Transaction of Chalmers University of Technology, Gothenburg, Schweden. \r. 254 (1961).Google Scholar
  12. 1.
    Cremer, L.: Akustische Z. 7 (1942) 81.MathSciNetGoogle Scholar
  13. Cremer, L.: Die wissenschaftlichen Grundlagen der Raumakustik, Vol. IIIGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1973

Authors and Affiliations

  • L. Cremer
    • 1
  • M. Heckl
    • 2
  1. 1.Instituts für Technische, Akustik der TechnischenUniversität BerlinBerlinGermany
  2. 2.Schalltechnisches BeratungsbüroMüller-BBN GmbHMünchenGermany

Personalised recommendations