• L. Cremer
  • M. Heckl


The previous Chapter, which dealt with the various types of waves that can occur in a solid body, in all cases made use of some form of Hooke’s law—that is, it always involved proportionality between stress and strain. Hooke’s law, like most laws of physics, is exact only for ideal situations, which represent limiting conditions for practical situations. For the topics treated in the previous Chapter, the deviations from Hooke’s law exhibited by actual structures are unimportant. But, for example, in relation to processes that take place over relatively long times, one finds that the relations derived in the previous Chapter are unsatisfactory; although it is evident even from cursory observation that every oscillation decays with space and time, the previously derived relations (for example, Eqs. (II, 11) and (II, 12)) imply that a motion continues forever once it has been started.


Basic Plate Loss Factor Composite Plate Complex Modulus Torsional Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Meyer, 0. E.: J. reine u. angewandte Math. 78 (1874) 130–135.MATHGoogle Scholar
  2. 2.
    Boltzmann, L.: Ann. Physik, Erg. Bd. 7 (1876) 624–654.Google Scholar
  3. 1.
    Fitzgerald, E. R., Ferry, J. O.: J. Colloid Sei. 8 (1963) 1.CrossRefGoogle Scholar
  4. 1.
    Oberst, H., Frankenfeld, K.: Acustica (Beihefte) 2 (1952) 181.Google Scholar
  5. 2.
    Oberst, H., Becker, G. W., Frankenfeld, K.: Acustica (Beihefte) 4 (1954) 433.Google Scholar
  6. 3.
    This rule of thumb results from requiring the mass impedance of the sensor to be less than 1/10 of the bending wave input impedance of the beam (see Sec. IV, 3b).Google Scholar
  7. 3.
    Zener, C.: Elasticity and Anelasticity of Metals, University Chicago Press,. 1953.Google Scholar
  8. 2.
    Truell, R., Elbaum, C.: High Frequency Ultrasonic Stress Waves, in: Handbuch der Physik (ed. S. Flügge), Bd. XI, 2, Springer: Berlin 1961.Google Scholar
  9. 3.
    Love, A. E. H.: A Treatise on the Mathematical Theory of Elasticity, S. 119, Dover Publication (1948).Google Scholar
  10. 4.
    Lucke, K.: Die von Kristallbaufehlern, insbesondere von Versetzungen verursachten Dämpfungserscheinungen, Z. Metallkunde 53 (1962) 53.Google Scholar
  11. 5.
    Bordoni, P. G.: Dislocation, Relaxation at High Frequencies, Nuovo Cimento Suppl. 17 (1960) 43.CrossRefGoogle Scholar
  12. 1.
    Linhardt, F., Oberst, H.: Acustica 11 (1961) 255.Google Scholar
  13. 2.
    Williams, M. L., Landel, R. F., Ferry, J. D.: J. Amer. Chem. Soc. 77 (1955) 3701.CrossRefGoogle Scholar
  14. 1.
    Kurtze, G.: J. Acoust. Soc. Amer. 31 (1959) 952.MathSciNetADSCrossRefGoogle Scholar
  15. 2.
    Oberst, H., Frankenfeld, K.: Acustica (Beiheft) 2 (1952) 181.Google Scholar
  16. 3.
    All in cgs units.Google Scholar
  17. 1.
    Herwin, E. M.: Proc., 3rd I.C.A. Congress, Stuttgart (ed. L. Creamer ), Elsevier (1961) 412.Google Scholar
  18. 1.
    Tatarkowski, B. O., Rybak, S. A.: 4th I.C.A. Congress, Copenhagen 1962, Paper P 43.Google Scholar
  19. 1.
    Heckl, M.: J. Acoust. Soc. Amer. 33 (1961) 640. 7.Google Scholar
  20. 1.
    Goodman, L. E.: A Review of Progress in Analysis of Interfacial Slip Damping, Sec.II, Structural Damping (ed. J. E. Huzicka ), Amer. Soc. Mech. Engrs., New York 1959.Google Scholar
  21. 1.
    Ungar, E. E.: 33rd Symposium on Shock, Vibration and Associated Environments, Washington DC 1963.Google Scholar
  22. 2.
    Maidank, G.: J. Acoust. Soc. Amer. 40 (1966) 1064.Google Scholar
  23. 3.
    Ungar, E. E., Carbonell, J.: AIAA Journal 8 (1966) 1385. i Heckl, _M.: J. Acoust. Soc. Amer. 34 (1962) 803.Google Scholar
  24. 2.
    Schmidt, H.: Acustica 4 (1954) 639.Google Scholar
  25. 3.
    The horizontal “sand beams” used for these measurements consisted of sand contained in a long trough of plastic film, suspended from strings. Kurtze, G.: VDI Berichte 8 (1956) 110.Google Scholar
  26. 2.
    Kuhl, W., Kaiser, H.: Acustica 2 (1952) 179.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1973

Authors and Affiliations

  • L. Cremer
    • 1
  • M. Heckl
    • 2
  1. 1.Instituts für Technische, Akustik der TechnischenUniversität BerlinBerlinGermany
  2. 2.Schalltechnisches BeratungsbüroMüller-BBN GmbHMünchenGermany

Personalised recommendations